Articles | Volume 27, issue 7
https://doi.org/10.5194/hess-27-1507-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-1507-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Soil–vegetation–water interactions controlling solute flow and chemical weathering in volcanic ash soils of the high Andes
Sebastián Páez-Bimos
CORRESPONDING AUTHOR
Departamento de Ingeniería Civil y Ambiental & Centro de
Investigaciones y Estudios en Ingeniería de los Recursos Hídricos
(CIERHI), Facultad de Ingeniería Civil y Ambiental, Escuela
Politécnica Nacional, Quito, 170525, Ecuador
Earth and Climate Research, Earth and Life Institute, UCLouvain,
Louvain-la-Neuve, 1348, Belgium
Armando Molina
Programa para el Manejo de Agua y Suelo (PROMAS), Facultad de
Ingeniería Civil, Universidad de Cuenca, Cuenca, 010203, Ecuador
Marlon Calispa
Programa para el Manejo de Agua y Suelo (PROMAS), Facultad de
Ingeniería Civil, Universidad de Cuenca, Cuenca, 010203, Ecuador
Environmental Sciences, Earth and Life Institute, UCLouvain,
Louvain-la-Neuve, 1348, Belgium
Pierre Delmelle
Environmental Sciences, Earth and Life Institute, UCLouvain,
Louvain-la-Neuve, 1348, Belgium
Braulio Lahuatte
Fondo para la Protección del Agua (FONAG), 170509, Quito, Ecuador
Marcos Villacís
Departamento de Ingeniería Civil y Ambiental & Centro de
Investigaciones y Estudios en Ingeniería de los Recursos Hídricos
(CIERHI), Facultad de Ingeniería Civil y Ambiental, Escuela
Politécnica Nacional, Quito, 170525, Ecuador
Teresa Muñoz
Empresa Pública Metropolitana de Agua Potable y Saneamiento
(EPMAPS), Quito, 170519, Ecuador
Veerle Vanacker
CORRESPONDING AUTHOR
Earth and Climate Research, Earth and Life Institute, UCLouvain,
Louvain-la-Neuve, 1348, Belgium
Related authors
No articles found.
Maxime Thomas, Thomas Moenaert, Julien Radoux, Baptiste Delhez, Eléonore du Bois d'Aische, Maëlle Villani, Catherine Hirst, Erik Lundin, François Jonard, Sébastien Lambot, Kristof Van Oost, Veerle Vanacker, Matthias B. Siewert, Carl-Magnus Mörth, Michael W. Palace, Ruth K. Varner, Franklin B. Sullivan, Christina Herrick, and Sophie Opfergelt
EGUsphere, https://doi.org/10.5194/egusphere-2025-3788, https://doi.org/10.5194/egusphere-2025-3788, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
This study examines the rate of permafrost degradation, in the form of the transition from intact well-drained palsa to fully thawed and inundated fen at the Stordalen mire, Abisko, Sweden. Across the 14 hectares of the palsa mire, we demonstrate a 5-fold acceleration of the degradation in 2019–2021 compared to previous periods (1970–2014) which might lead to a pool of 12 metric tons of organic carbon exposed annually for the topsoil (23 cm depth), and an increase of ~1.3%/year of GHG emissions.
Yanfei Li, Maud Henrion, Angus Moore, Sébastien Lambot, Sophie Opfergelt, Veerle Vanacker, François Jonard, and Kristof Van Oost
EGUsphere, https://doi.org/10.5194/egusphere-2025-1595, https://doi.org/10.5194/egusphere-2025-1595, 2025
Short summary
Short summary
Combining Unmanned Aerial Vehicle (UAV) remote sensing with in-situ monitoring provides high spatial-temporal insights into CO2 fluxes from temperate peatlands. Dynamic factors (soil temperature and moisture) are the primary drivers contributing to 29% of the spatial and 43% of the seasonal variation. UAVs are effective tools for mapping daily soil respiration. CO2 fluxes from hot spots & moments contribute 20% and 30% of total CO2 fluxes, despite representing only 10% of the area and time.
Janet C. Richardson, Veerle Vanacker, David M. Hodgson, Marcus Christl, and Andreas Lang
Earth Surf. Dynam., 13, 315–339, https://doi.org/10.5194/esurf-13-315-2025, https://doi.org/10.5194/esurf-13-315-2025, 2025
Short summary
Short summary
Pediments are long flat surfaces that extend outwards from the foot of mountains; within South Africa they are regarded as ancient landforms that can give key insights into landscape and mantle dynamics. Cosmogenic nuclide dating has been incorporated with geological (soil formation) and geomorphological (river incision) evidence, which shows that the pediments are long-lived features beyond the ages reported by cosmogenic nuclide dating.
Armando Molina, Veerle Vanacker, Oliver Chadwick, Santiago Zhiminaicela, Marife Corre, and Edzo Veldkamp
Biogeosciences, 21, 3075–3091, https://doi.org/10.5194/bg-21-3075-2024, https://doi.org/10.5194/bg-21-3075-2024, 2024
Short summary
Short summary
The tropical Andes contains unique landscapes where forest patches are surrounded by tussock grasses and cushion-forming plants. The aboveground vegetation composition informs us about belowground nutrient availability: patterns in plant-available nutrients resulted from strong biocycling of cations and removal of soil nutrients by plant uptake or leaching. Future changes in vegetation distribution will affect soil water and solute fluxes and the aquatic ecology of Andean rivers and lakes.
