
Hydrol. Earth Syst. Sci., 26, 91–116, 2022
https://doi.org/10.5194/hess-26-91-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Technical note: High-accuracy weighing micro-lysimeter system for
long-term measurements of non-rainfall water inputs to grasslands
Andreas Riedl1, Yafei Li1, Jon Eugster2, Nina Buchmann1, and Werner Eugster1

1Department of Environmental Systems Science, ETH Zurich, Zurich, 8092, Switzerland
2School of Mathematics, University of Edinburgh, Edinburgh, EH9 3FD, UK

Correspondence: Andreas Riedl (andreas.riedl@usys.ethz.ch)

Received: 10 June 2021 – Discussion started: 2 July 2021
Revised: 15 November 2021 – Accepted: 16 November 2021 – Published: 11 January 2022

Abstract. Non-rainfall water (NRW), defined here as dew,
hoar frost, fog, rime, and water vapour adsorption, might be a
relevant water source for ecosystems, especially during sum-
mer drought periods. These water inputs are often not con-
sidered in ecohydrological studies, because water amounts of
NRW events are rather small and therefore difficult to mea-
sure. Here we present a novel micro-lysimeter (ML) system
and its application which allows us to quantify very small
water inputs from NRW during rain-free periods with an un-
precedented high accuracy of ±0.25 g, which corresponds to
±0.005 mm water input. This is possible with an improved
ML design paired with individual ML calibrations in combi-
nation with high-frequency measurements at 3.3 Hz and an
efficient low-pass filtering to reduce noise level. With a set
of ancillary sensors, the ML system furthermore allows dif-
ferentiation between different types of NRW inputs, i.e. dew,
hoar frost, fog, rime, and the combinations among these, but
also additional events when condensation on leaves is less
probable, such as water vapour adsorption events. In addi-
tion, our ML system design allows one to minimize devi-
ations from natural conditions in terms of canopy and soil
temperatures, plant growth, and soil moisture. This is found
to be a crucial aspect for obtaining realistic NRW measure-
ments in short-statured grasslands. Soil temperatures were
higher in the ML compared to the control, and thus further
studies should focus on improving the thermal soil regime
of ML. Our ML system has proven to be useful for high-
accuracy, long-term measurements of NRW on short-statured
vegetation-like grasslands. Measurements with the ML sys-
tem at a field site in Switzerland showed that NRW input
occurred frequently, with 127 events over 12 months with
a total NRW input of 15.9 mm. Drainage-water flow of the

ML was not measured, and therefore the NRW inputs might
be conservative estimates. High average monthly NRW in-
puts were measured during summer months, suggesting a
high ecohydrological relevance of NRW inputs for temper-
ate grasslands.

1 Introduction

Non-rainfall water (NRW) inputs, defined here as dew, hoar
frost, fog, rime, and water vapour adsorption, provide water
to plants. These different inputs form under different envi-
ronmental conditions: dew forms on plant surfaces when the
temperature of the surface drops below the dew-point tem-
perature of the adjacent air (Beysens, 2018; Monteith, 1957),
whereas dew forming directly on soil surfaces is rarely ob-
served (Agam and Berliner, 2004; Ninari and Berliner, 2002).
In addition, hoar frost is frozen dew, which forms at temper-
atures below 0 ◦C. Fog droplets form on condensation nuclei
(activated aerosol particles) in the atmosphere when water
vapour concentration reaches saturation, whereas rime is su-
percooled fog in contact with a surface (e.g. vegetation) at
a temperature below 0 ◦C. Water vapour adsorption occurs
on hygroscopic surfaces, which can lower saturation vapour
pressure and thus lead to adsorption, despite the fact that tem-
peratures are still above dew-point temperature (Agam and
Berliner, 2006; McHugh et al., 2015).

NRW inputs are a water source for plants during dry peri-
ods and can thus have a significant influence on plant–water
relations by increasing plant–water status (Boucher et al.,
1995; Kerr and Beardsell, 1975; Wang et al., 2019; Yates
and Hutley, 1995). Plant–water status is a widely used mea-
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sure in plant physiology for assessing plant–water stress. It
incorporates the amount of water in plants and its energy sta-
tus (Jones, 2006). NRW inputs can increase the amount of
water in plants (Limm et al., 2009; Munné-Bosch and Ale-
gre, 1999) and thereby change the plant–water status, which
can lower plant–water stress. Plants can take up NRW via
the leaves, termed foliar water uptake (Berry et al., 2014;
Eller et al., 2013; Slatyer, 1960), or via the roots (Wang et
al., 2019). NRW is brought to the rhizosphere by drip-off
from leaves and stems (Dawson, 1998) or by dew forma-
tion and/or fog droplet interception and impaction on soils
(Agam and Berliner, 2006; Kaseke et al., 2012; Uclés et al.,
2013). Moreover, NRW can also reduce water loss (1) by
suppressing transpiration (Aparecido et al., 2016; Gerlein-
Safdi et al., 2018; Ishibashi and Terashima, 1995; Waggoner
et al., 1969), induced by clogged stomata (Gerlein-Safdi et
al., 2018; Vesala et al., 2017), (2) by reducing the vapour
pressure deficit (Ritter et al., 2009) in the boundary layer
between leaves and the atmosphere, and (3) by decreasing
canopy temperatures because of evaporative cooling during
re-evaporation of NRW inputs (Thornthwaite, 1948). The en-
ergy from incoming solar radiation is partially used for the
phase transition from liquid water to water vapour, which
thereby alleviates potential heat stress of the plants. More-
over, canopy temperature may decrease due to an increase
in surface albedo (Eugster et al., 2006; Minnis, 1997), when
more light is reflected as long as the surface is wet. Thus,
NRW inputs can substantially change water relations and
micro-environmental conditions of plants.

Despite these significant effects of NRW on plants, NRW
inputs are the least studied component in ecohydrology
(Wang et al., 2019), because NRW inputs are difficult to
quantify (Groh et al., 2018; Jacobs et al., 2006; Kidron and
Starinsky, 2019). High-accuracy measurement instrumenta-
tion, which simulates natural conditions, e.g. in terms of sur-
face properties, while minimizing disturbances, is required to
capture the comparatively small water inputs. There exists no
international agreement on a reference standard instrumenta-
tion system for NRW measurements (Chen et al., 2005; Groh
et al., 2018). Over the last decades, different measurement
systems were developed (see Kidron and Starinsky, 2019).
Lysimeter (LM) and micro-lysimeter (ML) systems simulate
natural conditions well (Ninari and Berliner, 2002) and are
therefore considered accurate and reliable NRW measure-
ment methods (Ninari and Berliner, 2002; Richards, 2004;
Uclés et al., 2013). Hence, they became the most commonly
used methods over the last decades (Kidron and Starinsky,
2019). LMs differ from MLs by their much larger size, al-
though there is no well-defined size threshold that indis-
putably allows us to separate LMs from MLs (6 to 25 cm
in diameter and 3.5 to 25 cm in depth).

The main drawback of large MLs for NRW studies is the
trade-off between weighing capacity and weighing accuracy.
The weighing capacity of LMs and MLs is determined by

their load cell capacity: the higher the weighing capacity, the
lower the weighing accuracy.

Most ML systems were developed for application in arid
regions to measure NRW inputs to soils and sand. ML sys-
tems for temperate regions may have different requirements,
because quantification of NRW inputs on vegetation requires
a sufficient ML size for natural plant (root) growth. MLs with
shallow depth and small radius can alter normal plant (root)
growth because of insufficient space availability. This char-
acteristic makes them unsuitable for long-term NRW studies
on vegetation with a high demand for root space. Further-
more, natural soil–atmosphere water exchange might be al-
tered by shallow depth of the ML in some ecosystems. While
limited rainfall retention capacity of MLs is not a problem
for NRW quantification, the potential prevention of upward
direct water flow due to capillary rise from deeper soil lay-
ers or the groundwater body cannot be neglected (Evett et
al., 1995), because it replenishes plant-available water in the
rooting zone. Likewise, the energy budget of small MLs can
be severely affected by its insufficient depth (Kidron and
Kronenfeld, 2017; Ninari and Berliner, 2002).

