Articles | Volume 26, issue 1
https://doi.org/10.5194/hess-26-91-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-91-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Technical note: High-accuracy weighing micro-lysimeter system for long-term measurements of non-rainfall water inputs to grasslands
Department of Environmental Systems Science, ETH Zurich, Zurich, 8092,
Switzerland
Department of Environmental Systems Science, ETH Zurich, Zurich, 8092,
Switzerland
Jon Eugster
School of Mathematics, University of Edinburgh, Edinburgh, EH9 3FD, UK
Nina Buchmann
Department of Environmental Systems Science, ETH Zurich, Zurich, 8092,
Switzerland
Werner Eugster
Department of Environmental Systems Science, ETH Zurich, Zurich, 8092,
Switzerland
Related authors
Yafei Li, Franziska Aemisegger, Andreas Riedl, Nina Buchmann, and Werner Eugster
Hydrol. Earth Syst. Sci., 25, 2617–2648, https://doi.org/10.5194/hess-25-2617-2021, https://doi.org/10.5194/hess-25-2617-2021, 2021
Short summary
Short summary
During dry spells, dew and fog potentially play an increasingly important role in temperate grasslands. Research on the combined mechanisms of dew and fog inputs to ecosystems and distillation of water vapor from soil to plant surfaces is rare. Our results using stable water isotopes highlight the importance of dew and fog inputs to temperate grasslands during dry spells and reveal the complexity of the local water cycling in such conditions, including different pathways of dew and fog inputs.
Yi Wang, Iris Feigenwinter, Lukas Hörtnagl, Anna K. Gilgen, and Nina Buchmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-3562, https://doi.org/10.5194/egusphere-2025-3562, 2025
Short summary
Short summary
Our study shows that managed grasslands can maintain stable CO2 uptake despite rising temperature and declining soil moisture. Using 20 years of data from a Swiss grassland, we found that light, temperature, and management strongly influenced the ecosystem CO2 exchange. During summer droughts, low soil moisture limited plant growth, but smart management choices helped buffer these effects. This suggests that even small, well-timed actions can support climate resilience in agriculture.
Mana Gharun, Ankit Shekhar, Lukas Hörtnagl, Luana Krebs, Nicola Arriga, Mirco Migliavacca, Marilyn Roland, Bert Gielen, Leonardo Montagnani, Enrico Tomelleri, Ladislav Šigut, Matthias Peichl, Peng Zhao, Marius Schmidt, Thomas Grünwald, Mika Korkiakoski, Annalea Lohila, and Nina Buchmann
Biogeosciences, 22, 1393–1411, https://doi.org/10.5194/bg-22-1393-2025, https://doi.org/10.5194/bg-22-1393-2025, 2025
Short summary
Short summary
The effect of winter warming on forest CO2 fluxes has rarely been investigated. We tested the effect of the warm winter of 2020 on the forest CO2 fluxes across 14 sites in Europe and found that the net ecosystem productivity (NEP) across most sites declined during the warm winter due to increased respiration fluxes.
Mana Gharun, Ankit Shekhar, Jingfeng Xiao, Xing Li, and Nina Buchmann
Biogeosciences, 21, 5481–5494, https://doi.org/10.5194/bg-21-5481-2024, https://doi.org/10.5194/bg-21-5481-2024, 2024
Short summary
Short summary
In 2022, Europe's forests faced unprecedented dry conditions. Our study aimed to understand how different forest types respond to extreme drought. Using meteorological data and satellite imagery, we compared 2022 with two previous extreme years, 2003 and 2018. Despite less severe drought in 2022, forests showed a 30 % greater decline in photosynthesis compared to 2018 and 60 % more than 2003. This suggests an alarming level of vulnerability of forests across Europe to more frequent droughts.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Jiří Dušek, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Liliana Scapucci, Ankit Shekhar, Sergio Aranda-Barranco, Anastasiia Bolshakova, Lukas Hörtnagl, Mana Gharun, and Nina Buchmann
Biogeosciences, 21, 3571–3592, https://doi.org/10.5194/bg-21-3571-2024, https://doi.org/10.5194/bg-21-3571-2024, 2024
Short summary
Short summary
Forests face increased exposure to “compound soil and atmospheric drought” (CSAD) events due to global warming. We examined the impacts and drivers of CO2 fluxes during CSAD events at multiple layers of a deciduous forest over 18 years. Results showed reduced net ecosystem productivity and forest-floor respiration during CSAD events, mainly driven by soil and atmospheric drought. This unpredictability in forest CO2 fluxes jeopardises reforestation projects aimed at mitigating CO2 emissions.