Noa Ligot, Patrick Bogaert, Sébastien Biass, Guillaume Lobet, and Pierre Delmelle
Nat. Hazards Earth Syst. Sci., 23, 1355–1369, https://doi.org/10.5194/nhess-23-1355-2023, https://doi.org/10.5194/nhess-23-1355-2023, 2023
Short summary
Short summary
Assessing risk to crops from volcanic ashfall is critical to protect people who rely on agriculture for their livelihood and food security. Ash retention on crop leaves is a key process in damage initiation. Experiments with tomato and chilli pepper plants revealed that ash retention increases with decreasing ash grain size and is enhanced when leaves are pubescent or their surfaces are wet. We propose a new relationship to quantify potential crop yield loss as a function of ash retention.
Nathan Vandermaelen, Koen Beerten, François Clapuyt, Marcus Christl, and Veerle Vanacker
Geochronology, 4, 713–730, https://doi.org/10.5194/gchron-4-713-2022, https://doi.org/10.5194/gchron-4-713-2022, 2022
Short summary
Short summary
We constrained deposition phases of fluvial sediments (NE Belgium) over the last 1 Myr with analysis and modelling of rare isotopes accumulation within sediments, occurring as a function of time and inverse function of depth. They allowed the determination of three superposed deposition phases and intercalated non-deposition periods of ~ 40 kyr each. These phases correspond to 20 % of the sediment age, which highlights the importance of considering deposition phase when dating fluvial sediments.
Sébastien Biass, Susanna F. Jenkins, William H. Aeberhard, Pierre Delmelle, and Thomas Wilson
Nat. Hazards Earth Syst. Sci., 22, 2829–2855, https://doi.org/10.5194/nhess-22-2829-2022, https://doi.org/10.5194/nhess-22-2829-2022, 2022
Short summary
Short summary
We present a methodology that combines big Earth observation data and interpretable machine learning to revisit the impact of past volcanic eruptions recorded in archives of multispectral satellite imagery. Using Google Earth Engine and dedicated numerical modelling, we revisit and constrain processes controlling vegetation vulnerability to tephra fallout following the 2011 eruption of Cordón Caulle volcano, illustrating how this approach can inform the development of risk-reduction policies.
Veerle Vanacker, Armando Molina, Miluska A. Rosas, Vivien Bonnesoeur, Francisco Román-Dañobeytia, Boris F. Ochoa-Tocachi, and Wouter Buytaert
SOIL, 8, 133–147, https://doi.org/10.5194/soil-8-133-2022, https://doi.org/10.5194/soil-8-133-2022, 2022
Short summary
Short summary
The Andes region is prone to natural hazards due to its steep topography and climatic variability. Anthropogenic activities further exacerbate environmental hazards and risks. This systematic review synthesizes the knowledge on the effectiveness of nature-based solutions. Conservation of natural vegetation and implementation of soil and water conservation measures had significant and positive effects on soil erosion mitigation and topsoil organic carbon concentrations.
Cited articles
Acharya, S.: hydrusR: Utility package to run HYDRUS-1D and analyse results, https://github.com/shoebodh/hydrusR (last access: 1 February 2023), R package version 0.3.0, 2020.
Amundson, R., Richter, D. D., Humphreys, G. S., Jobbagy, E. G., and
Gaillardet, J.: Coupling between Biota and Earth Materials in the Critical
Zone, Elements, 3, 327–332, https://doi.org/10.2113/gselements.3.5.327,
2007.
Anderson, S. P., von Blanckenburg, F., and White, A. F.: Physical and
Chemical Controls on the Critical Zone, Elements, 3, 315–319,
https://doi.org/10.2113/gselements.3.5.315, 2007.
Aparecido, L. M. T., Teodoro, G. S., Mosquera, G., Brum, M., Barros, F. de
V., Pompeu, P. V., Rodas, M., Lazo, P., Müller, C. S., Mulligan, M.,
Asbjornsen, H., Moore, G. W., and Oliveira, R. S.: Ecohydrological drivers
of Neotropical vegetation in montane ecosystems, Ecohydrology, 11, e1932,
https://doi.org/10.1002/eco.1932, 2018.
Aran, D., Gury, M., and Jeanroy, E.: Organo-metallic complexes in an
Andosol: a comparative study with a Cambisol and Podzol, Geoderma, 99,
65–79, https://doi.org/10.1016/S0016-7061(00)00064-1, 2001.
Arízaga-Idrovo, V., Pesántez, J., Birkel, C., Peña, P., Mora,
E., and Crespo, P.: Characterizing solute budgets of a tropical Andean
páramo ecosystem, Sci. Total Environ., 835, 155560,
https://doi.org/10.1016/j.scitotenv.2022.155560, 2022.
ASTM D1067-16: Test Methods for Acidity or Alkalinity of Water, ASTM
International, West Conshohocken, PA, https://doi.org/10.1520/D1067-16,
2016.
Berghuijs, W. R., Sivapalan, M., Woods, R. A., and Savenije, H. H. G.:
Patterns of similarity of seasonal water balances: A window into streamflow
variability over a range of time scales, Water Resour. Res., 50, 5638–5661,
https://doi.org/10.1002/2014WR015692, 2014.
Berner, E. K. and Berner, R. A.: Global environment: water, air, and
geochemical cycles, 2nd edn., Princeton University Press, Princeton, N.J., 444 pp., ISBN 13 978-0-691-13678-3, 2012.
Berner, R. A.: Rate control of mineral dissolution under Earth surface
conditions, Am. J. Sci., 278, 1235–1252,
https://doi.org/10.2475/ajs.278.9.1235, 1978.