All LMs and MLs are disconnected from the surround-
ing soil and therefore can exhibit a more efficient heat loss
via nocturnal long-wave radiative cooling (Kidron and Kro-
nenfeld, 2017). To accurately measure NRW inputs on short-
statured vegetation, it is thus crucial that the canopy temper-
ature of the ML vegetation equals the canopy temperature
in its surroundings (control). This is especially true for dew
formation, hoar frost, and water vapour adsorption events.
Higher temperatures of ML canopies would lead to under-
estimated NRW amounts, while lower temperatures would
lead to overestimated NRW amounts (Kidron and Kronen-
feld, 2017). Consequently, measuring NRW inputs reliably
needs to take these effects into account.

The goal of this study was to design and test an automated
long-term ML system for NRW quantification to grasslands
during dry and rain-free periods that overcomes drawbacks
of existing small ML systems in terms of hampered plant
growth and altered canopy and soil temperatures as com-
pared to the control (surrounding area). The main objectives
of our study were to

1. develop a ML system with high accuracy that over-
comes existing drawbacks of size vs. accuracy and that
does not hinder plant growth and minimizes ML tem-
perature differences as compared to its surroundings,

2. design a ML system that allows differentiation between
different NRW inputs, here defined as dew, hoar frost,
fog, rime, as well as water vapour adsorption events dur-
ing dry and drought conditions, and

3. test for long-term suitability of the ML system in the
field and quantify the share of NRW of the mean annual
precipitation.
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2 Material and methods

2.1 Field site Früebüel

Field work for this study was carried out at Früebüel (CH-
FRU), a long-term Swiss FluxNet field site in Switzerland
(Pastorello et al., 2020; Zeeman et al., 2010). The site is a
permanent grassland located on a mountain plateau in the
canton of Zug, Switzerland (47◦06′57.0′′ N, 8◦32′16.0′′ E),
at an elevation of 982 m a.s.l. The annual mean tempera-
ture is 7.8 ◦C (years 2005 to 2019) and the annual mean
rainfall is 1232 mm (SD=±372 mm). The site is moder-
ately intensively managed with two to four management
events per year, usually a combination of mowing and graz-
ing, depending on vegetation growth (Imer et al., 2013).
The dominant species are common ryegrass (Lolium mul-
tiflorum), meadow foxtail (Alopecurus pratensis), cocks-
foot grass (Dactylis glomerata), dandelion (Taraxacum of-
ficinale), buttercup (Ranunculus sp.), and white clover (Tri-
folium repens) (Sautier, 2007). The soil at the site is a silt
loam mixture (56 % silt, 37 % sand, 7 % clay), with a bulk
density of 1.12± 0.03 g cm−3 and an organic C content of
4.4± 0.2 % (Stiehl-Braun et al., 2011). The main rooting
horizon is within the top 20 cm of soil, with a high root den-
sity in the top 11 cm (Stiehl-Braun et al., 2011). A location
map and an aerial photograph of the site can be found in Ap-
pendix A.

The site is equipped with an agrometeorological sta-
tion, comprising a temperature and relative humidity sen-
sor (CS215, Campbell Scientific Inc., Logan, USA) placed
in an actively aspired radiation shield and a cup anemometer
with a wind vane (A100R and W200P, Vector Instruments,
North Wales, UK), all installed at a height of 1.15 m, and
a 3D anemometer (R3-50, Gill Instruments Ltd., Lyming-
ton, UK) installed at a height of 1.80 m. Moreover, the site
is equipped with a tipping bucket rain gauge (15188H, Lam-
brecht meteo GmbH, Goettingen, Germany) and a networked
digital camera (NetCam SC, StarDot Technologies, Buena
Park, CA, USA). Furthermore, a leaf wetness sensor (PHY-
TOS 31, Meter Group AG, Munich, Germany) that mimics
thermodynamic and radiative properties of a leaf is installed
horizontally at a height of 30 cm to measure close or in the
canopy of the grassland vegetation. A visibility sensor (Min-
iOFS, Optical sensors Sweden AB, Gothenburg, Sweden) is
installed at a height of 1 m to capture shallow radiation fog
and rime events.

2.2 Methods

The ML system was composed of three individual MLs with
additional sensors. The three MLs were placed in a row at
1.45 m intervals. The design of the ML system is presented
in Sect. 2.2.1–2.2.2. Further information about the installa-
tion process (including photographs), data processing, and
storage can be found in the Appendix. A description of the

installation procedure and the soil monolith preparation can
be found in Appendix B. How data were collected, stored,
and delivered can be found in Appendix C. The description
of the load cell data low-pass filtering can be found in Ap-
pendix D.

2.2.1 ML design

A ML consisted of an inner part (Fig. 1a) and an outer part
(Fig. 1b, item (a), in what follows referenced as Fig. 1b:a).
The outer part (Fig. 1b:a) was made by a cylindrical PVC-U
tube (VINK Schweiz GmbH, Dietikon, Switzerland; 45 cm
outer diameter× 42 cm height, 44.64 cm inner diameter)
with an open top and a closed bottom. The bottom was
closed with a PVC-XT disc (VINK Schweiz GmbH, Di-
etikon, Switzerland; 46 cm diameter, 0.3 cm thick), which
was welded with a PVC-U welding rod to the cylindrical tube
for waterproof closure. The outer part protected the inner part
(Fig. 1b:b–q) from confounding factors like soil pressure, in-
filtrating water, and biota. The core elements of the inner part
were a cylindrical pot (Fig. 1b:b), filled with a soil monolith
(for simplicity called ML pot within this paper) containing
the original grass sward. A ML pot was made of a cylindrical
PVC-U tube (VINK Schweiz GmbH, Dietikon, Switzerland;
25 cm outer diameter×25 cm height, 24.8 cm inner diame-
ter), of which the bottom was closed with a PVC-XT disc
(VINK Schweiz GmbH, Dietikon, Switzerland; 26 cm diam-
eter, 0.3 cm thick) that was welded in the same way as the
outer part. A ML pot was mounted by means of three custom-
made sockets (Fig. 1b:c) on a weighing platform (Fig. 1b:d–
g), secured with machine screws. The weighing platform
consisted mainly of three parts, the load plate (Fig. 1b:d), a
load cell (Fig. 1b:e), and a base plate (Fig. 1b:f). The load
plate was made of aluminium (AlSi1MgMn, 29 cm diam-
eter, 1 cm thick), likewise the base plate (35 cm diameter,
1 cm thick). Between the load plate and the base plate, a
PW15AHY temperature-compensated load cell with 20 kg
capacity (HBM, Darmstadt, Germany) was mounted. To al-
low bending of the load cell, two rectangular spacing wash-
ers (Fig. 1g, 2.5× 3.1 cm, 0.1 cm thick) were mounted be-
tween load cell and load plate and between load cell and base
plate. To mount the load cell and the spacing washers to the
load plate and the base plate, two countersunk head screws
were used. The weighing platform stood on three equidistant
adjustable support feet (Fig. 1b:h, M6×1 machine screws,
15.5 cm height) integrated in the base plate. This allowed us
to level the weighing platform, which is important for accu-
rate load cell measurements. A counter nut above the base
plate (Fig. 1b:i) fixed the position of the weighing platform.

2.2.2 Drainage-water flow

To avoid stagnating water inside of ML pots, a passive
drainage-water flow path was made. The drainage water was
guided away from the load cell to a reservoir to protect
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Figure 1. Inner part of the ML (a) and schematic drawing of ML design (b) with a: outer part, b: ML pot, c: socket, d: load plate, e: load
cell, f: base plate, g: spacing washer, h: adjustable support feet, i: counter nut for adjustable support feet, j: drainage-water outlet, k: water
guide, l: float switch, m: bilge pump, n: water and dirt protection, o: cover lid, p: optional sensor or drop counter to quantify drainage for
applications that do not specifically target drought conditions, and q: soil moisture and temperature sensor.

the load cell from suspended matter. Suspended matter can
be carried along with drainage water and could impede the
function of the load cell by blocking the load cell bending.
Drainage water beyond soil field capacity was allowed to
flow out from the bottom of the ML pot via drainage-water
outlets. Three drainage-water outlets (Fig. 1b:j; 0.8 cm di-
ameter) were drilled equidistantly into the lateral side of the
ML pot as close as possible to the bottom. The drainage-
water outlets were protected with a metal mesh to prevent
erosion of ML soil during heavy rainfall events. Excessive
water could follow a passive drainage path from the top of
the load plate, guided by a water guide (Fig. 1b:k; 3 cm
height, 0.4 cm thick), to the base plate. From the base plate
water could flow to an approximately 10 cm-high reservoir
below the base plate. If the collected water in the reservoir
exceeded a certain threshold, a float switch (Fig. 1b:l; Fu-
jian Baida Pump, Fuan, China) gave a signal to a bilge pump
(Fig. 1b:m; Fujian Baida Pump, Fuan, China) that pumped
the water away from the ML system (schematically shown
with an arrow in Fig. 1b) via a flexible tube (2 cm inner diam-
eter). The load cell was protected from drainage-water flow
by a rectangular water and dirt protection (Fig. 1b:n, PVC
XT, 25cm× 10.5cm, 4 cm height). It was glued at the base
plate around the load cell and made watertight with silicon.

