Articles | Volume 26, issue 4
https://doi.org/10.5194/hess-26-955-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-955-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Are maps of nitrate reduction in groundwater altered by climate and land use changes?
Department of Hydrology, Geological Survey of Denmark and Greenland, GEUS, Copenhagen 1350, Denmark
Torben Obel Sonnenborg
Department of Hydrology, Geological Survey of Denmark and Greenland, GEUS, Copenhagen 1350, Denmark
Jens Christian Refsgaard
Department of Hydrology, Geological Survey of Denmark and Greenland, GEUS, Copenhagen 1350, Denmark
Christen Duus Børgesen
Department of Agroecology, Aarhus University, Tjele 8830, Denmark
Jørgen Eivind Olesen
Department of Agroecology, Aarhus University, Tjele 8830, Denmark
Dennis Trolle
Department of Bioscience – Lake Ecology, Aarhus University, Silkeborg 8600, Denmark
Related authors
Raphael Schneider, Simon Stisen, Mark F. T. Hansen, Mie Andreasen, Bertel Nilsson, Klaus Hinsby, Hans Jørgen Henriksen, and Ida Karlsson Seidenfaden
EGUsphere, https://doi.org/10.5194/egusphere-2025-5373, https://doi.org/10.5194/egusphere-2025-5373, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Using Denmark as a testbed, we show how droughts move from lack of rain to, often with delays, drying of soil, rivers, and groundwater. A national-scale model reproduced river and groundwater droughts well, while soil droughts were harder to capture. These findings strengthen drought forecasting and water management.
Raphael Schneider, Simon Stisen, Mark F. T. Hansen, Mie Andreasen, Bertel Nilsson, Klaus Hinsby, Hans Jørgen Henriksen, and Ida Karlsson Seidenfaden
EGUsphere, https://doi.org/10.5194/egusphere-2025-5373, https://doi.org/10.5194/egusphere-2025-5373, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Using Denmark as a testbed, we show how droughts move from lack of rain to, often with delays, drying of soil, rivers, and groundwater. A national-scale model reproduced river and groundwater droughts well, while soil droughts were harder to capture. These findings strengthen drought forecasting and water management.
Léonard Santos, Vazken Andréassian, Torben O. Sonnenborg, Göran Lindström, Alban de Lavenne, Charles Perrin, Lila Collet, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 29, 683–700, https://doi.org/10.5194/hess-29-683-2025, https://doi.org/10.5194/hess-29-683-2025, 2025
Short summary
Short summary
This work investigates how hydrological models are transferred to a period in which climate conditions are different to the ones of the period in which they were set up. The robustness assessment test built to detect dependencies between model error and climatic drivers was applied to three hydrological models in 352 catchments in Denmark, France and Sweden. Potential issues are seen in a significant number of catchments for the models, even though the catchments differ for each model.
Trine Enemark, Rasmus Bødker Madsen, Torben O. Sonnenborg, Lærke Therese Andersen, Peter B. E. Sandersen, Jacob Kidmose, Ingelise Møller, Thomas Mejer Hansen, Karsten Høgh Jensen, and Anne-Sophie Høyer
Hydrol. Earth Syst. Sci., 28, 505–523, https://doi.org/10.5194/hess-28-505-2024, https://doi.org/10.5194/hess-28-505-2024, 2024
Short summary
Short summary
In this study, we demonstrate an approach to evaluate the interpretation uncertainty within a manually interpreted geological model in a groundwater model. Using qualitative estimates of uncertainties, several geological realizations are developed and implemented in groundwater models. We confirm existing evidence that if the conceptual model is well defined, interpretation uncertainties within the conceptual model have limited impact on groundwater model predictions.
Tanja Denager, Torben O. Sonnenborg, Majken C. Looms, Heye Bogena, and Karsten H. Jensen
Hydrol. Earth Syst. Sci., 27, 2827–2845, https://doi.org/10.5194/hess-27-2827-2023, https://doi.org/10.5194/hess-27-2827-2023, 2023
Short summary
Short summary
This study contributes to improvements in the model characterization of water and energy fluxes. The results show that multi-objective autocalibration in combination with mathematical regularization is a powerful tool to improve land surface models. Using the direct measurement of turbulent fluxes as the target variable, parameter optimization matches simulations and observations of latent heat, whereas sensible heat is clearly biased.