Luana Krebs, Susanne Burri, Iris Feigenwinter, Mana Gharun, Philip Meier, and Nina Buchmann
Biogeosciences, 21, 2005–2028, https://doi.org/10.5194/bg-21-2005-2024, https://doi.org/10.5194/bg-21-2005-2024, 2024
Short summary
Short summary
This study explores year-round forest-floor greenhouse gas (GHG) fluxes in a Swiss spruce forest. Soil temperature and snow depth affected forest-floor respiration, while CH4 uptake was linked to snow cover. Negligible N2O fluxes were observed. In 2022, a warm year, CO2 emissions notably increased. The study suggests rising forest-floor GHG emissions due to climate change, impacting carbon sink behavior. Thus, for future forest management, continuous year-round GHG flux measurements are crucial.
Qing Sun, Valentin H. Klaus, Raphaël Wittwer, Yujie Liu, Marcel G. A. van der Heijden, Anna K. Gilgen, and Nina Buchmann
Biogeosciences, 19, 1853–1869, https://doi.org/10.5194/bg-19-1853-2022, https://doi.org/10.5194/bg-19-1853-2022, 2022
Short summary
Short summary
Drought is one of the biggest challenges for future food production globally. During a simulated drought, pea and barley mainly relied on water from shallow soil depths, independent of different cropping systems.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Anna B. Harper, Karina E. Williams, Patrick C. McGuire, Maria Carolina Duran Rojas, Debbie Hemming, Anne Verhoef, Chris Huntingford, Lucy Rowland, Toby Marthews, Cleiton Breder Eller, Camilla Mathison, Rodolfo L. B. Nobrega, Nicola Gedney, Pier Luigi Vidale, Fred Otu-Larbi, Divya Pandey, Sebastien Garrigues, Azin Wright, Darren Slevin, Martin G. De Kauwe, Eleanor Blyth, Jonas Ardö, Andrew Black, Damien Bonal, Nina Buchmann, Benoit Burban, Kathrin Fuchs, Agnès de Grandcourt, Ivan Mammarella, Lutz Merbold, Leonardo Montagnani, Yann Nouvellon, Natalia Restrepo-Coupe, and Georg Wohlfahrt
Geosci. Model Dev., 14, 3269–3294, https://doi.org/10.5194/gmd-14-3269-2021, https://doi.org/10.5194/gmd-14-3269-2021, 2021
Short summary
Short summary
We evaluated 10 representations of soil moisture stress in the JULES land surface model against site observations of GPP and latent heat flux. Increasing the soil depth and plant access to deep soil moisture improved many aspects of the simulations, and we recommend these settings in future work using JULES. In addition, using soil matric potential presents the opportunity to include parameters specific to plant functional type to further improve modeled fluxes.
Yafei Li, Franziska Aemisegger, Andreas Riedl, Nina Buchmann, and Werner Eugster
Hydrol. Earth Syst. Sci., 25, 2617–2648, https://doi.org/10.5194/hess-25-2617-2021, https://doi.org/10.5194/hess-25-2617-2021, 2021
Short summary
Short summary
During dry spells, dew and fog potentially play an increasingly important role in temperate grasslands. Research on the combined mechanisms of dew and fog inputs to ecosystems and distillation of water vapor from soil to plant surfaces is rare. Our results using stable water isotopes highlight the importance of dew and fog inputs to temperate grasslands during dry spells and reveal the complexity of the local water cycling in such conditions, including different pathways of dew and fog inputs.