Rainfall could also enter in the gap between the ML pot
and the outer part of the ML system. To minimize this wa-
ter collection, a cover lid (Fig. 1b:o) made of a PVC-XT
ring (47 cm outer diameter, 26 cm inner diameter) was con-
structed. The cover lid had an inclination of 7◦ towards the
outside. This was done by putting the cover lid in a heated
oven at 90 ◦C and then pressing it towards a custom-made
wooden fit with the desired form till it had cooled down. The
slanted cover lid resulted in a preferred water flow towards
the surroundings and thereby prevented water flow towards
the inside of the ML system. Furthermore, it protected the
ML pot from incident solar radiation, also minimizing poten-
tial heating effects. Wiring of the load cell, the float switch,
the bilge pump, as well as the soil temperature and moisture
sensors was bundled and led out close to the top of the outer
part of the ML system (schematically shown with an arrow
in Fig. 1b).

In the design as used here, i.e. to quantify NRW inputs dur-
ing rain-free periods, drainage water was allowed to freely
drain from the ML pots. Thus, rainfall periods had to be ex-
cluded from analysis (see Sect. 2.2.3). However, to use the
ML system during and shortly after rainfall periods, it is rec-
ommended to add an additional sensor (Fig. 1b:p) to quantify
drainage-water flow (see Appendix E). For applications with-
out such an additional sensor, it should be kept in mind that,
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depending on soil type, up to 41.5 h after intensive rainfall
that saturated the soil monolith completely, drainage-water
losses can occur (see Fig. F1 and Table F1).

2.2.3 Calculation of NRW amounts and differentiation
of NRW inputs

We differentiated six types of NRW events with ML and an-
cillary sensors, i.e. (1) dew only, (2) hoar frost only, (3) fog
only, (4) rime only, (5) combined dew and fog events, and
(6) combined hoar frost and rime events. During all six event
types, a mass increase was expected on the ML. The NRW
amounts (NRWmass) were calculated using Eq. (1):

NRWmass =

{
MLmax1m−MLmin1m, precip= 0mm
0, precip> 0mm , (1)

where MLmax1m is the maximum value of the 1 min mean
ML mass (all three ML values averaged every minute) over a
time period of 24 h (from 12:00 to 12:00 UTC), and MLmin1m
is the minimum value of the 1 min mean ML mass over
the same time period. The resulting NRWmass (in grams)
was then converted to millimetres. If rainfall occurred dur-
ing an analysed 24 h period, that period was excluded, ex-
cept when the rain event occurred directly after the NRW
input event. Rain events were determined by the rain-gauge
measurements at the site. Time periods with a snow cover
as determined visually from digital images were not consid-
ered in the analysis. To distinguish between different types
of NRW inputs, we used the information from all ancillary
sensors. Often dew and fog or hoar frost and rime occurred
in combination: e.g. after sunset, dew formation occurred,
when the atmosphere cooled further down till the atmosphere
got highly saturated, and fog started to form. We termed
such events combined dew and fog events or hoar frost and
rime events, respectively. The leaf wetness sensor was used
to sense condensation (during dew-only and hoar-frost-only
events) and NRW droplet interception and impaction (dur-
ing fog, rime, combined dew and fog, and combined hoar
frost and rime events) and to sense an absence of condensa-
tion (during events when less condensation is expected to oc-
cur, e.g. water vapour adsorption or dew formation on soil).
The visibility sensor was used to distinguish between events
with reduced visibility below 1000 m (fog, rime events) and
events without reduced visibility (dew-only, hoar-frost-only
events). To distinguish between fog and rime events from
dew and hoar frost events, the temperature sensor of the
nearby agrometeorological station was used. When tempera-
ture dropped below 0 ◦C, NRW inputs were attributed to rime
and hoar frost.

2.2.4 Load cell calibration and determination of
accuracy

In this study, weighing accuracy denotes the difference be-
tween the measured mass (determined with a ML) and the

control (calibrated mass). Precision reflects the reliability of
the measurements, and it specifies to what extent the ex-
periment can be repeated. On the other hand, resolution is
the smallest distinguishable unit for an observable change in
mass and thus determines the upper limit of precision. For
NRW studies, high accuracy is indispensable, which requires
instruments with high resolution paired with high precision.

Calibration runs for ML and the determination of the ac-
curacy of the measurements were performed in a laboratory
with closed windows and doors to avoid any influence of
turbulence on load cell readings. Raw data were filtered as
described in Appendix D during load cell calibration of the
ML. A two-point calibration was performed on every single
ML using calibration mass. For mass increases up to 500 g,
calibration masses complying with the OIML F1 standard
(Mettler Toledo, Greifensee, Switzerland) were used. The
maximum permissible error of these calibration masses is
±2.5 mg. For mass increases of 1000 g, custom-made masses
of steel were used. Their mass was determined on a labora-
tory scale (XS4002S DeltaRange, Mettler Toledo, Switzer-
land) which was calibrated and certified for determining
mass up to 4.1 kg with an accuracy of ±0.01 g. First, a zero-
point calibration was carried out, and then the span was set
to 15 045.2 g, as this was the approximate mass which most
moist ML pots had. The offset from the zero-point calibration
was used together with the span calibration value in the code
running on the microcontroller. The absolute accuracy of the
load cells was tested on 2 April 2019 by loading calibration
mass on the weighing platform in the range of 0 to 19.5 kg.
The mass was increased stepwise by 500 g. The maximum
mass was set to 19.5 kg to avoid an overload damage of the
load cell. Three repetitions were performed. A linear regres-
sion was performed in order to assess the relationship be-
tween target mass and load cell mass. Moreover, a relative
calibration was performed on 7 April 2019. We investigated
the accuracy of a load cell with relative mass changes. A base
mass, ranging from 10 to 19.5 kg, was loaded on the weigh-
ing platform, and then a 100 g calibration mass was added
to the base mass. Accuracy of relative mass changes was de-
termined with three replications. To test accuracy also under
field conditions, we regularly performed a loading/unloading
experiment following Nolz et al. (2013) by loading 5 to 10 g
calibration masses on the ML and noting the mass before and
after the loading. Because masses can be calibrated with cer-
tified standards as was done here, we use the term “accuracy”
in this context, which goes beyond (relative) precision.

2.2.5 Evaluation of the effects of ML size on plant
growth, canopy temperatures, and soil moistures
and temperatures

Plant growth in the ML system was evaluated by compar-
ing individual plant heights in the ML pots vs. the control
(surroundings). Plant heights were measured from ground
level to maximum standing height. Plant heights of Trifolium
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pratense, Plantago major, and Rhinanthus alectorolophus
were measured at CH-FRU on 26 July 2019, with three repli-
cations per species and treatment (ML pot, control). To test
for a statistically significant difference between plant heights
of ML pots and the control (surroundings), we used a t test
(n= 3). To compare canopy temperatures of ML and the
control (surroundings) during a NRW input period, we used
a thermal camera (testo 882, Testo AG, Lenzkirch, Germany)
with a thermal sensitivity of ±0.05 ◦C. Thermal infrared im-
ages were taken from 18:27 to 05:15 UTC of ML vegetation
and of the control (surroundings) at CH-FRU during a dew
night on 24 to 25 June 2019. Thermal images of the control
(surroundings) were taken at a distance of ca. 100 cm from
the ML system to exclude any potential influences of the ML
system on its immediate surroundings. To compare thermal
images of the ML surface with the control, we compared the
variance (F test). Data were bootstrapped to reduce sample
size from > 30000 to 30 samples using the scikit-learn ma-
chine learning package of Python (Pedregosa et al., 2011).
Soil moisture and temperature data of ML pots and the con-
trol (surroundings) were retrieved by soil temperature and
moisture sensors (Fig. 1b:q; 5TM, Meter Group AG, Munich,
Germany) installed at a soil depth of 15 cm. As a control, one
additional sensor was placed outside the ML system at the
same depth in the surroundings. We measured over a period
from the beginning of May till mid October 2019. Soil mois-
ture data were compared as water-filled pore space (WFPS).
WFPS was used to make soil moisture values more compa-
rable by minimizing the effects of soil texture, e.g. different
gravel content, that might be present in close proximity to
the sensors. Higher or lower gravel content could bias soil
saturation. WFPS was calculated relative to a saturation point
(100 %), which was reached when the soil was fully saturated
with water after long and intensive rainfall. To test whether
the difference of WFPS values of ML pots and the con-
trol (surroundings) stayed constant over time, we used a co-
integration test following Engle and Granger (1987), which
can be used to test for co-movement of two non-stationary
variables. To test whether the WFPS time series were non-
stationary, we used an augmented Dickey–Fuller (ADF) test.
To perform all statistical tests, we used the Statsmodels pack-
age (Seabold and Perktold, 2010) of Python.