Beven, K. and Binley, A.: The future of distributed models: Model
calibration and uncertainty prediction, Hydrol. Process., 6, 279–298,
https://doi.org/10.1002/hyp.3360060305, 1992.
Blume, T., Zehe, E., and Bronstert, A.: Use of soil moisture dynamics and patterns at different spatio-temporal scales for the investigation of subsurface flow processes, Hydrol. Earth Syst. Sci., 13, 1215–1233, https://doi.org/10.5194/hess-13-1215-2009, 2009.
Brantley, S. L., Megonigal, J. P., Scatena, F. N., Balogh-Brunstad, Z.,
Barnes, R. T., Bruns, M. A., Van Cappellen, P., Dontsova, K., Hartnett, H.
E., Hartshorn, A. S., Heimsath, A., Herndon, E., Jin, L., Keller, C. K.,
Leake, J. R., Mcdowell, W. H., Meinzer, F. C., Mozdzer, T. J., Petsch, S.,
Pett-Ridge, J., Pregitzer, K. S., Raymond, P. A., Riebe, C. S., Shumaker,
K., Sutton-Grier, A., Walter, R., and Yoo, K.: Twelve testable hypotheses on
the geobiology of weathering: Hypotheses on geobiology of weathering,
Geobiology, 9, 140–165, https://doi.org/10.1111/j.1472-4669.2010.00264.x,
2011.
Brantley, S. L., Lebedeva, M., and Hausrath, E. M.: A Geobiological View of
Weathering and Erosion, in: Fundamentals of Geobiology, edited by: Knoll, A.
H., Canfield, D. E., and Konhauser, K. O., Wiley, 205–227,
https://doi.org/10.1002/9781118280874.ch12, 2012.
Brantley, S. L., Eissenstat, D. M., Marshall, J. A., Godsey, S. E., Balogh-Brunstad, Z., Karwan, D. L., Papuga, S. A., Roering, J., Dawson, T. E., Evaristo, J., Chadwick, O., McDonnell, J. J., and Weathers, K. C.: Reviews and syntheses: on the roles trees play in building and plumbing the critical zone, Biogeosciences, 14, 5115–5142, https://doi.org/10.5194/bg-14-5115-2017, 2017.
Calabrese, S. and Porporato, A.: Wetness controls on global chemical
weathering, Environ. Res. Commun., 2, 085005,
https://doi.org/10.1088/2515-7620/abad7b, 2020.
Calabrese, S., Wild, B., Bertagni, M. B., Bourg, I. C., White, C., Aburto,
F., Cipolla, G., Noto, L. V., and Porporato, A.: Nano- to Global-Scale
Uncertainties in Terrestrial Enhanced Weathering, Environ. Sci. Technol.,
56, 15261–15272, https://doi.org/10.1021/acs.est.2c03163, 2022.
Calispa, M., van Ypersele, R., Pereira, B., Páez-Bimos, S., Vanacker, V., Villacís, M., Molina, A., de Bièvre, B., Muñoz, T., and Delmelle, P.: Soil organic carbon stocks under different páramo vegetation covers in Ecuador’s northern Andes, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4121, https://doi.org/10.5194/egusphere-egu21-4121, 2021.
Carrillo-Rojas, G., Silva, B., Rollenbeck, R., Célleri, R., and Bendix,
J.: The breathing of the Andean highlands: Net ecosystem exchange and
evapotranspiration over the páramo of southern Ecuador,
Agr. Forest Meteorol., 265, 30–47,
https://doi.org/10.1016/j.agrformet.2018.11.006, 2019.
Chadwick, O. A., Gavenda, R. T., Kelly, E. F., Ziegler, K., Olson, C. G.,
Elliott, W. C., and Hendricks, D. M.: The impact of climate on the
biogeochemical functioning of volcanic soils, Chem. Geol., 202,
195–223, https://doi.org/10.1016/j.chemgeo.2002.09.001, 2003.
Chen, S., Yoshitake, S., Iimura, Y., Asai, C., and Ohtsuka, T.: Dissolved
organic carbon (DOC) input to the soil: DOC fluxes and their partitions
during the growing season in a cool-temperate broad-leaved deciduous forest,
central Japan, Ecol. Res., 32, 713–724,
https://doi.org/10.1007/s11284-017-1488-6, 2017.
Chorover, J., Kretzschmar, R., Garcia-Pichel, F., and Sparks, D. L.: Soil
Biogeochemical Processes within the Critical Zone, Elements, 3, 321–326,
https://doi.org/10.2113/gselements.3.5.321, 2007.
Cipolla, G., Calabrese, S., Noto, L. V., and Porporato, A.: The role of
hydrology on enhanced weathering for carbon sequestration I. Modeling
rock-dissolution reactions coupled to plant, soil moisture, and carbon
dynamics, Adv. Water Resour., 154, 103934,
https://doi.org/10.1016/j.advwatres.2021.103934, 2021.
Clow, D. W. and Drever, J. I.: Weathering rates as a function of flow
through an alpine soil, Chem. Geol., 132, 131–141,
https://doi.org/10.1016/S0009-2541(96)00048-4, 1996.
Correa, A., Windhorst, D., Tetzlaff, D., Crespo, P., Célleri, R., Feyen,
J., and Breuer, L.: Temporal dynamics in dominant runoff sources and flow
paths in the Andean Páramo, Water Resour. Res., 53, 5998–6017,
https://doi.org/10.1002/2016WR020187, 2017.