Ane LaBianca, Mette H. Mortensen, Peter Sandersen, Torben O. Sonnenborg, Karsten H. Jensen, and Jacob Kidmose
Hydrol. Earth Syst. Sci., 27, 1645–1666, https://doi.org/10.5194/hess-27-1645-2023, https://doi.org/10.5194/hess-27-1645-2023, 2023
Short summary
Short summary
The study explores the effect of Anthropocene geology and the computational grid size on the simulation of shallow urban groundwater. Many cities are facing challenges with high groundwater levels close to the surface, yet urban planning and development seldom consider its impact on the groundwater resource. This study illustrates that the urban subsurface infrastructure significantly affects the groundwater flow paths and the residence time of shallow urban groundwater.
Eva Sebok, Hans Jørgen Henriksen, Ernesto Pastén-Zapata, Peter Berg, Guillaume Thirel, Anthony Lemoine, Andrea Lira-Loarca, Christiana Photiadou, Rafael Pimentel, Paul Royer-Gaspard, Erik Kjellström, Jens Hesselbjerg Christensen, Jean Philippe Vidal, Philippe Lucas-Picher, Markus G. Donat, Giovanni Besio, María José Polo, Simon Stisen, Yvan Caballero, Ilias G. Pechlivanidis, Lars Troldborg, and Jens Christian Refsgaard
Hydrol. Earth Syst. Sci., 26, 5605–5625, https://doi.org/10.5194/hess-26-5605-2022, https://doi.org/10.5194/hess-26-5605-2022, 2022
Short summary
Short summary
Hydrological models projecting the impact of changing climate carry a lot of uncertainty. Thus, these models usually have a multitude of simulations using different future climate data. This study used the subjective opinion of experts to assess which climate and hydrological models are the most likely to correctly predict climate impacts, thereby easing the computational burden. The experts could select more likely hydrological models, while the climate models were deemed equally probable.
Karol Kuliński, Gregor Rehder, Eero Asmala, Alena Bartosova, Jacob Carstensen, Bo Gustafsson, Per O. J. Hall, Christoph Humborg, Tom Jilbert, Klaus Jürgens, H. E. Markus Meier, Bärbel Müller-Karulis, Michael Naumann, Jørgen E. Olesen, Oleg Savchuk, Andreas Schramm, Caroline P. Slomp, Mikhail Sofiev, Anna Sobek, Beata Szymczycha, and Emma Undeman
Earth Syst. Dynam., 13, 633–685, https://doi.org/10.5194/esd-13-633-2022, https://doi.org/10.5194/esd-13-633-2022, 2022
Short summary
Short summary
The paper covers the aspects related to changes in carbon, nitrogen, and phosphorus (C, N, P) external loads; their transformations in the coastal zone; changes in organic matter production (eutrophication) and remineralization (oxygen availability); and the role of sediments in burial and turnover of C, N, and P. Furthermore, this paper also focuses on changes in the marine CO2 system, the structure of the microbial community, and the role of contaminants for biogeochemical processes.
Kim Madsen van't Veen, Ty Paul Andrew Ferré, Bo Vangsø Iversen, and Christen Duus Børgesen
Hydrol. Earth Syst. Sci., 26, 55–70, https://doi.org/10.5194/hess-26-55-2022, https://doi.org/10.5194/hess-26-55-2022, 2022
Short summary
Short summary
Geophysical instruments are often used in hydrological surveys. A geophysical model that couples electrical conductivity in the subsurface layers with measurements from an electromagnetic induction instrument was combined with a machine learning algorithm. The study reveals that this combination can estimate the identifiability of electrical conductivity in a layered soil and provide insight into the best way to configure the instrument for a specific field site.
Cited articles
Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'Connell, P. E., and Rasmussen, J.: An introduction to the European hydrological system –
systeme hydrologique europeen, “She”, 2: Structure of a physically-based,
distributed modeling system, J. Hydrol., 87, 61–77, 1986.
Abrahamsen, P. and Hansen, S.: Daisy: an open soil-crop-atmosphere system
model, Environ. Model. Softw., 15, 313–330, 2000.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: FAO Penman–Monteith equation, in: Crop evapotranspiration – Guidelines for computing crop water requirements, edited by: FAO, FAO Irrigation and drainage paper 56, Food and Agriculture Organization of the United Nations, Rome, Italy, 15–18, ISBN 92-5-104219-5, 1998.