3 Results

3.1 Accuracy of the ML system

Three replications showed an almost perfect linear correla-
tion (R2

= 0.9999) between target mass and load cell mass.
Target mass was retrieved from the microcontroller after data
filtering (see Appendix D). Data with a resolution of 0.1 g
were used (Riedl, 2021). The root mean square errors (RM-
SEs) for comparisons of target mass to load cell mass of
three replications were 0.43, 0.47, and 0.36 g, respectively.

The standard errors (SEs) of the parameter estimates of three
replications were ±0.13, ±0.14, and ±0.11 g, respectively.

NRW inputs occur during events with a finite time period,
and thus for NRW input studies, the relative change in mass
from the start to end of that time period is of interest. A 100 g
change with the given ML size translated into a change of
2 mm water input. The residuals were in the range of±0.25 g
or ±0.005 mm equivalent water input, which represents the
accuracy of the ML system (Riedl, 2021).

A zero-point offset calibration combined with data filter-
ing (see Appendix D) gave us not only a more accurate zero-
point offset, but also a more accurate span value. An accurate
span value reduced fluctuating values from load cell read-
ings and gave us stable measurements when mass changed
over time. The precision was determined by repeatedly load-
ing and unloading calibration mass on the weighing platform
three times and noting the difference to test for repeatability.
The precision was ±0.28 g, equivalent to ±0.005 mm wa-
ter input. With a base mass over 18.5 kg, the precision was
slightly lower, with ±0.45 g equivalent to ±0.009 mm water
input. The digital resolution of the ML system was 0.01 g,
which corresponds to 0.0002 mm equivalent water input and
is thus 2 orders of magnitude better than the physical resolu-
tion provided by our ML system. Regular loading/unloading
experiments following Nolz et al. (2013) showed deviations
in the range between ±< 0.1 g (±< 0.002 mm) and ±0.4 g
(±0.008 mm) and thereby confirmed high accuracy also un-
der field conditions. Thus, the data acquisition of the ML sys-
tem was accurate enough to provide high accuracy.

3.2 Differentiation among different types of NRW
inputs

Our ML system allowed differentiation among different
types of NRW events when the ML measurements were com-
bined with ancillary sensors. During a combined dew and fog
event (Fig. 4a), we measured an increase in mass on the ML
and an increase in leaf wetness (uncalibrated sensor voltage),
while visibility was partially below 1000 m (intermittent fog
event). During a dew-only event, we measured an increase in
mass on the ML, besides increased leaf wetness, while vis-
ibility stayed above 1000 m throughout the event (Fig. 4b).
During a potential water vapour adsorption event, there was
only an increase in mass on the ML, whereas no condensa-
tion occurred on the leaf wetness sensor, while the visibility
stayed well above 1000 m (Fig. 4c). Wind speed remained
low (< 1 m s−1) during the whole potential water vapour ad-
sorption event. Mass increases on the ML could be attributed
to hoar frost if air temperature was below 0 ◦C or to rime dur-
ing events with reduced horizontal visibility < 1000 m and
temperatures below 0 ◦C. The highest water gain of the NRW
input events shown in Fig. 4 was 0.4 mm and originates from
the combined dew and fog event; the water input from the
dew-only event was 0.2 mm, and the lowest water input with
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Figure 2. (a) Absolute calibration of a load cell placed on a weighing platform. Three replications (overlapping data points) are shown with
the SE of the intercept. (b) The residuals from the target mass of three replications (Reps. 1 to 3) were in the range of ±2 g.

Figure 3. Residuals of three replications (Reps. 1 to 3) with relative
mass changes of 100 g.

0.06 mm came from the potential water vapour adsorption
event.

3.3 Influence of ML system design on plant canopy
temperature

Canopy temperature did not differ significantly (t test, p >
0.05, n= 30) between ML vegetation and control (Fig. 5a
and b). The standard deviation of temperature data between
the ML surface and the control was < 0.5 ◦C throughout the
observation period. The variance of canopy temperature be-
tween the ML vegetation and the control was not statistically
significantly different (F test, p > 0.05, n= 30). Soil tem-
perature in ML pot 1 was higher than in the control plot
at the beginning of the dew formation period (Fig. 5c) but
equalled control soil temperatures towards the end. Dew for-
mation started at 18:53 and ended at 06:07 UTC (Fig. 5d).
Dew water input was 0.24 mm, showcased for ML 1, even
though dew formation occurred during that night on all three
MLs installed at the site (Riedl, 2021).

3.4 Influence of ML system design on plant growth

Plant heights of Trifolium pratense, Plantago major, and
Rhinanthus alectorolophus did not differ between ML pots
and the control (t test, p > 0.05, n= 3); also, variability
did not differ (F test, p > 0.05, n= 3). Additional measure-
ments of mean and maximum vegetation height on 14 Au-
gust 2019 also showed no statistically significant difference
(t test, p > 0.05, n= 3; data not shown; Riedl, 2021).

3.5 Influence of ML system design on soil moistures
and temperatures

WFPS data of ML pot 1 and ML pot 2 were very similar
and closely matched the control (Fig. 7a). WFPS values of
ML pot 3 showed a higher dynamic but closely followed the
temporal pattern of the control and ML pots 1 and 2. The
differences between WFPS of ML pots and the control were
constant over time (Engle–Granger two-step co-integration
test; p < 0.05). This indicates that soil moisture data of ML
pots and the control were in general not significantly differ-
ent. However, during a prolonged no-rainfall period in sum-
mer (Fig. 7a, marked with the red box), WFPS of ML pots
decreased more quickly in comparison to the control. Since
lower soil moisture values can result in a lower heat capacity
of the soil, we assessed whether lower WFPS values inside
ML pots may have an influence on soil temperature during
non-rainfall periods (Fig. 7b).

Soil temperature of ML pot 1 and the control (soil tem-
perature in the surroundings) (Fig. 7b) showed the same in-
creasing trend, while deviation of WFPS of ML pots from
the control (Fig. 7a, marked in red) increased with time (the
same pattern as that of ML pot 1 was also evident in ML
pot 2 and ML pot 3, data not shown). From this we con-
clude that soil temperatures inside ML pots during the most
relevant hours of the day when dew forms (during the night
before sunrise) were not strongly influenced by a lower water
content and its resulting lower heat capacity. Nocturnal tem-

https://doi.org/10.5194/hess-26-91-2022 Hydrol. Earth Syst. Sci., 26, 91–116, 2022



98 A. Riedl et al.: High-accuracy weighing ML system for long-term measurements of NRW inputs to grasslands

Figure 4. Differentiation of different NRW input events with the ML system and ancillary sensors. (a) Combined dew and fog event. (b) Dew-
only event. (c) Potential water vapour adsorption event. The black dashed line indicates the zero line. The red dashed line is the threshold for
fog events with a visibility < 1000 m. Visibilities > 4000 m were reported as 4000 m. Blue circles indicate the start and end of NRW input
events.

Table 1. Cross table to indicate different criteria for differentiation among different NRW events. The “+” sign indicates the presence,
whereas the “−” sign indicates the absence of a certain factor. All NRW events lead to increase in ML mass; ancillary sensors of leaf
wetness, visibility, and temperature are needed to differentiate between NRW events.