Daly, E. and Porporato, A.: A Review of Soil Moisture Dynamics: From
Rainfall Infiltration to Ecosystem Response,
Environ. Eng. Sci., 22, 9–24, https://doi.org/10.1089/ees.2005.22.9, 2005.
van Dam, J. C., Stricker, J. N. M., and Droogers, P.: Inverse Method to
Determine Soil Hydraulic Functions from Multistep Outflow Experiments,
Soil Sci. Soc. Am. J., 58, 647–652,
https://doi.org/10.2136/sssaj1994.03615995005800030002x, 1994.
Dere, A. L., Miller, A. W., Hemje, A. M., Parcher, S. K., Capalli, C. A.,
and Bettis, E. A.: Solute Fluxes Through Restored Prairie and Intensively
Managed Critical Zones in Nebraska and Iowa, Front. Earth Sci., 7, 24,
https://doi.org/10.3389/feart.2019.00024, 2019.
Dettmann, U., Bechtold, M., Frahm, E., and Tiemeyer, B.: On the
applicability of unimodal and bimodal van Genuchten–Mualem based models to
peat and other organic soils under evaporation conditions,
J. Hydrol., 515, 103–115, https://doi.org/10.1016/j.jhydrol.2014.04.047,
2014.
Dixon, J. C. and Thorn, C. E.: Chemical weathering and landscape development
in mid-latitude alpine environments, Geomorphology, 67, 127–145,
https://doi.org/10.1016/j.geomorph.2004.07.009, 2005.
Dixon, J. L., Chadwick, O. A., and Vitousek, P. M.: Climate-driven
thresholds for chemical weathering in postglacial soils of New Zealand, J.
Geophys. Res.-Earth, 121, 1619–1634,
https://doi.org/10.1002/2016JF003864, 2016.
Drever, J. I.: The effect of land plants on weathering rates of silicate
minerals, Geochim. Cosmochim. Acta, 58, 2325–2332,
https://doi.org/10.1016/0016-7037(94)90013-2, 1994.
Durner, W.: Hydraulic conductivity estimation for soils with heterogeneous
pore structure, Water Resour. Res., 30, 211–223,
https://doi.org/10.1029/93WR02676, 1994.
Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B., and
Otero-Casal, C.: Hydrologic regulation of plant rooting depth, P. Natl.
Acad. Sci. USA, 114, 10572–10577,
https://doi.org/10.1073/pnas.1712381114, 2017.
Fujii, K., Funakawa, S., Shinjo, H., Hayakawa, C., Mori, K., and Kosaki, T.:
Fluxes of dissolved organic carbon and nitrogen throughout Andisol, Spodosol
and Inceptisol profiles under forest in Japan,
Soil Sci. Plant. Nutr., 57, 855–866, https://doi.org/10.1080/00380768.2011.637304, 2011.
García-Gamero, V., Vanwalleghem, T., Peña, A., Román-Sánchez, A., and Finke, P. A.: Modelling the effect of catena position and hydrology on soil chemical weathering, SOIL, 8, 319–335, https://doi.org/10.5194/soil-8-319-2022, 2022.
Gee, G. W., Newman, B. D., Green, S. R., Meissner, R., Rupp, H., Zhang, Z.
F., Keller, J. M., Waugh, W. J., van der Velde, M., and Salazar, J.: Passive
wick fluxmeters: Design considerations and field applications, Water Resour.
Res., 1–18, 45, https://doi.org/10.1029/2008WR007088, 2009.
Genxu, W., Guangsheng, L., and Chunjie, L.: Effects of changes in alpine
grassland vegetation cover on hillslope hydrological processes in a
permafrost watershed, J. Hydrol., 444–445, 22–33,
https://doi.org/10.1016/j.jhydrol.2012.03.033, 2012.
Geris, J., Tetzlaff, D., McDonnell, J., and Soulsby, C.: The relative role
of soil type and tree cover on water storage and transmission in northern
headwater catchments, Hydrol. Process., 29, 1844–1860,
https://doi.org/10.1002/hyp.10289, 2015.
Gu, S., Tang, Y., Cui, X., Du, M., Zhao, L., Li, Y., Xu, S., Zhou, H., Kato,
T., Qi, P., and Zhao, X.: Characterizing evapotranspiration over a meadow
ecosystem on the Qinghai-Tibetan Plateau, J. Geophys. Res., 113, D08118,
https://doi.org/10.1029/2007JD009173, 2008.
Guicharnaud, R. and Paton, G. I.: An evaluation of acid deposition on cation
leaching and weathering rates of an Andosol and a Cambisol,
J. Geochem. Explor., 88, 279–283,
https://doi.org/10.1016/j.gexplo.2005.08.056, 2006.
Hall, M. L., Mothes, P. A., Samaniego, P., Militzer, A., Beate, B.,
Ramón, P., and Robin, C.: Antisana volcano: A representative andesitic
volcano of the eastern cordillera of Ecuador: Petrography, chemistry, tephra
and glacial stratigraphy, J. S. Am. Earth Sci., 73,
50–64, https://doi.org/10.1016/j.jsames.2016.11.005, 2017.
Harden, C. P.: Human impacts on headwater fluvial systems in the northern
and central Andes, Geomorphology, 79, 249–263,
https://doi.org/10.1016/j.geomorph.2006.06.021, 2006.
Hinsinger, P., Plassard, C., and Jaillard, B.: Rhizosphere: A new frontier
for soil biogeochemistry, J. Geochem. Explor., 88, 210–213,
https://doi.org/10.1016/j.gexplo.2005.08.041, 2006.
