Articles | Volume 27, issue 18
https://doi.org/10.5194/hess-27-3405-2023
https://doi.org/10.5194/hess-27-3405-2023
Research article
 | 
26 Sep 2023
Research article |  | 26 Sep 2023

Quantifying river water contributions to the transpiration of riparian trees along a losing river: lessons from stable isotopes and an iteration method

Yue Li, Ying Ma, Xianfang Song, Qian Zhang, and Lixin Wang

Related authors

New isotope-based evapotranspiration partitioning method using the Keeling plot slope and direct measured parameters
Yusen Yuan, Lixin Wang, Wenqing Lin, Wenzhe Jiao, and Taisheng Du
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-519,https://doi.org/10.5194/hess-2020-519, 2020
Revised manuscript not accepted
Causes and consequences of pronounced variation in the isotope composition of plant xylem water
Hannes P. T. De Deurwaerder, Marco D. Visser, Matteo Detto, Pascal Boeckx, Félicien Meunier, Kathrin Kuehnhammer, Ruth-Kristina Magh, John D. Marshall, Lixin Wang, Liangju Zhao, and Hans Verbeeck
Biogeosciences, 17, 4853–4870, https://doi.org/10.5194/bg-17-4853-2020,https://doi.org/10.5194/bg-17-4853-2020, 2020
Short summary
Novel Keeling-plot-based methods to estimate the isotopic composition of ambient water vapor
Yusen Yuan, Taisheng Du, Honglang Wang, and Lixin Wang
Hydrol. Earth Syst. Sci., 24, 4491–4501, https://doi.org/10.5194/hess-24-4491-2020,https://doi.org/10.5194/hess-24-4491-2020, 2020
Short summary
Seasonal variability in evapotranspiration partitioning and its relationship with crop development and water use efficiency of winter wheat
Ying Ma, Praveen Kumar, and Xianfang Song
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-234,https://doi.org/10.5194/hess-2018-234, 2018
Preprint withdrawn
Short summary
Shifts in stream hydrochemistry in responses to typhoon and non-typhoon precipitation
Chung-Te Chang, Jr-Chuan Huang, Lixin Wang, Yu-Ting Shih, and Teng-Chiu Lin
Biogeosciences, 15, 2379–2391, https://doi.org/10.5194/bg-15-2379-2018,https://doi.org/10.5194/bg-15-2379-2018, 2018
Short summary

Related subject area

Subject: Ecohydrology | Techniques and Approaches: Instruments and observation techniques
Hydrological and pedological effects of combining Italian alder and blackberries in an agroforestry windbreak system in South Africa
Svenja Hoffmeister, Rafael Bohn Reckziegel, Ben du Toit, Sibylle K. Hassler, Florian Kestel, Rebekka Maier, Jonathan P. Sheppard, and Erwin Zehe
Hydrol. Earth Syst. Sci., 28, 3963–3982, https://doi.org/10.5194/hess-28-3963-2024,https://doi.org/10.5194/hess-28-3963-2024, 2024
Short summary
Rainfall redistribution in subtropical Chinese forests changes over 22 years
Wanjun Zhang, Thomas Scholten, Steffen Seitz, Qianmei Zhang, Guowei Chu, Linhua Wang, Xin Xiong, and Juxiu Liu
Hydrol. Earth Syst. Sci., 28, 3837–3854, https://doi.org/10.5194/hess-28-3837-2024,https://doi.org/10.5194/hess-28-3837-2024, 2024
Short summary
The influence of hillslope topography on beech water use: a comparative study in two different climates
Ginevra Fabiani, Julian Klaus, and Daniele Penna
Hydrol. Earth Syst. Sci., 28, 2683–2703, https://doi.org/10.5194/hess-28-2683-2024,https://doi.org/10.5194/hess-28-2683-2024, 2024
Short summary
Real-time biological early-warning system based on freshwater mussels’ valvometry data
Ashkan Pilbala, Nicoletta Riccardi, Nina Benistati, Vanessa Modesto, Donatella Termini, Dario Manca, Augusto Benigni, Cristiano Corradini, Tommaso Lazzarin, Tommaso Moramarco, Luigi Fraccarollo, and Sebastiano Piccolroaz
Hydrol. Earth Syst. Sci., 28, 2297–2311, https://doi.org/10.5194/hess-28-2297-2024,https://doi.org/10.5194/hess-28-2297-2024, 2024
Short summary
Root water uptake patterns are controlled by tree species interactions and soil water variability
Gökben Demir, Andrew J. Guswa, Janett Filipzik, Johanna Clara Metzger, Christine Römermann, and Anke Hildebrandt
Hydrol. Earth Syst. Sci., 28, 1441–1461, https://doi.org/10.5194/hess-28-1441-2024,https://doi.org/10.5194/hess-28-1441-2024, 2024
Short summary

Cited articles

Allen, C. D., Breshears, D. D., and McDowell, N. G.: On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene, Ecosphere, 6, 1-−55, https://doi.org/10.1890/ES15-00203.1, 2015. 
Allen, S. T., Kirchner, J. W., Braun, S., Siegwolf, R. T. W., and Goldsmith, G. R.: Seasonal origins of soil water used by trees, Hydrol. Earth Syst. Sci., 23, 1199–1210, https://doi.org/10.5194/hess-23-1199-2019, 2019. 
Alstad, K. P., Welker, J. M., Williams, S. A., and Trlica, M. J.: Carbon and water relations of Salix monticola in response to winter browsing and changes in surface water hydrology: an isotopic study using delta C-13 and delta O-18, Oecologia, 120, 375–385, 1999. 
Aguilos, M., Stahl C., Burban, B., Hérault B., Courtois, E., Coste, S., Wagner, F., Ziegler, C., Takagi, K., and Bonal, D.: Interannual and seasonal variations in ecosystem transpiration and water use efficiency in a tropical rainforest, Forests, 10, 1−-20, https://doi.org/10.3390/f10010014, 2019. 
Antunes, C., Barradas, M. C. D., Zunzunegui, M., Vieira, S., Pereira, A., Anjos, A., Correia, O., Pereira, M. J., and Maguas, C.: Contrasting plant water-use responses to groundwater depth in coastal dune ecosystems, Funct. Ecol., 32, 1931–1943, 2018. 
Download
Short summary
We proposed an iteration method in combination with the MixSIAR model and water isotopes to quantify the river water contribution (RWC) to riparian deep-rooted trees nearby a losing river. River water can indirectly contribute by 20.3 % to water uptake of riparian trees. River recharged riparian groundwater rapidly with a short groundwater residence time (no more than 0.28 d). The RWC to riparian trees was negatively correlated with the water table depth and leaf δ13C in linear functions.