NRW event ML mass Leaf Visibility Temperature
type increase wetness < 1000 m < 0 ◦C

Dew + + − −

Hoar frost + + − +

Fog + + + −

Rime + + + +

Combined dew and fog + + + −

Combined hoar frost and rime + + + +

Potential water vapour adsorption + − − −

perature minima almost perfectly agreed between ML pot 1
and the control, while the daily temperature range of ML
pot 1 was double compared to the control (Fig. 7b). Over
the prolonged no-rainfall period, the hourly mean soil tem-
perature deviations of ML pot 1 from the control ranged be-
tween−0.14 ◦C around sunrise and 2.57 ◦C in the later after-
noon (Fig. 7c). Over the period from May to October 90 % of
nocturnal 1 min soil temperature deviations (sunset–sunrise)
were lower than 2.90 ◦C, and 50 % were lower than 0.69 ◦C.

3.6 NRW inputs over 1 year

There were a total of 127 NRW input events at CH-FRU over
1 year (2 May 2019, 12:00 UTC, to 2 May 2020, 11:59 UTC;
Fig. 8). The frequency of the events can be found in Ta-
ble 2. Eleven NRW events were observed when leaf wet-

ness remained low, potentially indicating water vapour ad-
sorption events or dew formation on soil. Potential water
vapour adsorption events occurred during two time periods:
period 1 in July 2019 and period 2 in April 2020. During
period 1, a single potential water vapour adsorption event
occurred, whereas during period 2 10 such events occurred.
During both periods rainfall was low: 10 d before the event
in period 1 the cumulative rainfall was only 9.6 mm, and
in period 2 the cumulative rainfall between 14 March, the
last bigger rainfall event with 12.3 mm, and 23 April was
only 13.7 mm. The soil moisture during both potential wa-
ter vapour adsorption periods was rather low, with a WFPS
of ca. 45 %. This indicates a potential water vapour gradient
from the atmosphere to the soil favourable for water vapour
adsorption. The cumulative NRW input over 12 months was
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Figure 5. Canopy temperatures (a, b), soil temperatures (c), and NRW input (d) of ML1 and the control (surrounding area) at CH-FRU
during 24 to 25 June 2019. Time of day (HH:MM) is given in UTC time. The thermal infrared images (a) show the ML pot (small circle)
with the cover lid (between the small circle and the big circle) and the surroundings (outside of the big circle) during selected time points
(1–7) of a dew night. Image size is ca. 75× 75 cm. To compare ML pot temperatures to temperatures of the surroundings, separate images
were taken at a distance of ca. 100 cm (images not shown here) with a size of ca. 75×75 cm to exclude any potential influence of the ML on
its approximate surroundings.

Figure 6. Comparison of plant height of three plant species at CH-
FRU (measured on 26 May 2019) growing in ML pots vs. the same
species growing in the open field (control). Error bars show stan-
dard errors (n= 3), and n.s. stands for no statistically significant
difference.

15.9 mm, which corresponds to roughly 1 % of the 1580 mm
annual precipitation collected during the third-warmest year
in Switzerland since weather recordings started in 1864 (Me-
teoSchweiz, 2020).

The mean NRW input over all events was 0.12 mm, with
the highest single input of 0.4 mm by a fog event and the
lowest input of 0.021 mm by a hoar frost event. On a monthly

basis, the months with the highest NRW inputs were Septem-
ber with 2.64 mm, August with 2.35 mm, and June with
2.32 mm. The cumulative NRW input from May till Septem-
ber was 9.7 mm. At the monthly scale, NRW inputs can be
remarkable: in April 2020, the month with the least rainfall
(51.8 mm), the contribution of NRW input to the monthly hy-
drological input was 3.5 %. The average monthly NRW input
was highest in September with 0.088 mm, when the nights
were longer than in summer, and thus the probability of NRW
inputs was increasing with the duration of the night. How-
ever, observed average monthly NRW inputs ranked second
and third in terms of amount in June and August, when nights
were much shorter than in September. The relationship be-
tween NRW input as a function of actual NRW input dura-
tion (Fig. 9) was not very strong, but when durations were
binned into 10 bins of equal widths, a clear trend of in-
creasing NRW inputs with increasing NRW input duration
emerged. Because no NRW input is expected if the duration
of NRW input is 0 h, we first started with a square-root re-
gression through the origin, y = b ·

√
x, the slope of the fit

was 0.042±0.001 mm h−1/2 (Fig. 9, dotted line), but for du-
rations > 2 h it closely corresponded to a conventional lin-
ear regression slope of 0.008± 0.001 mm h−1 (Fig. 9, black
line, R2

= 0.86, p < 0.001; the intercept should be ignored
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Figure 7. (a) Comparison of WFPS (based on soil moisture measured at 15 cm depth) inside the ML pots vs. the control from the beginning
of May till the middle of October 2019 at CH-FRU. (b) Soil temperature from ML pot 1 at CH-FRU during a non-rainfall period in July
(marked with the red box in panel (a)). (c) Soil temperature deviations of ML pot 1 from the control by hour of day during the same period
as marked in panel (a) and used in panel (b).

Table 2. Number counts of events with its associated NRW input by type and percentage of the total NRW input during the observation
period of 12 months at CH-FRU.

Number count NRW type NRW input NRW input Percentage of total
of events (mm yr−1) (mm d−1) NRW input (%)

85 Dew 10.23 0.12 64.23
21 Hoar frost 1.92 0.09 12.05
13 Combined dew and fog 2.69 0.21 16.89
5 Fog 0.9 0.18 5.67
2 Hoar frost and rime 0.15 0.08 0.95
1 Rime 0.03 0.03 0.22

because it has no physical meaning in this context). Despite
this rather clear dependence on the actual duration of NRW
input, there was no significant correlation found between av-
erage monthly NRW input duration and potential NRW in-
put duration given by the time between sunset and sunrise
(R2
= 0.16, p > 0.1; data not shown; Riedl, 2021).

4 Discussion

4.1 Accuracy of the ML system

The high accuracy of our newly developed ML system al-
lowed us to capture even very small NRW events such as the
potential water vapour adsorption event with 0.06 mm shown
in Fig. 4c. It was possible to capture NRW events with an
accuracy of ±0.25 g with pots that weigh roughly 15 kg in
total. This corresponds to an accuracy of ±0.005 mm of wa-
ter inputs. The accuracy would be even higher with a relative
mass change of less than 100 g (equivalent to 2 mm water in-
put), which is true for most NRW events. The accuracy of
our ML system was 4 orders of magnitude better than re-
ported for many other studies (see Table 3). Feigenwinter et
al. (2020) were able to achieve on average (depending on the
calibration date) the same accuracy, although with a lower

depth of the ML pot (6.5 cm) and a lower weighing capacity
(7 kg). The high accuracy of our ML system was achieved
by a combination of factors, such as using a state-of-the-
art load cell in combination with continuous high-frequency
data filtering as well as ancillary data. For example, temper-
ature measurements were crucial for differentiating between
hoar frost and dew events and fog and rime events. Ancillary
wind measurements could be used to exclude periods with
high wind speeds, because high wind could act as a force on
ML and thereby increase mass. However, NRW inputs occur
during conditions with low wind speed, and the probability
of dew formation decreases below 5 % when wind speeds are
smaller than 0.4 m s−1 or bigger than 1.9 m s−1 (Zhang et al.,
2014). Thus, wind is not a big bias source for NRW quantifi-
cation. A further factor promoting high accuracy was a load-
cell-specific calibration. Factory calibration is the same for
all load cells of the same model, but when an individual cal-
ibration is made, the differences among individual load cells
are substantial, and hence the highest accuracy always re-
quires a load-cell-specific calibration by the user. Construc-
tion details that promoted accuracy were the frictionless gap
construction between ML pot and cover lid as well as the
three adjustable support feet on which the weighing plat-
form was centred on the load cell. This is needed because
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Figure 8. Daily NRW inputs at CH-FRU over 1 year from 2 May 2019 till 2 May 2020. The blue bars indicate NRW events with their
corresponding NRW input per day. Different colours indicate different types of NRW inputs. The black line indicates the cumulative NRW
input over 1 year. The annual total NRW input was 15.9 mm, about 1 % of total precipitation during this time.