Andersen, H. E., Blicher-Mathiesen, G., Thodsen, H., Andersen, P. M., Larsen, S. E., Stålnacke, P., Humborg, C., Mörth, C.-M., and Smedberg, E.: Identifying Hot Spots of Agricultural Nitrogen Loss Within the Baltic Sea Drainage Basin, Water Air Soil Pollut., 227, 38, https://doi.org/10.1007/s11270-015-2733-7, 2016.
Böhlke, J. K., Wanty, R., Tuttle, M., Delin, G., and Landon, M.:
Denitrification in the recharge area and discharge area of a transient
agricultural nitrate plume in a glacial outwash sand aquifer, Minnesota, Water Resour. Res., 38, 10-11–10-26, https://doi.org/10.1029/2001WR000663, 2002.
Børgesen, C. D. and Olesen, J. E.: A probabilistic assessment of climate
change impacts on yield and nitrogen leaching from winter wheat in Denmark,
Nat. Hazards Earth Syst. Sci., 11, 2541–2553, https://doi.org/10.5194/nhess-11-2541-2011, 2011.
Børgesen, C. D., Jensen, P. N., Blicher-Mathiesen, G., Schelde, K., Grant, R., Vinther, F. P., Thomsen, I. K., Hansen, E. M., Kristensen, I. T., Sørensen, P., and Poulsen, H. D.: Udviklingen i kvælstofudvaskning of
næringsstofoverskud fra dansk landbrug for perioden 2007–2011.
Evaluering af implementerede virkemidler til reduktion af kvælstofudvaskning samt en fremskrivning af planlagte virkemidlers
effekt frem til 2015, DCA Report 031, DCA – Nationalt Center for Fødevarer og Jordbrug, Tjele, Denmark, URL: https://pure.au.dk/ws/files/68362856/dcarapporten31.pdf (last access: 7 February 2022), 2013.
Bruun, S., Christensen, B. T., Hansen, E. M., Magid, J., and Jensen, L. S.:
Calibration and validation of the soil organic matter dynamics of the Daisy
model with data from the Askov long-term experiments, Soil Biol. Biochem., 35, 67–76, https://doi.org/10.1016/S0038-0717(02)00237-7, 2003.
DHI: DHI MIKE SHE [Computer software], User Guide, DHI – Water & Environment, Hørsholm, Denmark, https://www.mikepoweredbydhi.com/products/mike-she (last access: 7 February 2022), 2019.
Diaz, R. J. and Rosenberg, R.: Spreading dead zones and consequences for
marine ecosystems, Science, 321, 926–929, https://doi.org/10.1126/science.1156401, 2008.
DMI: Climate data, DMI Open data, https://www.dmi.dk/frie-data/, last access: 7 February 2022.
Ernstsen, V.: Reduction of Nitrate By Fe2+ in Clay Minerals, Clays
Clay Miner., 44, 599–608, https://doi.org/10.1346/CCMN.1996.0440503, 1996.
Ernstsen, V. and Mørup, S.: Nitrate reduction in clayey till by Fe(II) in clay minerals, Hyperfine Interact., 70, 1001–1004, https://doi.org/10.1007/BF02397497,
1992.
Ernstsen, V., Højberg, A. L., Jakobsen, P. R., von Platen, F., Tougaard, L., Hansen, J. R., Blicher-Mathiasen, G., Bøgestrand, J., and Børgesen, C. D.: Beregning af nitratreduktionsfaktorer for zonen mellem rodzonen og frem til vandløbet, Data og metode for 1. generationskortet, GEUS report 2006/93, Danmarks og Grønlands Geologiske Undersøgelse, Copenhagen, Denmark, 2006.
Ernstsen, V., Jakobsen, P. R., and von Platen, F.: Et første landsdækkende redoxkort, Vand Jord, 4, 159–160, http://vand-og-jord.dk/et-foerste-landsdaekkende-redoxkort/ (last acces: 8 February 2022), 2010.
Fleck, S., Ahrends, B., Sutmöller, J., Albert, M., Evers, J., and Meesenburg, H.: Is Biomass Accumulation in Forests an Option to Prevent Climate Change Induced Increases in Nitrate Concentrations in the North German Lowland?, Forests, 8, 1–28, https://doi.org/10.3390/f8060219, 2017.
Graham, D. N. and Butts, M. B.: Flexible, integrated watershed modelling
with MIKE SHE, in: Watershed Models, edited by: Singh, V. P. and Frevert,
D. K., CRC Press, 245–272, https://doi.org/10.1201/9781420037432.ch10, 2005.
Greve, M. H., Greve, M. B., Bøcher, P. K., Balstrøm, T., Madsen, H.