Lutz Merbold, Charlotte Decock, Werner Eugster, Kathrin Fuchs, Benjamin Wolf, Nina Buchmann, and Lukas Hörtnagl
Biogeosciences, 18, 1481–1498, https://doi.org/10.5194/bg-18-1481-2021, https://doi.org/10.5194/bg-18-1481-2021, 2021
Short summary
Short summary
Our study investigated the exchange of the three major greenhouse gases (GHGs) over a temperate grassland prior to and after restoration through tillage in central Switzerland. Our results show that irregular management events, such as tillage, have considerable effects on GHG emissions in the year of tillage while leading to enhanced carbon uptake and similar nitrogen losses via nitrous oxide in the years following tillage to those observed prior to tillage.
Cited articles
Agam, N. and Berliner, P. R.: Diurnal water content changes in the bare soil
of a coastal desert, J. Hydrometeorol., 5, 922–933,
https://doi.org/10.1175/1525-7541(2004)005<0922:DWCCIT>2.0.CO;2,
2004.
Agam, N. and Berliner, P. R.: Dew formation and water vapor adsorption in
semi-arid environments – A review, J. Arid Environ., 65, 572–590,
https://doi.org/10.1016/J.JARIDENV.2005.09.004, 2006.
Alaoui, A. and Eugster, W.: Dual-porosity modeling of groundwater recharge:
testing a quick calibration using in situ moisture measurements, Areuse
River Delta, Switzerland, Hydrogeol. J., 12, 464–475,
https://doi.org/10.1007/s10040-003-0288-y, 2004.
Aparecido, L. M. T., Miller, G. R., Cahill, A. T., and Moore, G. W.:
Comparison of tree transpiration under wet and dry canopy conditions in a
Costa Rican premontane tropical forest, Hydrol. Process., 30,
5000–5011, https://doi.org/10.1002/hyp.10960, 2016.
Ben-Gal, A. and Shani, U.: A highly conductive drainage extension to control
the lower boundary condition of lysimeters, Plant Soil, 239, 9–17,
https://doi.org/10.1023/A:1014942024573, 2002.
Berry, Z. C., White, J. C., and Smith, W. K.: Foliar uptake, carbon fluxes
and water status are affected by the timing of daily fog in saplings from a
threatened cloud forest, Tree Physiol., 34, 459–470,
https://doi.org/10.1093/treephys/tpu032, 2014.
Beysens, D.: Dew water, River Publishers, Gistrup Denmark, ISBN 9788793609471, 2018.
Boucher, J. F., Munson, A. D., and Bernier, P. Y.: Foliar absorption of dew
influences shoot water potential and root growth in Pinus strobus seedlings,
Tree Physiol., 15, 819–823, https://doi.org/10.1093/treephys/15.12.819, 1995.
Brown, R., Mills, A. J., and Jack, C.: Non-rainfall moisture inputs in the
Knersvlakte: Methodology and preliminary findings, Water SA, 34,
275–278, https://doi.org/10.4314/wsa.v34i2.183649, 2008.
Chen, L., Meissner, R., Zhang, Y., and Xiao, H.: Studies on dew formation and
its meteorological factors, J. Food Agric. Environ., 11, 1063–1068, 2005.
Dawson, T. E.: Fog in the California redwood forest: ecosystem inputs and
use by plants, Oecologia, 117, 476–485,
https://doi.org/10.1007/s004420050683, 1998.
Dawson, T. E. and Goldsmith, G. R.: The value of wet leaves, New Phytol.,
219, 1156–1169, https://doi.org/10.1111/nph.15307, 2018.
Eller, C. B., Lima, A. L., and Oliveira, R. S.: Foliar uptake of fog water
and transport belowground alleviates drought effects in the cloud forest
tree species, Drimys brasiliensis (Winteraceae), New Phytol., 199, 151–162,
https://doi.org/10.1111/nph.12248, 2013.