Figure 9. The relationship of actual NRW input as a function of
actual NRW input duration from 12 months of NRW inputs. NRW
inputs were binned into 10 bins of equal width covering the en-
tire data range of the NRW input duration. Horizontal and vertical
whiskers indicate the standard deviation (SD) of the available data
within each bin relative to the respective bin average (open circles).
Different colours indicate different types of NRW inputs. There is
a strong linear relationship (R2

= 0.86, p < 0.001) between actual
NRW input and actual NRW input duration.

after burial, a ML system may accidentally tip, twist, and be
thrown out of balance (Uclés et al., 2013). The low-cost mi-
crocontroller had enough computing power to continuously
process data from multiple sensors while consuming little en-
ergy. Thus, our ML system could also be powered by solar
panels. During or after freezing temperature conditions the
ML system should be controlled, because expanding water
in the reservoir or the ML pot could break PVC parts of the
ML system. However, this did not occur during this study
period.

The precision (repeatability of the measurements) of our
ML system was ±0.005 mm equivalent water input. With
a base mass over 18.5 kg, the precision was lower, with
±0.009 mm equivalent water input. However, in the field,
ML pots weighed less than 18.5 kg, even when soil was
moist. This precision was unprecedented, only topped by
manual ML weighing on an electronic balance (Jia et al.,
2014). Manual weighing is, however, very labour intensive
and consequently unsuitable for long-term NRW studies.

The digital resolution (smallest distinguishable unit) of our
ML system was 0.0002 mm. This resolution was in the range
reported by Uclés et al. (2013). Comparison of accuracies,
precisions, and resolutions with other studies is often ham-
pered, because the distinct terms “accuracy”, “precision”,
and “resolution” are often misconceived. The load cell ca-
pacity of 20 kg in our ML system is relatively large compared
to other ML studies. NRW input studies with ML had a load
cell capacity in the range from 0.3 kg (Brown et al., 2008),
1.5 kg (Kaseke et al., 2012), 3 kg (Uclés et al., 2013), 6 kg
(Maphangwa et al., 2012; Matimati et al., 2013), up to 7 kg
(Feigenwinter et al., 2020).

4.2 Quantification and differentiation among different
types of NRW inputs

NRW inputs occurred rather frequently over the entire year
of observation (Fig. 8). NRW inputs could be measured on
approximately every third day on average. The highest NRW
inputs occurred during the months of main grass growth
(April–September), indicating a potential hydroecological
relevance. Ancillary sensors allowed differentiation of dif-
ferent NRW inputs. Differentiation among different types of
NRW inputs is important for various research disciplines;
e.g. the prediction of fog events poses a major challenge for
numerical weather prediction for meteorologists (Westerhuis
et al., 2020). Thus, it is important to measure the frequency
and water inputs of fog events during the whole year.
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Table 3. Comparison of accuracies, precisions, and resolutions of micro-lysimeters (MLs) and lysimeters (LMs) for NRW studies.

Accuracy of ML and LM Additional information Reference

±0.005 mm ML weighing capacity of 20 kg This study

±0.005 mm (mean) Accuracy ranged from ±0.001
to±0.02 mm depending on cal-
ibration date. ML weighing ca-
pacity of 7 kg

Feigenwinter et al. (2020)

±0.02 mm ML weighing capacity of 1 kg Heusinkveld et al. (2006)

±0.03 mm Zhang et al. (2019)

Precision of ML and LM

±0.28 g (±0.005 mm) This study

±0.001 g (±0.00012 mm) ML pots were manually
weighed on an electronic
balance

Jia et al. (2014)

±0.3 g (±0.008 mm) (mean) Precision ranged from ±0.1 g
(±0.002 mm) to ±1.12 g
(±0.023 mm), depending on
calibration date

Feigenwinter et al. (2020)

±20 g (±0.01 to ±0.04 mm) For a surface area of 0.5 up to
2 m2

Meissner et al. (2014)

Resolution of ML and LM

0.01 g (±0.0002 mm) This study

0.01 g (±0.00055 mm) Uclés et al. (2013)

0.038 g (±0.0026 mm) Kaseke et al. (2012)

0.1 g (±0.0022 mm) Maphangwa et al. (2012)

0.1 g (±0.004 mm) Agam and Berliner (2004)

1 and 10 g (±0.001 and 0.01 mm) Big LM, two different LM sys-
tems with 1 m2 surface area

Groh et al. (2018)

The use of a visibility sensor allowed us to assess the con-
tribution of fog and rime. A leaf wetness sensor allowed dif-
ferentiation between events in which condensation occurred
(dew, hoar frost), in contrast to events when condensation
on leaves was less probable (water vapour adsorption and/or
dew formation on soil). Potential water vapour adsorption
events occurred during periods with low rainfall, when soil
was drying out, which increased the vapour pressure deficit
gradient between soil and the atmosphere, promoting water
vapour adsorption. However, the NRW inputs of the poten-
tial water vapour adsorption events were rather low (0.03–
0.13 mm). Thus, it is not unlikely that a leaf wetness sen-
sor might react slightly differently than a true plant leaf de-
spite the care that was taken to design leaf wetness sensors
to match the radiative and thermodynamic properties of plant
leaves, and these events were small dew events. Further in-
vestigations are needed to clarify whether the leaf wetness

sensor is suitable for differentiating between dew and wa-
ter vapour adsorption events. Air temperature measurements
from the agrometeorological station were necessary to dif-
ferentiate between dew vs. hoar frost formation and between
fog vs. rime. Rainfall measurements allowed differentiation
between NRW events and rainfall events, and a networked
digital camera allowed us to observe persisting snow cover.
The installation of three MLs allowed exclusion of possible
effects by insects, snails, and lizards arriving on or depart-
ing from a ML pot. If it is assumed that these animals have
no preference for a particular ML pot and thus their arrival
and departure form a random process, such effects only con-
tribute to the noise that is filtered out during data filtering
and thus should not bias our NRW input estimates. In deserts
or arid regions (with low vegetation cover), additional sen-
sors (e.g. infrared video cameras) would be needed to detect
depositing materials like dust and sand that accumulate on
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the ML over time. The installation of multiple MLs further-
more had the advantage that spatial variation in soils, species
composition, and leaf area could be reduced in comparison
to single ML deployments.

4.3 Effect of ML size on plant growth, canopy
temperatures, soil moisture, and soil temperatures

Our ML system had a larger area and a deeper ML pot than
most other ML systems developed and used in earlier stud-
ies on NRW quantification (Table 4). This allowed unim-
paired plant height growth (Fig. 6), representing more nat-
ural conditions than many, rather shallow ML systems, an
issue crucial for accurate measurements of NRW inputs to
grasses and forbs. We did not find any significant differ-
ences in canopy temperatures between our ML pots and the
control (surroundings) (Fig. 5a). Furthermore, we found in
general no significant difference in soil moisture between
the ML and the control (surroundings); only during a pro-
longed drought period did soil moisture values of ML pots
decrease more quickly. In this study, this however had no in-
fluence on plant standing height because measurements of
plant height (before the drought period) and measurement
of overall vegetation height (after the drought period) were
not statistically different. However, lower soil moisture dur-
ing prolonged drought periods can result in reduced evap-
oration rates and increased water vapour adsorption rates.
Furthermore, this can influence plant growth and develop-
ment. Thus, the ML system can be used to reliably mea-
sure NRW inputs as long as the difference in soil moisture
during prolonged drought periods does not influence plant
height or canopy architecture. WFPS values of ML pots were
in general not higher than the control, suggesting a suffi-
cient drainage by the drainage-water outlets. This is cru-
cial, because saturation at the bottom of a ML could lead
to oxygen limitation for root growth (Ben-Gal and Shani,
2002). In contrast to Kidron and Kronenfeld (2017), Evett
et al. (1995), and Ninari and Berliner (2002), we also did
not observe substantially lower nocturnal soil temperatures,
the time when NRW inputs actually take place, which is im-
portant for avoiding an overestimation of dew formation on
soils. On the other hand, afternoon and close-to-sunset soil
temperatures of ML pots were higher compared to those in
the control (Fig. 7). Thus, potentially, the ML system could
underestimate dew formation on soils shortly after sunset,
but dew formation on soils is rare (Agam and Berliner, 2004;
Ninari and Berliner, 2002) and the open soil surface in grass-
lands is rather small, ideally zero under good management
practices. Higher soil temperatures could underestimate wa-
ter vapour adsorption, because it lowers the vapour pressure
deficit between soil and atmosphere. Therefore, our estimates
of NRW inputs on soils should be conservative estimates,
given that the slightly elevated temperatures actually do re-
duce (not increase) NRW inputs on soil inside the ML pots.
The higher soil temperatures in the afternoon were not re-