B., and Krogh, L.: Generating a Danish raster-based topsoil property map combining choropleth maps and point information, Geografisk Tidsskrift – Danish Journal of Geography, 107, 1–12, https://doi.org/10.1080/00167223.2007.10649565, 2007.
Hansen, A. L., Christensen, B. S. B., Ernstsen, V., He, X., and Refsgaard, J. C.: A concept for estimating depth of the redox interface for catchment-scale nitrate modelling in a till area in Denmark, Hydrogeol. J., 22, 1639–1655, https://doi.org/10.1007/s10040-014-1152-y, 2014a.
Hansen, A. L., Gunderman, D., He, X., and Refsgaard, J. C.: Uncertainty
assessment of spatially distributed nitrate reduction potential in groundwater using multiple geological realizations, J. Hydrol., 519, 225–237, https://doi.org/10.1016/j.jhydrol.2014.07.013, 2014b.
Hansen, A. L., Refsgaard, J. C., Olesen, J. E., and Børgesen, C. D.: Potential benefits of a spatially targeted regulation based on detailed
N-reduction maps to decrease N-load from agriculture in a small groundwater
dominated catchment, Sci. Total Environ., 595, 325–336,
https://doi.org/10.1016/j.scitotenv.2017.03.114, 2017.
Hansen, A. L., Donnelly, C., Refsgaard, J. C., and Karlsson, I. B.: Simulation of nitrate reduction in groundwater – An upscaling approach from
small catchments to the Baltic Sea basin, Adv. Water Resour., 111, 58–69, https://doi.org/10.1016/j.advwatres.2017.10.024, 2018.
Hansen, B., Dalgaard, T., Thorling, L., Sørensen, B., and Erlandsen, M.: Regional analysis of groundwater nitrate concentrations and trends in Denmark in regard to agricultural influence, Biogeosciences, 9, 3277–3286, https://doi.org/10.5194/bg-9-3277-2012, 2012.
Hansen, J. R., Ernstsen, V., Refsgaard, J. C., and Hansen, S.: Field scale
heterogeneity of redox conditions in till-upscaling to a catchment nitrate
model, Hydrogeol. J., 16, 1251–1266, https://doi.org/10.1007/s10040-008-0330-1, 2008.
Hansen, J. R., Refsgaard, J. C., Ernstsen, V., Hansen, S., Styczen, M., and
Poulsen, R. N.: An integrated and physically based nitrogen cycle catchment
model, Hydrol. Res., 40, 347–363, 2009.
Hansen, S., Jensen, H. E., Nielsen, N. E., and Svendsen, H.: Simulation of
nitrogen dynamics and biomass production in winter wheat using the Danish
simulation model DAISY, Fertiliz. Res., 27, 245–259, https://doi.org/10.1007/BF01051131, 1991.
Hansen, S., Abrahamsen, P. T., Petersen, C., and Styczen, M.: Daisy: Model Use, Calibration, and Validation, T. ASABE, 55, 1317, https://doi.org/10.13031/2013.42244, 2012.
Hewitt, C. D., and Griggs, D. J.: Ensembles-based predictions of climate changes and their impacts, Eos Trans. Am. Geophys. Union, 85, 1–566, 2004.
Hoang, L., v. Griensven, A., v. d. Keur, P., Troldborg, L., Nilsson, B., and
Mynett, A.: Comparison of the SWAT model versus DAISY-MIKE SHE model for simulating the flow and nitrogen processes, in: The International SWAT conference, Seoul, Korea, 306–319, https://swat.tamu.edu/media/33774/swat2010-proceedings.pdf (last access: 7 February 2022), 2010.
Høgh-Jensen, H., Loges, R., Jørgensen, F. V., Vinther, F. P., and Jensen, E. S.: An empirical model for quantification of symbiotic nitrogen fixation in grass-clover mixtures, Agricult. Syst., 82, 181–194,
https://doi.org/10.1016/j.agsy.2003.12.003, 2004.
Højberg, A. L., Troldborg, L., Nyegaard, P., Ondracek, M., Stisen, S.,
and Christensen, B. S. B.: DK-model2009 – Sammenfatning af opdateringen 2005–2009, Geological Survey of Denmark and Greenland, 1–39, https://vandmodel.dk/media/8078/dk-model2009_sammenfatning.pdf (last access: 7 February 2022), 2010.