Houska, T., Multsch, S., Kraft, P., Frede, H.-G., and Breuer, L.: Monte Carlo-based calibration and uncertainty analysis of a coupled plant growth and hydrological model, Biogeosciences, 11, 2069–2082, https://doi.org/10.5194/bg-11-2069-2014, 2014.
Hunt, A.: Soil Formation, Vegetation Growth, and Water Balance: A Theory for
Budyko, in: Geophysical Monograph Series, edited by: Hunt, A., Egli, M., and
Faybishenko, B., Wiley, 67–80, https://doi.org/10.1002/9781119563952.ch3,
2021.
Iñiguez, V., Morales, O., Cisneros, F., Bauwens, W., and Wyseure, G.: Analysis of the drought recovery of Andosols on southern Ecuadorian Andean páramos, Hydrol. Earth Syst. Sci., 20, 2421–2435, https://doi.org/10.5194/hess-20-2421-2016, 2016.
IUSS Working Group WRB: World Reference Base for Soil Resources 2014,
International soil classification system for naming soils and creating
legends for soil maps, FAO, Rome, ISBN 978-92-5-108369-7, 2014.
Jiang, X. J., Liu, W., Chen, C., Liu, J., Yuan, Z.-Q., Jin, B., and Yu, X.:
Effects of three morphometric features of roots on soil water flow behavior
in three sites in China, Geoderma, 320, 161–171,
https://doi.org/10.1016/j.geoderma.2018.01.035, 2018.
Kalbitz, K., Solinger, S., Park, J.-H., Michalzik, B., and Matzner, E.:
Controls on the dynamics of dissolved organic matter in soils: A review,
Soil Sci., 165, 277–304,
https://doi.org/10.1097/00010694-200004000-00001, 2000.
Kelly, E. F., Chadwick, O. A., and Hilinski, T. E.: The effects of plants on
mineral weathering, Biogeochemistry, 42, 21–53,
https://doi.org/10.1023/A:1005919306687, 1998.
Kettridge, N., Tilak, A. S., Devito, K. J., Petrone, R. M., Mendoza, C. A.,
and Waddington, J. M.: Moss and peat hydraulic properties are optimized to
maximize peatland water use efficiency, Ecohydrol., 9, 1039–1051,
https://doi.org/10.1002/eco.1708, 2015.
Khan, E. and Subramania-Pillai, S.: Interferences contributed by leaching
from filters on measurements of collective organic constituents, Water
Res., 41, 1841–1850, https://doi.org/10.1016/j.watres.2006.12.028,
2007.
Klute, A.: Water Retention: Laboratory Methods, in: Methods of Soil
Analysis: Part 1 Physical and Mineralogical Methods, edited by: Klute, A.,
Soil Science Society of America, American Society of Agronomy, Madison, WI,
USA, 635–662, https://doi.org/10.2136/sssabookser5.1.2ed.c26, 1986.
Knoben, W. J. M., Freer, J. E., and Woods, R. A.: Technical note: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores, Hydrol. Earth Syst. Sci., 23, 4323–4331, https://doi.org/10.5194/hess-23-4323-2019, 2019.
Knowles, J. F., Harpold, A. A., Cowie, R., Zeliff, M., Barnard, H. R.,
Burns, S. P., Blanken, P. D., Morse, J. F., and Williams, M. W.: The
relative contributions of alpine and subalpine ecosystems to the water
balance of a mountainous, headwater catchment, Hydrol. Process., 29,
4794–4808, https://doi.org/10.1002/hyp.10526, 2015.
Körner, C.: Alpine Plant Life, Springer Berlin Heidelberg, Berlin,
Heidelberg, https://doi.org/10.1007/978-3-642-18970-8, 2003.
Lahuatte, B., Mosquera, G. M., Páez-Bimos, S., Calispa, M., Vanacker,
V., Zapata-Ríos, X., Muñoz, T., and Crespo, P.: Delineation of
water flow paths in a tropical Andean headwater catchment with deep soils
and permeable bedrock, Hydrol. Process., 36, 1–17, https://doi.org/10.1002/hyp.14725, 2022.
Lasaga, A. C., Soler, J. M., Ganor, J., Burch, T. E., and Nagy, K. L.:
Chemical weathering rate laws and global geochemical cycles, Geochim. Cosmochim. Acta, 58, 2361–2386,
https://doi.org/10.1016/0016-7037(94)90016-7, 1994.
Li, D., Pan, M., Cong, Z., Zhang, L., and Wood, E.: Vegetation control on
water and energy balance within the Budyko framework, Water Resour. Res.,
49, 969–976, https://doi.org/10.1002/wrcr.20107, 2013.
Lu, J., Zhang, Q., Werner, A. D., Li, Y., Jiang, S., and Tan, Z.:
Root-induced changes of soil hydraulic properties – A review, J. Hydrol., 589, 125203, https://doi.org/10.1016/j.jhydrol.2020.125203, 2020.
Lucas, Y.: The Role of Plants in Controlling Rates and Products of
Weathering: Importance of Biological Pumping, Annu. Rev. Earth Planet. Sci.,
29, 135–163, https://doi.org/10.1146/annurev.earth.29.1.135, 2001.
Maher, K.: The dependence of chemical weathering rates on fluid residence
time, Earth Planet Sci. Lett., 294, 101–110,
https://doi.org/10.1016/j.epsl.2010.03.010, 2010.
Maher, K. and Chamberlain, C. P.: Hydrologic Regulation of Chemical
Weathering and the Geologic Carbon Cycle, Science, 343, 1502–1504,
https://doi.org/10.1126/science.1250770, 2014.