lated to a lower water content nor its associated heat capac-
ity. Kidron et al. (2016) provided a possible explanation for
the diurnal temperature difference between a ML pot and the
control. They termed it a “loose stone effect”: the ML pot
might act as a loose stone, i.e. through the air gap between
the ML pot and the outer part of the ML system more effi-
cient longwave radiational cooling can occur in comparison
to the bulk soil. However, Ninari and Berliner (2002) found
that the lateral soil temperature gradient was small compared
to the vertical soil temperature gradient and that wrapping
the ML pots with insulation material did not reduce tempera-
ture deviations. We thus think that insufficient ML pot depth
has most likely caused the soil temperature alterations ob-
served mainly during day-time when dew formation is ab-
sent. Ninari and Berliner (2002) suggested that the minimum
ML depth should be the depth at which the temperature is
constant during the entire day. For a dry loess soil in the
Negev desert, a sufficient ML pot depth would be 50 cm (Ni-
nari and Berliner, 2002). At CH-FRU, a ML pot depth of
approximately 95 cm would be necessary in order to have
soil temperature gradients over 24 h periods< 0.5 ◦C. With a
depth of 95 cm, there would be the risk that all the advantages
any ML system entails would be lost. Although constructing
deeper ML pots would be possible, even with double or triple
the current ML pot depth, deeper ML pots would exert more
dead mass onto the load cell and would thus decrease load
cell accuracy (Kaseke et al., 2012). Overall, ML design is al-
ways a trade-off between representing the surroundings and
feasibility of construction and installation. The ML system
was not constructed with the depth suggested by Ninari and
Berliner (2002); however, the aim of this study was to mea-
sure NRW inputs to grasslands, for which canopy tempera-
tures are more important. We found only a small difference in
canopy temperature between the ML and the control. Thus,
we conclude that our novel ML design is suitable for quan-
tifying nocturnal NRW inputs on grasses and forbs reliably
and accurately at high temporal resolution.

4.4 NRW inputs at CH-FRU

NRW inputs occurred on approximately one-third of the
nights and were thus a frequent water input. The NRW inputs
measured by our ML system represent conservative estimates
under certain conditions, because drainage-water flow from
the ML pots was not measured. Under conditions with wa-
ter lost via drainage, NRW inputs would be underestimated.
Especially during and shortly after intensive rainfall periods,
when drainage-water flow is more likely (see Appendix F,
Fig. F1, and Table F1), the application of the ML system is
limited. During transition periods, shortly after rainfall, e.g.
during nights when the sky clears after rainfall, NRW inputs
may be underestimated. Therefore, we excluded such peri-
ods (see Eq. 1) from the analysis and limited our analysis
for dry periods. Our longer-term NRW estimates might thus
be conservative estimates if rainfall periods are included in
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Table 4. Size comparison of LMs and MLs developed and used for NRW studies.

LM or ML Depth (cm) Diameter (cm) Study object Locality Reference

ML 25 25 Grassland CH-FRU (Früebüel,
Switzerland)

This study

LM 150 112 Grassland Gumpenstein, Rolles-
broich (Austria and
Germany)

Groh et al. (2018)

LM 200 112 Cropland (Zea mays) Helmholtz Centre
for Environmental
Research – UFZ
(Germany)

Meissner et al. (2007)

LM 265 225 Herbaceous vegetation Dingxi (China) Zhang et al. (2019)

ML 3.5 6 Sand dunes Nizzana, Negev desert
(Israel)

Jacobs et al. (1999)

ML 3.5 6 Undisturbed soil with
biological soil crusts

Gurbantunggut desert
(China)

Zhang et al. (2009)

ML 3.5 8.8 Soil Knersvlakte (South
Africa)

Brown et al. (2008)

ML 3.5 14 Sand Nizzana, Negev desert
(Israel)

Heusinkveld et al. (2006)

ML 3.5 14 River sand Stellenbosch (South
Africa)

Kaseke et al. (2012)

ML 3.5 24 Gypsum soils and
lichens

Alexander Bay (South
Africa)

Maphangwa et al. (2012)

ML 3.5 24 Dwarf succulents Quaggaskop, Kn-
ersvlakte (South
Africa)

Matimati et al. (2013)

ML 6.5 25 Bare soil Central Namib Desert
(Africa)

Feigenwinter et al. (2020)

ML 9 15.2 Bare soil with biologi-
cal soil crusts and the
grass Stipa tenecissima

Balsa Blanca and El
Cautivo (Spain)

Uclés et al. (2013)

ML 15 and 55 25 and 18.6 Soil with biological soil
crusts

Wadi Mashash Exper-
imental Farm, Negev
desert (Israel)

Ninari and Berliner (2002)

the total hydrological input. At our site, drainage-water flow
from the ML pots reached low levels rather quickly after rain-
fall events (see Appendices E and F for more details). Nev-
ertheless, depending on soil characteristics and conditions,
drainage-water flow could persist for a longer time (Fig. F1
and Table F1). Under such conditions, the ML system pro-
vides conservative estimates of NRW inputs, because we set
NRW input to 0 mm when there is rainfall and/or drainage
flow percolating out of the soil monolith. A possible mod-
ification of the ML system to also quantify such drainage
flow accurately is suggested in Appendix E, with an addi-
tional sensor as indicated in Fig. 1b:p. We used three outlets

(Fig. 1b:j) to ascertain that drainage is not hindered, but if a
sensor to quantify drainage is added, the ML pot should only
have one drainage hole with a sensor, from which reliable
quantitative estimates of drainage losses can be obtained.

NRW inputs were especially high under conditions when
rainfall was absent, e.g. in April, the month with the low-
est rainfall. NRW inputs were not influenced by potential
NRW input duration, and thus there was also a high prob-
ability of NRW inputs occurring during summer months, the
main growth period of temperate grasses and forbs. In fact,
the monthly average NRW inputs were similar to the NRW
inputs that were measured in spring and autumn months,
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when NRW inputs are expected to be highest. This indicates
a high ecohydrological relevance of NRW inputs for temper-
ate grassland ecosystems, especially during hot and dry pe-
riods. However, the effects of these frequent NRW inputs on
plant–water status still have to be investigated.

Besides studying the effects of NRW inputs on temper-
ate grassland species during hot days with low soil mois-
ture, a special focus should be directed to the effects of
NRW inputs during periods with high soil moisture, when
no soil water stress is present. NRW inputs could be bene-
ficial even under such conditions, when simultaneously at-
mospheric demand is high (high energy input, high vapour
pressure deficit). NRW inputs could reduce leaf temperatures
by the re-evaporative cooling effect and thereby reduce water
stress during early morning hours and consequently increase
productivity (Dawson and Goldsmith, 2018). However, leaf
wetting by NRW inputs could also be disadvantageous dur-
ing periods with no soil water stress. Leaves covered by water
droplets from NRW inputs could show reduced gas exchange
due to lower gas diffusivity through the water layer. Thus, the
development of the ML system and measurement of NRW
inputs with high accuracy are crucial steps to address ecohy-
drological processes, but further investigations are necessary
to understand physiological effects on grasslands.