Højberg, A. L., Troldborg, L., Stisen, S., Christensen, B. B. S., and
Henriksen, H. J.: Stakeholder driven update and improvement of a national
water resources model, Environ. Model. Softw., 40, 202–213,
https://doi.org/10.1016/j.envsoft.2012.09.010, 2013.
Højberg, A. L., Windolf, J., Børgesen, C. D., Troldborg, L., Tornbjerg, H., Blicher-Mathiasen, G., Kronvang, B., Thodsen, H., and Ernstsen, V.: National kvælstofmodel – Oplandsmodel til belastning og virkemidler. Metode rapport, revideret udgave september 2015 (National nitrogenmodel – Catchment model for load and measures. Method report, revised version September 2015), https://www.geus.dk/media/7744/national-kvaelstofmodel-oplandsmodel-til-belastning-og-
(last access: 7 February 2022), 2015.
Højberg, A. L., Hansen, A. L., Wachniew, P., Żurek, A. J., Virtanen,
S., Arustiene, J., Strömqvist, J., Rankinen, K., and Refsgaard, J. C.:
Review and assessment of nitrate reduction in groundwater in the Baltic Sea
Basin, J. Hydrol.: Reg. Stud., 12, 50–68, https://doi.org/10.1016/j.ejrh.2017.04.001, 2017.
Huno, S. K. M., Rene, E. R., van Hullebusch, E. D., and Annachhatre, A. P.:
Nitrate removal from groundwater: a review of natural and engineered processes, J. Water Supply, 67, 885–902, https://doi.org/10.2166/aqua.2018.194, 2018.
Karlsson, I. B., Sonnenborg, T. O., Refsgaard, J. C., Trolle, D., Børgesen, C. D., Olesen, J. E., Jeppesen, E., and Jensen, K. H.: Significance of hydrological model choice and land use changes when doing
climate change impact assessment, in: EGU General Assembly 2014, Vienna, Austria, 2014.
Karlsson, I. B., Sonnenborg, T. O., Seaby, L. P., Jensen, K. H., and Refsgaard, J. C.: The climate change impact of a high-end CO2-emission scenario on hydrology, Clim. Res., 64, 39–54, https://doi.org/10.3354/cr01265, 2015.
Karlsson, I. B., Sonnenborg, T. O., Refsgaard, J. C., Trolle, D., Børgesen, C. D., Olesen, J. E., Jeppesen, E., and Jensen, K. H.: Combined
effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change, J. Hydrol., 535, 301–317, https://doi.org/10.1016/j.jhydrol.2016.01.069, 2016.
Klemeš, V.: Operational testing of hydrological simulation models, Hydrolog. Sci. J., 31, 13–24, https://doi.org/10.1080/02626668609491024, 1986.
Knoll, L., Breuer, L., and Bach, M.: Nation-wide estimation of groundwater
redox conditions and nitrate concentrations through machine learning, Environ. Res. Lett., 15, 064004, https://doi.org/10.1088/1748-9326/ab7d5c, 2020.
Koch, J., Ernstsen, V., and Højberg, A. L.: Dybden til redoxgrænsen, 100 m grid, GEUS, Copenhagen [data set] https://data.geus.dk/MetaVis/Klik.jsp?id=2209&lang=da
(last access: 7 February 2022), 2019a.
Koch, J., Stisen, S., Refsgaard, J. C., Ernstsen, V., Jakobsen, P. R., and
Højberg, A. L.: Modeling Depth of the Redox Interface at High Resolution
at National Scale Using Random Forest and Residual Gaussian Simulation, Water Resour. Res., 55, 1451–1469, https://doi.org/10.1029/2018wr023939, 2019b.
Kristensen, K., Jørgensen, U., and Grant, R.: Genberegning af modellen
N-LES. Baggrundsnotat til Vandmiljøplan II – slutevaluering (Recalculation of the model N-LES. Background note to Aquatic Environmental
Plan II – final evaluation), https://www.dmu.dk/1_viden/2_Publikationer/3_Ovrige/rapporter/VMPII/Genberegning_af_modellen_NLES.pdf
(last access: 7 February 2022), 2003.
