Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Preprints
https://doi.org/10.5194/hess-2019-232
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-2019-232
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

  25 Jun 2019

25 Jun 2019

Review status
This discussion paper is a preprint. It has been under review for the journal Hydrology and Earth System Sciences (HESS). The manuscript was not accepted for further review after discussion.

Comparing SWAT with SWAT-MODFLOW hydrological simulations when assessing the impacts of groundwater abstractions for irrigation and drinking water

Wei Liu1, Seonggyu Park2,3, Ryan T. Bailey2, Eugenio Molina-Navarro1,4, Hans Estrup Andersen1, Hans Thodsen1, Anders Nielsen1, Erik Jeppesen1, Jacob Skødt Jensen5, Jacob Birk Jensen6,7, and Dennis Trolle1 Wei Liu et al.
  • 1Department of Bioscience, Aarhus University, Silkeborg, Denmark
  • 2Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado, USA
  • 3Blackland Research & Extension Center, Texas A&M AgriLife, Temple, United States
  • 4Deparment of Geology, Geography and Environment, University of Alcalá. Alcalá de Henares, Madrid, Spain
  • 5NIRAS, Aarhus, Denmark
  • 6Department of Civil Engineering, Aalborg University, Aalborg, Denmark
  • 7WatsonC, Aalborg, Denmark

Abstract. Being able to account for temporal patterns of streamflow, the distribution of groundwater resources, as well as the interactions between surface water and groundwater is imperative for informed water resources management. We hypothesize that, when assessing the impacts of water abstractions on streamflow patterns, the benefits of applying a coupled catchment model relative to a lumped semi-distributed catchment model outweigh the costs of additional data requirement and computational resources. We applied the widely used semi-distributed SWAT model and the recently developed SWAT-MODFLOW model, which allows full distribution of the groundwater domain, to a Danish, lowland, groundwater-dominated catchment, the Uggerby River Catchment. We compared the performance of the two models based on the observed streamflow and assessed the simulated streamflow signals of each model when running four groundwater abstraction scenarios with real wells and abstraction rates. The SWAT-MODFLOW model complex was further developed to enable the application of the Drain Package of MODFLOW and to allow auto-irrigation on agricultural fields and pastures. Both models were calibrated and validated, and an approach based on PEST was developed and utilized to enable simultaneous calibration of SWAT and MODFLOW parameters. Both models demonstrated generally good performance for the temporal pattern of streamflow, albeit SWAT-MODFLOW performed somewhat better. In addition, SWAT-MODFLOW generates spatially explicit groundwater-related outputs, such as spatial-temporal patterns of water table elevation. In the abstraction scenarios analysis, both models indicated that abstraction for drinking water caused some degree of streamflow depletion, while abstraction for auto-irrigation led to a slight total flow increase (but a decrease of soil or aquifer water storages, which may influence the hydrology outside the catchment). In general, the simulated signals of SWAT-MODFLOW appeared more plausible than those of SWAT, and the SWAT-MODFLOW decrease in streamflow was much closer to the actual volume abstracted. The impact of drinking water abstraction on streamflow depletion simulated by SWAT was unrealistically low, and the streamflow increase caused by irrigation abstraction was exaggerated compared with SWAT-MODFLOW. We conclude that the further developed SWAT-MODFLOW model calibrated by PEST had a better hydrological simulation performance, wider possibilities for groundwater analysis, and much more realistic signals relative to the semi-distributed SWAT model when assessing the impacts of groundwater abstractions for either irrigation or drinking water on streamflow; hence, it has the potential to be a useful tool in the management of water resources in groundwater-affected catchments. However, this comes at the expense of higher computational demand and more time consumption.

Wei Liu et al.

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Wei Liu et al.

Wei Liu et al.

Viewed

Total article views: 1,401 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
927 448 26 1,401 15 22
  • HTML: 927
  • PDF: 448
  • XML: 26
  • Total: 1,401
  • BibTeX: 15
  • EndNote: 22
Views and downloads (calculated since 25 Jun 2019)
Cumulative views and downloads (calculated since 25 Jun 2019)

Viewed (geographical distribution)

Total article views: 1,052 (including HTML, PDF, and XML) Thereof 1,038 with geography defined and 14 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 19 Sep 2020
Publications Copernicus
Download
Short summary
We compared the performance of SWAT and SWAT-MODFLOW and assessed the simulated streamflow signals in response to a range of groundwater abstraction scenarios for irrigation and drinking water. The SWAT-MODFLOW complex was further developed to enable the application of the Drain Package and an auto-irrigation routine. A PEST-based approach was developed to calibrate the coupled SWAT-MODFLOW. The SWAT-MODFLOW model produced more realistic results on groundwater abstraction effects on streamflow.
We compared the performance of SWAT and SWAT-MODFLOW and assessed the simulated streamflow...
Citation