Metzger, J. C., Wutzler, T., Dalla Valle, N., Filipzik, J., Grauer, C.,
Lehmann, R., Roggenbuck, M., Schelhorn, D., Weckmüller, J., Küsel,
K., Totsche, K. U., Trumbore, S., and Hildebrandt, A.: Vegetation impacts
soil water content patterns by shaping canopy water fluxes and soil
properties, Hydrol. Process., 31, 3783–3795,
https://doi.org/10.1002/hyp.11274, 2017.
Minaya, V., Corzo, G. A., Solomatine, D. P., and Mynett, A. E.: Data-driven
techniques for modelling the gross primary production of the páramo
vegetation using climate data: Application in the Ecuadorian Andean region,
Ecol. Inform., 43, 222–230,
https://doi.org/10.1016/j.ecoinf.2016.12.002, 2018.
Molina, A., Vanacker, V., Brisson, E., Mora, D., and Balthazar, V.: Multidecadal change in streamflow associated with anthropogenic disturbances in the tropical Andes, Hydrol. Earth Syst. Sci., 19, 4201–4213, https://doi.org/10.5194/hess-19-4201-2015, 2015.
Molina, A., Vanacker, V., Corre, M. D., and Veldkamp, E.: Patterns in soil
chemical weathering related to topographic gradients and vegetation
structure in a high Andean tropical ecosystem, J. Geophys. Res.-Earth, 124, 666–685, 2019.
Montenegro-Díaz, P., Alvear, R. C., Wilcox, B. P., and Carrillo-Rojas,
G.: Effects of heavy grazing on the microclimate of a humid grassland
mountain ecosystem: Insights from a biomass removal experiment, Sci. Total Environ., 832, 155010,
https://doi.org/10.1016/j.scitotenv.2022.155010, 2022.
Moore, G., McGuire, K., Troch, P., and Barron-Gafford, G.: Ecohydrology and
the Critical Zone: Processes and Patterns Across Scales, in: Developments in
Earth Surface Processes, vol. 19, Elsevier, 239–266,
https://doi.org/10.1016/B978-0-444-63369-9.00008-2, 2015.
Moquet, J.-S., Guyot, J.-L., Crave, A., Viers, J., Filizola, N., Martinez,
J.-M., Oliveira, T. C., Sánchez, L. S. H., Lagane, C., Casimiro, W. S.
L., Noriega, L., and Pombosa, R.: Amazon River dissolved load: temporal
dynamics and annual budget from the Andes to the ocean, Environ. Sci. Pollut.
Res., 23, 11405–11429, https://doi.org/10.1007/s11356-015-5503-6, 2016.
Mosquera, G. M., Crespo, P., Breuer, L., Feyen, J., and Windhorst, D.: Water
transport and tracer mixing in volcanic ash soils at a tropical hillslope: A
wet layered sloping sponge, Hydrol. Process., 34, 2032–2047,
https://doi.org/10.1002/hyp.13733, 2020.
Mosquera, G. M., Marín, F., Stern, M., Bonnesoeur, V., Ochoa-Tocachi,
B. F., Román-Dañobeytia, F., and Crespo, P.: Progress in
understanding the hydrology of high-elevation Andean grasslands under
changing land use, Sci. Total Environ., 804, 150112,
https://doi.org/10.1016/j.scitotenv.2021.150112, 2022.
Mualem, Y.: A new model for predicting the hydraulic conductivity of
unsaturated porous media, Water Resour. Res., 12, 513–522,
https://doi.org/10.1029/WR012i003p00513, 1976.
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., and
Kent, J.: Biodiversity hotspots for conservation priorities, Nature, 403,
853–858, https://doi.org/10.1038/35002501, 2000.
Ochoa-Sánchez, A., Crespo, P., and Célleri, R.: Quantification of
rainfall interception in the high Andean tussock grasslands, Ecohydrology,
11, 11, https://doi.org/10.1002/eco.1946, 2018.
Ochoa-Sánchez, A., Crespo, P., Carrillo-Rojas, G., Sucozhañay, A.,
and Célleri, R.: Actual Evapotranspiration in the High Andean
Grasslands: A Comparison of Measurement and Estimation Methods, Front. Earth
Sci., 7, 55, https://doi.org/10.3389/feart.2019.00055, 2019.
Ochoa-Sánchez, A. E., Crespo, P., Carrillo-Rojas, G., Marín, F.,
and Célleri, R.: Unravelling evapotranspiration controls and components
in tropical Andean tussock grasslands, Hydrol. Process., 34,
2117–2127, https://doi.org/10.1002/hyp.13716, 2020.
Padrón, R. S., Wilcox, B. P., Crespo, P., and Célleri, R.: Rainfall
in the Andean Páramo: New Insights from High-Resolution Monitoring in
Southern Ecuador, J. Hydrometeorol., 16, 985–996,
https://doi.org/10.1175/JHM-D-14-0135.1, 2015.
Páez-Bimos, S., Villacís, M., Morales, O., Calispa, M., Molina, A.,
Salgado, S., de Bievre, B., Delmelle, P., Muñoz, T., and Vanacker, V.:
Vegetation effects on soil pore structure and hydraulic properties in
volcanic ash soils of the high Andes, Hydrol. Process., 36, 1–20,
https://doi.org/10.1002/hyp.14678, 2022.
Pansu, M. and Gautheyrou, J.: Handbook of soil analysis: mineralogical,
organic and inorganic methods, Springer, Berlin, New York, 993 pp., ISBN 978-3-540-31210-9, 2006.