Kristensen, K., Waagepetersen, J., Børgesen, C. D., Vinther, F. P., Grant, R., and Blicher-Mathiesen, G.: Reestimation and further development in the model N-LES – N-LES3 to N-LES4, Series: DJF Plant Science No. 13,
Det Jordbrugsvidenskabelige Fakultet, Aarhus Universitet, Aarhus, 1–30, https://pure.au.dk/ws/files/2423945/DJF_rapport_Markbrug_139 (last access: 7 February 2022), 2008.
Kristensen, K. J. and Jensen, S. E.: A Model for Estimating Actual Evapotranspiration from Potential Evapotranspiration, Hydrol. Res., 6, 170–188, 1975.
Kunkel, R., Eisele, M., Schäfer, W., Tetzlaff, B., and Wendland, F.:
Planning and implementation of nitrogen reduction measures in catchment areas based on a determination and ranking of target areas, Desalination, 226, 1–12, https://doi.org/10.1016/j.desal.2007.01.231, 2008.
Madsen, H.: Automatic calibration of a conceptual rainfall-runoff model using multiple objectives, J. Hydrol., 235, 276–288, https://doi.org/10.1016/S0022-1694(00)00279-1, 2000.
Mas-Pla, J. and Menció, A.: Groundwater nitrate pollution and climate
change: learnings from a water balance-based analysis of several aquifers in
a western Mediterranean region (Catalonia), Environ. Sci. Pollut. Res. Int., 26, 2184–2202, https://doi.org/10.1007/s11356-018-1859-8, 2019.
Merz, C., Steidl, J., and Dannowski, R.: Parameterization and regionalization of redox based denitrification for GIS-embedded nitrate transport modeling in Pleistocene aquifer systems, Environ. Geol., 58, 1587–1599, https://doi.org/10.1007/s00254-008-1665-6, 2009.
Møller, J., Thøgersen, R., Helleshøj, M. E., Weisbjerg, M. R.,
Søegaard, K., and Hvelplund, T.: Fodermiddeltabel – Sammensætning og
foderværdi af fodermidler til kvæg, volume 112, Report no. 69, Dansk Landbrugsrådgivning, Landscentret, 64 pp., ISSN 0906-1398,
https://docplayer.dk/104824139-Rapport-112-fodermiddel-tabel-sammensaetning-
(last access: 7 February 2022), 2005.
Nakicenovic, N., Alcamo, J., Davis, G., de Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Grübler, A., Jung, T. Y., Kram, T., Rovere, E. L. L., Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, H., Price, L., Riahi, K., Roehrl, A., Rogner, H., Sankovski, A., Schlesinger, M., Shukla, P., Smith, S., Swart, R., van Rooijen, S., Victor, N., and Dadi, Z.: Emission Scenarios, in: Emission Scenarios, edited by: Nakicenovic, N. and Swart, R., Cambridge University Press, Cambridge, UK, https://www.ipcc.ch/site/assets/uploads/2018/03/emissions_scenarios-1.pdf
(last access: 11 February 2022), 2000.
Nielsen, K., Stjernholm, M., Olsen, B. Ø., Müller-Wohlfeil, D.-I., Madsen, I.-L., Kjeldgaard, A., Groom, G., Hansen, H. S., Rolev, A. M.,
Hermansen, B., Skov-Petersen, H., Johannsen, V. K., Hvidberg, M., Jensen, J.
E., Bacher, V., and Larsen, H.: Areal Informations Systemet – AIS, National Environmental Research Institute, Denmark [data set], https://www.dmu.dk/1_Viden/2_Miljoe-tilstand/3_samfund/AIS/2_Rapport/ais_rapport.pdf
(last access: 7 Feburay 2022), 2000.
Olesen, J. E., Jeppesen, E., Porter, J. R., Børgesen, C. D., Trolle, D.,
Refsgaard, J. C., Sonnenborg, T., and Karlsson, I. B.: Scenarier for fremtidens arealanvendelse i Danmark, Vand og Jord, 21, 126–129, 2014.
Olesen, J. E., Børgesen, C. D., Hashemi, F., Jabloun, M., Bar-Michalczyk,
D., Wachniew, P., Zurek, A. J., Bartosova, A., Bosshard, T., Hansen, A. L.,
and Refsgaard, J. C.: Nitrate leaching losses from two Baltic Sea catchments
under scenarios of changes in land use, land management and climate, Ambio,
48, 1252–1263, https://doi.org/10.1007/s13280-019-01254-2, 2019.