Engle, R. F. and Granger, C. W. J.: Co-Integration and Error Correction:
Representation, Estimation, and Testing, Econometria, 55, 251–276,
https://doi.org/10.2307/1913236, 1987.
Eugster, W., Burkard, R., Holwerda, F., Scatena, F. N. and Bruijnzeel, L. A.
(Sampurno.: Characteristics of fog and fogwater fluxes in a Puerto Rican
elfin cloud forest, Agric. For. Meteorol., 139, 288–306,
https://doi.org/10.1016/J.AGRFORMET.2006.07.008, 2006.
Evett, S. R., Warrick, A. W., and Matthias, A. D.: Wall Material and Capping
Effects on Microlysimeter Temperatures and Evaporation, Soil Sci., 59,
329–336, 1995.
Feigenwinter, C., Franceschi, J., Larsen, J. A., Spirig, R., and Vogt, R.: On
the performance of microlysimeters to measure non-rainfall water input in a
hyper-arid environment with focus on fog contribution, J. Arid Environ.,
182, 1–13, https://doi.org/10.1016/j.jaridenv.2020.104260, 2020.
Freeze, R. A. and Cherry, J. A.: Groundwater, Prentice-Hall, Englewood
Cliffs, N.J.,
https://doi.org/10.1177/030913338100500412, 1979.
Gerlein-Safdi, C., Koohafkan, M. C., Chung, M., Rockwell, F. E., Thompson,
S., and Caylor, K. K.: Dew deposition suppresses transpiration and carbon
uptake in leaves, Agric. For. Meteorol., 259, 305–316,
https://doi.org/10.1016/j.agrformet.2018.05.015, 2018.
Groh, J., Slawitsch, V., Herndl, M., Graf, A., Vereecken, H., and Pütz,
T.: Determining dew and hoar frost formation for a low mountain range and
alpine grassland site by weighable lysimeter, J. Hydrol., 563, 372–381,
https://doi.org/10.1016/J.JHYDROL.2018.06.009, 2018.
Heusinkveld, B. G., Berkowicz, S. M., Jacobs, A. F. G., Holtslag, A. A. M.,
and Hillen, W. C. A. M.: An automated microlysimeter to study dew formation
and evaporation in arid and semiarid regions, J. Hydrometeorol., 7,
825–832, https://doi.org/10.1175/JHM523.1, 2006.
Imer, D., Merbold, L., Eugster, W., and Buchmann, N.: Temporal and spatial variations of soil CO2, CH4 and N2O fluxes at three differently managed grasslands, Biogeosciences, 10, 5931–5945, https://doi.org/10.5194/bg-10-5931-2013, 2013.
Ishibashi, M. and Terashima, I.: Effects of continuous leaf wetness on
photosynthesis: adverse aspects of rainfall, Plant. Cell Environ., 18,
431–438, https://doi.org/10.1111/j.1365-3040.1995.tb00377.x, 1995.
Jacobs, A. F. G., Heusinkveld, B. G., and Berkowicz, S. M.: Dew deposition
and drying in a desert system: A simple simulation model, J. Arid Environ.,
42, 211–222, https://doi.org/10.1006/jare.1999.0523, 1999.
Jacobs, A. F. G., Heusinkveld, B. G., Wichink Kruit, R. J., and Berkowicz, S.
M.: Contribution of dew to the water budget of a grassland area in the
Netherlands, Water Resour. Res., 42, W03415, https://doi.org/10.1029/2005WR004055, 2006.
Jia, R. L., Li, X. R., Liu, L. C., Pan, Y. X., Gao, Y. H., and Wei,
Y. P.: Effects of sand burial on dew deposition on moss soil crust in a
revegetated area of the Tennger Desert, Northern China, J. Hydrol., 519,
2341–2349, https://doi.org/10.1016/j.jhydrol.2014.10.031, 2014.
Jones, H. G.: Monitoring plant and soil water status: established and novel
methods revisited and their relevance to studies of drought tolerance, J.