Perdrial, J., Thompson, A., and Chorover, J.: Soil Geochemistry in the
Critical Zone: Influence on Atmosphere, Surface- and Groundwater
Composition, in: Developments in Earth Surface Processes, vol. 19, Elsevier,
173–201, https://doi.org/10.1016/B978-0-444-63369-9.00006-9, 2015.
Pesántez, J., Mosquera, G. M., Crespo, P., Breuer, L., and Windhorst,
D.: Effect of land cover and hydro-meteorological controls on soil water DOC
concentrations in a high-elevation tropical environment, Hydrol.
Process., 32, 2624–2635, https://doi.org/10.1002/hyp.13224, 2018.
Pope, G. A.: Regolith and Weathering (Rock Decay) in the Critical Zone, in:
Developments in Earth Surface Processes, vol. 19, Elsevier, 113–145,
https://doi.org/10.1016/B978-0-444-63369-9.00004-5, 2015.
Priesack, E. and Durner, W.: Closed-Form Expression for the Multi-Modal
Unsaturated Conductivity Function, Vadose Zone J., 5, 121–124,
https://doi.org/10.2136/vzj2005.0066, 2006.
Pujol, G., Iooss B., and DiceDesign, S.: sensitivity: Global Sensitivity Analysis of Model Outputs, https://cran.microsoft.com/snapshot/2017-04-14/web/packages/sensitivity/index.html (last access: 11 May 2021), R package version 1.14.0, 2017.
Quiring, S. M., Ford, T. W., and Yuan, S.: Climate of the Critical Zone, in:
Developments in Earth Surface Processes, vol. 19, Elsevier, 79–111,
https://doi.org/10.1016/B978-0-444-63369-9.00003-3, 2015.
R Core Team: R: A Language and Environment for Statistical Computing,
R Foundation for Statistical Computing, Vienna, Austria,
available at: http://www.R-project.org (last access: 1 February 2023), 2018.
Reynolds, W. D. and Elrick, D. E.: In situ measurement of field-saturated
hydraulic conductivity, sorptivity, and the α-parameter using the
Guelph permeameter, Soil Sci., 140, 292–302, 1985.
Rodriguez-Iturbe, I.: Ecohydrology: A hydrologic perspective of
climate-soil-vegetation dynamies, Water Resour. Res., 36, 3–9,
https://doi.org/10.1029/1999WR900210, 2000.
Schoonejans, J., Vanacker, V., Opfergelt, S., Ameijeiras-Mariño, Y., and
Christl, M.: Kinetically limited weathering at low denudation rates in
semiarid climatic conditions, J. Geophys. Res.-Earth, 121, 336–350,
https://doi.org/10.1002/2015JF003626, 2016.
Selle, B., Minasny, B., Bethune, M., Thayalakumaran, T., and Chandra, S.:
Applicability of Richards' equation models to predict deep percolation under
surface irrigation, Geoderma, 160, 569–578,
https://doi.org/10.1016/j.geoderma.2010.11.005, 2011.
Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B.,
Lehner, I., Orlowsky, B., and Teuling, A. J.: Investigating soil
moisture–climate interactions in a changing climate: A review,
Earth-Sci. Rev., 99, 125–161,
https://doi.org/10.1016/j.earscirev.2010.02.004, 2010.
Šimůnek, J. and Hopmans, J. W.: Parameter Optimization and Nonlinear
Fitting, in: SSSA Book Series, edited by: Dane, J. H. and Clarke Topp, G.,
Soil Science Society of America, Madison, WI, USA, 139–157,
https://doi.org/10.2136/sssabookser5.4.c7, 2002.
Šimůnek, J., Šejna, M., Saito, H., Sakai, M., and van Genuchten,
M. Th.: The HYDRUS-1D Software Package for Simulating the Movement of Water,
Heat, and Multiple Solutes in Variably Saturated Media, Department of
Environmental Sciences, University of California Riverside,
Riverside, California, USA, 348 pp., 2018.
Singh, G., Kaur, G., Williard, K., Schoonover, J., and Kang, J.: Monitoring
of Water and Solute Transport in the Vadose Zone: A Review, Vadose Zone
J., 17, 160058, https://doi.org/10.2136/vzj2016.07.0058, 2018.
Sivapalan, M.: From engineering hydrology to Earth system science: milestones in the transformation of hydrologic science, Hydrol. Earth Syst. Sci., 22, 1665–1693, https://doi.org/10.5194/hess-22-1665-2018, 2018.
Sobol, I. M.: Global sensitivity indices for nonlinear mathematical models
and their Monte Carlo estimates, Math. Comput. Simulat.,
55, 271–280, https://doi.org/10.1016/S0378-4754(00)00270-6, 2001.
Sullivan, P. L., Billings, S. A., Hirmas, D., Li, L., Zhang, X., Ziegler,
S., Murenbeeld, K., Ajami, H., Guthrie, A., Singha, K., Giménez, D.,
Duro, A., Moreno, V., Flores, A., Cueva, A., Koop, Aronson, E. L., Barnard,
H. R., Banwart, S. A., Keen, R. M., Nemes, A., Nikolaidis, N. P., Nippert,
J. B., Richter, D., Robinson, D. A., Sadayappan, K., de Souza, L. F. T.,
Unruh, M., and Wen, H.: Embracing the dynamic nature of soil structure: A
paradigm illuminating the role of life in critical zones of the
Anthropocene, Earth-Sci. Rev., 225, 103873,
https://doi.org/10.1016/j.earscirev.2021.103873, 2022.