Ortmeyer, F., Mas-Pla, J., Wohnlich, S., and Banning, A.: Forecasting nitrate evolution in an alluvial aquifer under distinct environmental and climate change scenarios (Lower Rhine Embayment, Germany), Sci. Total Environ., 768, 144463, https://doi.org/10.1016/j.scitotenv.2020.144463, 2021.
Paradis, D., Vigneault, H., Lefebvre, R., Savard, M. M., Ballard, J. M., and
Qian, B.: Groundwater nitrate concentration evolution under climate change
and agricultural adaptation scenarios: Prince Edward Island, Canada, Earth
Syst. Dynam., 7, 183–202, https://doi.org/10.5194/esd-7-183-2016, 2016.
Plantedirektoratet: Vejledning om gødskning- og Harmoniregler, Danish Plant Directorate, https://lbst.dk/landbrug/goedning/vejledning-om-goedsknings-og-harmoniregler/ (last access: 7 February 2022), 2005.
Postma, D., Boesen, C., Kristiansen, H., and Larsen, F.: Nitrate Reduction in an Unconfined Sandy Aquifer: Water Chemistry, Reduction Processes, and Geochemical Modeling, Water Resour. Res., 27, 2027–2045, https://doi.org/10.1029/91wr00989, 1991.
Quick, A. M., Reeder, W. J., Farrell, T. B., Tonina, D., Feris, K. P., and
Benner, S. G.: Nitrous oxide from streams and rivers: A review of primary
biogeochemical pathways and environmental variables, Earth-Sci. Rev., 191, 224–262, https://doi.org/10.1016/j.earscirev.2019.02.021, 2019.
Refsgaard, J. C., Stisen, S., Højberg, A. L., Olsen, M., Henriksen, H. J., Børgesen, C. D., Vejen, f., Kern-Hansen, C., and Blicher-Mathiesen: Vandbalance i Danmark – Vejledning i opgørelse af vandbalance ud fra
hydrologiske data for perioden 1990–2010, GEUS report 2011/77, Copenhagen, Denmark, https://doi.org/10.22008/gpub/28804, 2011.
Refsgaard, J. C., Christensen, S., Sonnenborg, T. O., Seifert, D., Højberg, A. L., and Troldborg, L.: Review of strategies for handling
geological uncertainty in groundwater flow and transport modeling, Adv. Water Resour., 36, 36–50, https://doi.org/10.1016/j.advwatres.2011.04.006, 2012.
Refsgaard, J. C., Madsen, H., Andréassian, V., Arnbjerg-Nielsen, K.,
Davidson, T. A., Drews, M., Hamilton, D. P., Jeppesen, E., Kjellström,
E., Olesen, J. E., Sonnenborg, T. O., Trolle, D., Willems, P., and
Christensen, J. H.: A framework for testing the ability of models to project
climate change and its impacts, Climatic Change, 122, 271–282,
https://doi.org/10.1007/s10584-013-0990-2, 2014.
Refsgaard, J. C., Hansen, A. L., Højberg, A. L., Olesen, J. E., Hashemi, F., Wachniew, P., Wörman, A., Bartosova, A., Stelljes, N., and Chubarenko, B.: Spatially differentiated regulation: Can it save the Baltic
Sea from excessive N-loads?, Ambio, 48, 1278–1289,
https://doi.org/10.1007/s13280-019-01195-w, 2019.
Reusch, T. B. H., Dierking, J., Andersson, H. C., Bonsdorff, E., Carstensen,
J., Casini, M., Czajkowski, M., Hasler, B., Hinsby, K., Hyytiäinen, K.,
Johannesson, K., Jomaa, S., Jormalainen, V., Kuosa, H., Kurland, S., Laikre,
L., MacKenzie, B. R., Margonski, P., Melzner, F., Oesterwind, D., Ojaveer,
H., Refsgaard, J. C., Sandström, A., Schwarz, G., Tonderski, K., Winder,
M., and Zandersen, M.: The Baltic Sea as a time machine for the future coastal ocean, Sci. Adv., 4, eaar8195, https://doi.org/10.1126/sciadv.aar8195, 2018.
Seaby, L. P., Refsgaard, J. C., Sonnenborg, T. O., Stisen, S., Christensen,
J. H., and Jensen, K. H.: Assessment of robustness and significance of climate change signals for an ensemble of distribution-based scaled climate
projections, J. Hydrol., 486, 479–493, 2013.
Seidenfaden, I. K.: Redoxmaps from CRES2016, GEUS, GEUS dataverse [data set], https://doi.org/10.22008/FK2/YEMDIS, 2022.