Exp. Bot., 58, 119–130, https://doi.org/10.1093/jxb/erl118, 2006.
Kaseke, K. F., Mills, A. J., Brown, R., Esler, K. J., Henschel, J. R., and
Seely, M. K.: A Method for Direct Assessment of the “Non Rainfall”
Atmospheric Water Cycle: Input and Evaporation From the Soil, Pure Appl.
Geophys., 169, 847–857, https://doi.org/10.1007/s00024-011-0328-9, 2012.
Kerr, J. P. and Beardsell, M. F.: Effect of Dew on Leaf Water Potentials and
Crop Resistances in a Paspalum Pasture, Agron. J., 67, 596–599,
https://doi.org/10.2134/agronj1975.00021962006700050002x, 1975.
Kidron, G. J. and Kronenfeld, R.: Assessing the effect of micro-lysimeters
on NRWI: Do micro-lysimeters adequately represent the water input of natural
soil?, J. Hydrol., 548, 382–390, https://doi.org/10.1016/j.jhydrol.2017.03.005, 2017.
Kidron, G. J. and Starinsky, A.: Measurements and ecological implications of
non-rainfall water in desert ecosystems – A review, Ecohydrology, 12, 1–35,
https://doi.org/10.1002/eco.2121, 2019.
Kidron, G. J., Kronenfeld, R., and Starinsky, A.: Wind as a cooling agent:
substrate temperatures are responsible for variable lithobiont-induced
weathering patterns on west- and east-facing limestone bedrock of the Negev,
Earth Surf. Process. Landf., 41, 2078–2084, https://doi.org/10.1002/esp.3973,
2016.
Limm, E., Simonin, K., Bothman, A., and Dawson, T.: Foliar water uptake: a
common water acquisition strategy for plants of the redwood forest,
Oecologia, 161, 449–459, https://doi.org/10.1007/s00442-009-1400-3,
2009.
Maphangwa, K. W., Musil, C. F., Raitt, L., and Zedda, L.: Differential
interception and evaporation of fog, dew and water vapour and elemental
accumulation by lichens explain their relative abundance in a coastal
desert, J. Arid Environ., 82, 71–80, https://doi.org/10.1016/j.jaridenv.2012.02.003,
2012.
Matimati, I., Musil, C. F., Raitt, L., and February, E.: Non rainfall
moisture interception by dwarf succulents and their relative abundance in an
inland arid South African ecosystem, Ecohydrology, 6, 818–825,
https://doi.org/10.1002/eco.1304, 2013.
McHugh, T. A., Morrissey, E. M., Reed, S. C., Hungate, B. A., and Schwartz,
E.: Water from air: An overlooked source of moisture in arid and semiarid
regions, Sci. Rep.-UK, 5, 1–6, https://doi.org/10.1038/srep13767, 2015.
Meissner, R., Seeger, J., Rupp, H., Seyfarth, M., and Borg, H.: Measurement
of dew, fog, and rime with a high-precision gravitation lysimeter, J. Plant
Nutr. Soil Sci., 170, 335–344, https://doi.org/10.1002/jpln.200625002, 2007.
Meissner, R., Rupp, H., and Seyfarth, M.: Advanced technologies in lysimetry,
Environ. Sci. Eng., 202979, 159–173,
https://doi.org/10.1007/978-3-319-01017-5_8, 2014.
MeteoSchweiz: Klimabulletin Jahr 2019, available at:
https://www.meteoschweiz.admin.ch/content/dam/meteoswiss/de/service-und-publikationen/Publikationen/doc/2019_ANN_d.pdf, last access: 1 May 2020.
Meter Group AG: Atmos 41, available at:
http://library.metergroup.com/Manuals/20635_ATMOS41_Manual_Web.pdf (last access: 2 April 2021), 2020.
Met Office: National Meteorological Library and Archive Fact Sheet 3 –
Water in the atmosphere, available at:
https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/library-and-archive/library/publications/factsheets/factsheet_3-water-in-the-atmosphere.pdf (last access: 2 April 2021), 2012.