Takahashi, T. and Dahlgren, R. A.: Nature, properties and function of
aluminum–humus complexes in volcanic soils, Geoderma, 263, 110–121,
https://doi.org/10.1016/j.geoderma.2015.08.032, 2016.
Tenorio, G. E., Vanacker, V., Campforts, B., Álvarez, L., Zhiminaicela,
S., Vercruysse, K., Molina, A., and Govers, G.: Tracking spatial variation
in river load from Andean highlands to inter-Andean valleys, Geomorphology,
308, 175–189, https://doi.org/10.1016/j.geomorph.2018.02.009, 2018.
Thurman, E. M.: Organic Geochemistry of Natural Waters, Springer
Netherlands, Dordrecht, https://doi.org/10.1007/978-94-009-5095-5, 1985.
Tobón, C. and Bruijnzeel, L. A.: Near-surface water fluxes and their
controls in a sloping heterogeneously layered volcanic soil beneath a
supra-wet tropical montane cloud forest (NW Costa Rica),
Hydrol. Process., 35, 1–17, https://doi.org/10.1002/hyp.14426, 2021.
Tromp-van Meerveld, H. J., and McDonnell, J. J.: On the interrelations
between topography, soil depth, soil moisture, transpiration rates and
species distribution at the hillslope scale, Adv. Water Resour.,
29, 293–310, https://doi.org/10.1016/j.advwatres.2005.02.016, 2006.
Ugolini, F. C., Dahlgren, R., Shoji, S., and Ito, T.: An example of
andosolization and podzolization as revealed by soil solution studies,
Southern Hakkoda, Northeastern Japan, Soil Sci., 145, 111–124, 1988.
Vanacker, V., Molina, A., Torres, R., Calderon, E., and Cadilhac, L.:
Challenges for research on global change in mainland Ecuador, Neotropical
Biodiversity, 4, 114–118, https://doi.org/10.1080/23766808.2018.1491706,
2018.
Velbel, M. A.: Constancy of silicate-mineral weathering-rate ratios between
natural and experimental weathering: implications for hydrologic control of
differences in absolute rates, Chem. Geol., 105, 89–99,
https://doi.org/10.1016/0009-2541(93)90120-8, 1993.
van der Velde, M., Green, S. R., Gee, G. W., Vanclooster, M., and Clothier,
B. E.: Evaluation of Drainage from Passive Suction and Nonsuction Flux
Meters in a Volcanic Clay Soil under Tropical Conditions, Vadose Zone
J., 4, 1201–1209, https://doi.org/10.2136/vzj2005.0011, 2005.
Vereecken, H., Huisman, J. A., Hendricks Franssen, H. J., Brüggemann,
N., Bogena, H. R., Kollet, S., Javaux, M., van der Kruk, J., and
Vanderborght, J.: Soil hydrology: Recent methodological advances,
challenges, and perspectives, Water Resour. Res., 51, 2616–2633,
https://doi.org/10.1002/2014WR016852, 2015.
Weihermüller, L., Siemens, J., Deurer, M., Knoblauch, S., Rupp, H.,
Göttlein, A., and Pütz, T.: In Situ Soil Water Extraction: A Review,
J. Environ. Qual., 36, 1735–1748, https://doi.org/10.2134/jeq2007.0218,
2007.
White, A. F.: Chemical weathering rates of silicate minerals in soils, in:
Chemical weathering rates of silicate minerals, vol. 31, Mineralogical
Society of America, Washington, D.C, 407–462, ISBN 0-939950-38-3, 1995.
White, A. F. and Buss, H. L.: Natural Weathering Rates of Silicate Minerals,
in: Treatise on Geochemistry, Elsevier, 115–155,
https://doi.org/10.1016/B978-0-08-095975-7.00504-0, 2014.
White, A. F., Blum, A. E., Schulz, M. S., Vivit, D. V., Stonestrom, D. A.,
Larsen, M., Murphy, S. F., and Eberl, D.: Chemical Weathering in a Tropical
Watershed, Luquillo Mountains, Puerto Rico: I. Long-Term Versus Short-Term
Weathering Fluxes, Geochim. Cosmochim. Acta, 62, 209–226,
https://doi.org/10.1016/S0016-7037(97)00335-9, 1998.
White, A. F., Schulz, M. S., Vivit, D. V., Blum, A. E., Stonestrom, D. A.,
and Harden, J. W.: Chemical weathering rates of a soil chronosequence on
granitic alluvium: III. Hydrochemical evolution and contemporary solute
fluxes and rates, Geochim. Cosmochim. Acta, 69, 1975–1996,
https://doi.org/10.1016/j.gca.2004.10.003, 2005.
White, A. F., Schulz, M. S., Stonestrom, D. A., Vivit, D. V., Fitzpatrick,
J., Bullen, T. D., Maher, K., and Blum, A. E.: Chemical weathering of a
marine terrace chronosequence, Santa Cruz, California. Part II: Solute
profiles, gradients and the comparisons of contemporary and long-term
weathering rates, Geochim. Cosmochim. Acta, 73, 2769–2803,
https://doi.org/10.1016/j.gca.2009.01.029, 2009.
Short summary
This study analyzes how vegetation influences soil hydrology, water fluxes, and chemical weathering rates in the high Andes. There are clear differences in the A horizon. The extent of soil chemical weathering varies depending on vegetation type. This difference is attributed mainly to the water fluxes. Our findings reveal that vegetation can modify soil properties in the uppermost horizon, altering the water balance, solutes, and chemical weathering throughout the entire soil profile.
This study analyzes how vegetation influences soil hydrology, water fluxes, and chemical...