Sjøeng, A. M. S., Kaste, Ø., and Wright, R. F.: Modelling future NO3 leaching from an upland headwater catchment in SW Norway using the MAGIC model: II. Simulation of future nitrate leaching given scenarios of climate change and nitrogen deposition, Hydrol. Res., 40, 217–233,
https://doi.org/10.2166/nh.2009.068, 2009.
Statistikbanken: Statistical regional registrated annual mean yields, Statistikbanken [data set], https://www.statistikbanken.dk/jord3
(last access: 7 February 2022), 2015.
Styczen, M., Hansen, S., Jensen, L. S., Svendsen, H., Abrahamsen, P., Børgesen, C. D., Thirup, C., and Østergaard, H. S.: Standardopstillinger til Daisy-modellen. Vejledning og baggrund, Institut
for Vand og Miljø, DHI, 1–62, https://daisy.ku.dk/about-daisy/dansk-standart/daisystaabirapport_240406.pdf
(last acess: 7 February 2022), 2004.
Tesoriero, A. J., Terziotti, S., and Abrams, D. B.: Predicting Redox Conditions in Groundwater at a Regional Scale, Environ. Sci. Technol., 49, 9657–9664, https://doi.org/10.1021/acs.est.5b01869, 2015.
Thirel, G., Andréassian, V., and Perrin, C.: On the need to test hydrological models under changing conditions, Hydrolog. Sci. J., 60, 1165–1173, https://doi.org/10.1080/02626667.2015.1050027, 2015.
Troldborg, L., Højberg, A. L., Nyegaard, P., Stisen, S., Christensen, B.
S. B., and Ondracek, M.: DK-model2009 – Modelopstilling og kalibrering for
Fyn, https://vandmodel.dk/media/8082/dk-model2009_fyn.pdf (last access: 7 February 2022), 2010.
Trolle, D., Nielsen, A., Andersen, H. E., Thodsen, H., Olesen, J. E.,
Børgesen, C. D., Refsgaard, J. C., Sonnenborg, T. O., Karlsson, I. B.,
Christensen, J. P., Markager, S., and Jeppesen, E.: Effects of changes in
land use and climate on aquatic ecosystems: Coupling of models and decomposition of uncertainties, Sci. Total Environ., 657, 627–633, https://doi.org/10.1016/j.scitotenv.2018.12.055, 2019.
van Genuchten, M. T.: A Closed-form Equation for Predicting the Hydraulic
Conductivity of Unsaturated Soils, Soil Sci. Soc. Am. J., 44, 892–898, https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.
van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The representative concentration pathways: an overview, Climatic Change, 109, 5–31, https://doi.org/10.1007/s10584-011-0148-z, 2011.
Windolf, J., Tornbjerg, H., Hoffmann, C. C., Poulsen, J. R., Blicher-Mathiesen, G., and Kronvang, B.: Successful reduction of diffuse
nitrogen emissions at catchment scale: example from the pilot River Odense,
Denmark, Water Sci. Technol., 73, 2583–2589, https://doi.org/10.2166/wst.2016.067, 2016.
Wriedt, G. and Rode, M.: Modelling nitrate transport and turnover in a lowland catchment system, J. Hydrol., 328, 157–176, https://doi.org/10.1016/j.jhydrol.2005.12.017, 2006.
Wulff, F., Humborg, C., Andersen, H. E., Blicher-Mathiesen, G., Czajkowski, M., Elofsson, K., Fonnesbech-Wulff, A., Hasler, B., Hong, B., Jansons, V.,
Mörth, C.-M., Smart, J. C. R., Smedberg, E., Stålnacke, P., Swaney, D. P., Thodsen, H., Was, A., and Żylicz, T.: Reduction of Baltic Sea
Nutrient Inputs and Allocation of Abatement Costs Within the Baltic Sea
Catchment, Ambio, 43, 11–25, https://doi.org/10.1007/s13280-013-0484-5, 2014.
Short summary
This study investigates how the spatial nitrate reduction in the subsurface may shift under changing climate and land use conditions. This change is investigated by comparing maps showing the spatial nitrate reduction in an agricultural catchment for current conditions, with maps generated for future projected climate and land use conditions. Results show that future climate flow paths may shift the catchment reduction noticeably, while implications of land use changes were less substantial.
This study investigates how the spatial nitrate reduction in the subsurface may shift under...