Minnis, P.: Asymmetry in the diurnal variation of surface albedo, IEEE
T. Geosci. Remote, 35, 879–891, https://doi.org/10.1109/36.602530, 1997.
Monteith, J. L.: Dew, Q. J. Roy. Meteor. Soc., 83, 322–341,
https://doi.org/10.1002/qj.49708335706, 1957.
Munné-Bosch, S. and Alegre, L.: Role of Dew on the Recovery of
Water-Stressed Melissa officinalis L. Plants, J. Plant Physiol., 154,
759–766, https://doi.org/10.1016/S0176-1617(99)80255-7, 1999.
Ninari, N. and Berliner, P. R.: The role of dew in the water and heat
balance of bare loess soil in the Negev Desert: Quantifying the actual dew
deposition on the soil surface, Atmos. Res., 64, 323–334,
https://doi.org/10.1016/S0169-8095(02)00102-3, 2002.
Nolz, R., Kammerer, G., and Cepuder, P.: Interpretation of lysimeter weighing data affected by wind, J. Plant Nutr. Soil Sci., 176, 200–208, https://doi.org/10.1002/jpln.201200342, 2013.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., and
Grisel, O.: Scikit-learn: Machine learning in Python, J. Mach. Learn. Res.,
12, 2825–2830, 2011.
Rawls, W, J., Gish, T. J., and Brakensiek, D. L.: Estimating soil water
retention from soil physical properties and characteristic, in: Advances in Soil Science, edited by: Stewart, B.
A., Springer, New York, 213–234,
https://doi.org/10.1007/978-1-4612-3144-8_5, 1991.
Richards, K.: Observation and simulation of dew in rural and urban
environments, Prog. Phys. Geogr., 28, 76–94,
https://doi.org/10.1191/0309133304pp402ra, 2004.
Riedl, A.: Data from: High accuracy weighing micro-lysimeter system for long-term measurements of non-rainfall water inputs to grasslands, ETH Zürich [data set], https://doi.org/10.3929/ethz-b-000488747, 2021.
Ritter, A., Regalado, C. M., and Aschan, G.: Fog reduces transpiration in
tree species of the Canarian relict heath-laurel cloud forest (Garajonay
National Park, Spain), Tree Physiol., 29, 517–528,
https://doi.org/10.1093/treephys/tpn043, 2009.
Sautier, S. C.: Zusammensetzung und Produktivität der Vegetation im
Gebiet der ETHZ-Forschungsstation Früebüel (ZG), MSc Thesis, Inst.
Geogr. Univ. Zurich, 2007.
Seabold, S. and Perktold, J.: Statsmodels: Econometric and Statistical
Modeling with Python, Proceedings of the 9th Python in Science Conference, https://doi.org/10.25080/majora-92bf1922-011, 2010.
Slatyer, R. O.: The absorption of water by plants, Nature, 30, 7–9,
https://doi.org/10.1038/030007b0, 1960.
Stiehl-Braun, P. A., Hartmann, A. A., Kandeler, E., Buchmann, N., and
Niklaus, P. A.: Interactive effects of drought and N fertilization on the
spatial distribution of methane assimilation in grassland soils, Glob.
Chang. Biol., 17, 2629–2639, https://doi.org/10.1111/j.1365-2486.2011.02410.x, 2011.
Thornthwaite, C. W.: An Approach toward a Rational Classification of
Climate, Geogr. Rev., 38, 55–94, https://doi.org/10.1097/00010694-194807000-00007,
1948.
Timlin, D. J., Williams, R. D., Ahuja, L. R., and Heathman, G. C.: Simple
parametric methods to estimate soil water retention and hydraulic
conductivity, in: Development of pedotransfer functions
in soil hydrology, edited by: Pachepsky, Y., Elsevier, Amsterdam, New York, 71–93,
https://doi.org/10.1016/s0166-2481(04)30005-x, 2004.
Uclés, O., Villagarcía, L., Cantón, Y., and Domingo, F.:
Microlysimeter station for long term non-rainfall water input and
evaporation studies, Agric. For. Meteorol., 182–183, 13–20,
https://doi.org/10.1016/j.agrformet.2013.07.017, 2013.
Vesala, T., Sevanto, S., Grönholm, T., Salmon, Y., Nikinmaa, E., Hari,
P., and Hölttä, T.: Effect of Leaf Water Potential on Internal
Humidity and CO2 Dissolution: Reverse Transpiration and Improved Water
Use Efficiency under Negative Pressure, Front. Plant Sci., 8, 54,
https://doi.org/10.3389/fpls.2017.00054, 2017.
Waggoner, P. E., Begg, J. E., and Turner, N. C.: Evaporation of dew, Agric.
Meteorol., 6, 227–230, https://doi.org/10.1016/0002-1571(69)90007-7, 1969.
Wang, L., Kaseke, K. F., Ravi, S., Jiao, W., Mushi, R., Shuuya, T., and
Maggs-Kölling, G.: Convergent vegetation fog and dew water use in the
Namib Desert, Ecohydrology, 12, 1–11, https://doi.org/10.1002/eco.2130, 2019.
Westerhuis, S., Fuhrer, O., Cermak, J., and Eugster, W.: Identifying the key
challenges for fog and low stratus forecasting in complex terrain, Q. J. Roy.
Meteor. Soc., 146, 3347–3367, https://doi.org/10.1002/qj.3849, 2020.
Yates, D. J. and Hutley, L. B.: Foliar uptake of water by wet leaves of
Sloanea woollsii, an Australian subtropical rainforest tree, Aust. J. Bot., 43, 157–167,
https://doi.org/10.1071/BT9950157, 1995.
Zeeman, M. J., Hiller, R., Gilgen, A. K., Michna, P., Plüss, P.,
Buchmann, N., and Eugster, W.: Management and climate impacts on net CO2
fluxes and carbon budgets of three grasslands along an elevational gradient
in Switzerland, Agric. For. Meteorol., 150, 519–530,
https://doi.org/10.1016/j.agrformet.2010.01.011, 2010.
Zhan, T. L. T., Qiu, Q. W., and Xu, W. J.: Analytical solution for infiltration
and deep percolation of rainwater into a monolithic cover subjected to
different patterns of rainfall, Comput. Geotech., 77, 1–10, https://doi.org/10.1016/j.compgeo.2016.03.008, 2016.
Zhang, J., Zhang, Y.-M., Downing, A., Cheng, J.-H., Zhou, X.-B., and Zhang,
B.-C.: The influence of biological soil crusts on dew deposition in
Gurbantunggut Desert, Northwestern China, J. Hydrol., 379, 220–228,
https://doi.org/10.1016/j.jhydrol.2009.09.053, 2009.
Zhang, Q., Wang, S., Yang, F. L., Yue, P., Yao, T., and Wang, W. Y.:
Characteristics of Dew Formation and Distribution, and Its Contribution to
the Surface Water Budget in a Semi-arid Region in China, Boundary-Layer
Meteorol., 154, 317–331, https://doi.org/10.1007/s10546-014-9971-x, 2014.
Zhang, Q., Wang, S., Yue, P., and Wang, R.: A measurement, quantitative
identification and estimation method(QINRW) of non-rainfall water component
by lysimeter, MethodsX, 6, 2873–2881, https://doi.org/10.1016/j.mex.2019.11.012, 2019.
Short summary
The aim of this study was to develop a high-accuracy micro-lysimeter system for the quantification of non-rainfall water inputs that overcomes existing drawbacks. The micro-lysimeter system had a high accuracy and allowed us to quantify and distinguish between different types of non-rainfall water inputs, like dew and fog. Non-rainfall water inputs occurred frequently in a Swiss Alpine grassland ecosystem. These water inputs can be an important water source for grasslands during dry periods.
The aim of this study was to develop a high-accuracy micro-lysimeter system for the...