5 Summary and conclusions

The aim of this study was to develop a high-accuracy ML
system for the quantification of NRW inputs that overcomes
existing drawbacks. The ML system comprised a compar-
atively large and deep ML pot in the size class of 25 cm
diameter×25 cm depth in combination with an unprece-
dented weighing accuracy. This ML size allowed natural
plant growth, and such a ML system can therefore be used in
different ecosystems with most short- to mid-sized statured
grasses and forbs or similar vegetation up to ca. 40 cm. Ancil-
lary sensors allowed differentiation among different types of
NRW inputs. Our study shows that the ML system represents
natural conditions very well. The plant height was not signif-
icantly different between ML pots and the control (surround-
ings). Plant canopy temperatures of ML pots were close to
canopy temperatures of the surroundings during a noctur-
nal period when NRW input took place. However, additional
continuous canopy temperature measurements in follow-up
studies could allow us to more clearly distinguish dew for-
mation from water vapour adsorption and to identify whether
canopy temperature drops below dew-point temperature. If
this is not the case and other factors like rainfall and fog can
be excluded, a weight increase might then be related to water
vapour adsorption. Furthermore, canopy temperature mea-
surements would clarify whether a leaf wetness sensor alone
is sufficient to distinguish between dew and water vapour ad-
sorption events. Soil temperatures were higher in ML pots,
especially during the day. This could influence the hydraulic

characteristics of soil water and the heat balance of the soil
and in consequence lead to biased latent and sensible heat
fluxes. Thus, further ML studies should primarily focus on
getting rid of soil temperature differences between ML pots
and the surrounding soil. In addition, the ML system could
be further improved by adding water flow or water droplet
sensors at the ML pot outlets to measure drainage-water flow
(see Appendix E), with the goal of avoiding underestimation
of NRW inputs shortly after intensive rainfall events or dur-
ing soil conditions when drainage-water flow persists for a
longer time (see Appendix F). With our ML system, we were
able to resolve mass changes on a 15 kg pot with an accuracy
of±0.25 g, which corresponds to±0.005 mm of water input.
This accuracy allows determination of typical water gains by
dew, hoar frost, fog, rime, or water vapour adsorption of the
order of 0.021 to 0.4 mm in a single night. The study revealed
that NRW inputs occurred frequently and provided an aver-
age of all NRW events of 0.12 mm of water. Such quanti-
tative estimates will be essential for assessing the role that
NRW inputs might have in temperate grasslands during sum-
mer drought conditions. However, longer-term NRW input
measurements would allow us to see whether the seasonal
patterns of NRW inputs are constant over time or whether
they are influenced by weather conditions and thus vary from
season to season. Moreover, the effects of NRW inputs on
plant physiology in grassland ecosystems still have to be elu-
cidated more carefully to assess the importance of such water
inputs during ongoing climate change such as projected pro-
longed heat periods in the months of main vegetation growth.
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Appendix A: Location map

Figure A1. (a) The red dot indicates the location of the CH-FRU site within the Swiss borders (blue). The black dots indicate the cities of
Zurich, Bern, and Lucerne. Map tiles by © Stamen Design, under CC BY 3.0. Data by © OpenStreetMap, under ODbL. (b) Aerial photograph
taken with a drone of the CH-FRU site. On the left of the fenced area the three MLs are visible.
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Appendix B: Installation procedure and soil monolith
preparation

To retrieve an undisturbed soil monolith with intact grass
vegetation, we used an empty ML pot that was placed up-
side down at the place of interest from where the monolith
was to be retrieved. First, we trenched the soil with a long
spade around the ML pot. Then we removed the soil around
the ML pot with small shovels, which allowed the ML pot
to be pressed into the soil. We continued until the top of the
ML pot was at ground level. Finally, the contact with the soil
could be cut at the bottom with a spade. The reversed soil
monolith was carefully taken out from the ML pot, and three
people collaborated to transfer it to a second ML pot to be
upright again. The ML pot was then ready for installation on
the weighing platform. The weighing platform was levelled
out by adjusting the three adjustable standing feet with a pro-
longed hexagon socket wrench. The final position was fixed
with the counter nut by using an open-end wrench.

Figure B1. Photographs of single ML pots during (a–e) and after (f–g) installation at CH-FRU. (a) First step to retrieve an undisturbed soil
monolith. An empty ML pot was placed upside down, and then the soil around the ML pot was removed with small shovels. Afterwards the
ML pot was gently pressed into the soil. (b) The contact of the monolith with the soil was cut at the bottom with a spade. (c) The monolith
was removed from the ML pot and carefully transferred to a second ML pot. (d) Monolith ready for installation at the weighing platform.
(e) Empty ML pot on a weighing platform. The weighing platform is standing on the adjustable support feet. (f) Lateral view of an installed
ML. (g) Top view of an installed ML.
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Appendix C: Data collection, storage, and delivery

Data from all sensors were collected by an Arduino-
type MEGA 2560 PRO microcontroller (RobotDyn, Zhuhai,
China), which was installed on a custom-made printed circuit
board (PCB). The voltage signal coming from the load cells
was digitized by a 24-bit analogue-to-digital converter for
weigh scales (LM711, SparkFun Electronics, Niwot, USA).
For each load cell, a separate analogue-to-digital converter
was used. After collecting and processing the data of the load
cells and the other sensors, the data were stored as 1 min aver-
ages on a micro-SD card (MicroSD 16 GB, Kingston Tech-
nology Company Inc., Fountain Valley, USA) inserted into
the slot of a micro-SD breakout board (MicroSD card break-
out board 254, Adafruit Industries, New York, USA). Then,
the data were transferred to our data server every 5 min by
using Internet of things (IoT) technology. To send the data,
a breakout board (RFM9X LoRa Radio, Adafruit Industries,
New York, USA) connected to the open TheThingsNetwork
was used. TheThingsNetwork uses a long-range wide-area
network (LoRaWAN) protocol. A real-time clock (DS3231
for PI, HiLetgo, Shenzhen, China) was installed on the PCB
to obtain exact timestamps.

Appendix D: Load cell data low-pass filtering

Load cell data are prone to noise. To cancel the noise re-
lated to temperature fluctuations, the load cells used four
strain gauges in a Wheatstone bridge configuration. Thus,
noise visible in the data mostly originated from electrical
noise, fluctuations in wind speed, and atmospheric pressure.
To minimize this noise, we used a data-filtering algorithm on
the microcontroller. The microcontroller measured the load
cells nominally at 3.3 Hz in combination with the retrieval
of measurements from other sensors. The raw load cell data
were then stored in an averaging window (ring memory) with
a size of 100 values, where the oldest values were replaced
by the newest ones. The upper and lower 15 % of these val-
ues within the averaging window were discarded, and the
remaining values were averaged. From the low-pass-filtered
signal, 1 min means were stored on the micro-SD card. For
data delivery via IoT, these mean values were further aver-
aged over 5 min intervals to comply with the allowed IoT
bandwidth for data transfers.

Appendix E: Drainage-water flow of ML pots

The ML pots were designed to avoid stagnation of water that
potentially could impede plant growth by creating anaero-
bic conditions in the rooting zone. For that reason, a passive
drainage-water flow path allowed drainage of excess water
beyond field capacity. However, to further develop this ML
system and use it during and shortly after rainfall periods
or to improve the measurements during other periods when

the soil cannot hold excessive water, it is recommended to
quantify drainage-water flow. This is because NRW inputs
increase the mass of ML pots, whereas drainage-water flow
out of the ML pots reduces their mass. Therefore, if drainage-
water flow during NRW inputs is non-zero, this would lead
to an underestimation of the NRW inputs as long as no addi-
tional sensor is added to the ML pots to quantify this drainage
flow.

To assess the required specification of such an additional
sensor and to quantify how long drainage-water flow of the
ML system persists, we investigated three consecutive events
(see Table E1):

1. a high-intensity, high-amount, and high-duration rain-
fall event (Fig. E1a, event 1),

2. an evapotranspiration event from sunrise till sunset
(Fig. E1a, event 2), and

3. a NRW input event (Fig. E1a, event 3).

During event 1, the total amount of rainfall was
128.5 mm. The highest hourly rainfall intensity occurred on
28 July 2019 at 10:00 UTC with 16.8 mm h−1, which is
classified as “heavy rain” > 4 mm h−1 (Met Office, 2012).
ML mass increased as soon as the rainfall event started
and increased at the same rate during the rainfall input till
ca. 11:00 UTC. Afterwards the rate of ML mass change,
i.e. the slope of the ML mass increase, flattened compared
to the cumulative curve of rainfall input: from the begin-
ning of the rainfall event till sunset, the water input was
101.6 mm, whereas the ML system showed an increase of
only 36.2 mm. The difference of 65.4 mm most likely corre-
sponds to the losses from drainage-water flow because of soil
saturation during such high-intensity rainfall with excessive
water being lost. However, WFPS did not reach the 100 %
mark (Fig. E1b). Note that the 100 % WFPS reference was
determined from the full year of measurements and is thus
relative to spring conditions. Therefore, it is not surprising
that this mark was never reached during dry summers, even
after heavy precipitation. During such a high-rainfall water
input, drainage-water flow of the ML system was of the or-
der of 64 % of the rainfall amount. However, water might not
only be lost via drainage water flow but also by evapotran-
spiration during day-time. To quantify solely drainage water
loss, the night-time period (when no evapotranspiration is ex-
pected) was further investigated. We separated the night-time
period into period ev1a, when rainfall occurred, and period
ev1b, when no rainfall occurred (Fig. E1a, grey-shaded peri-
ods).

During the ev1a period (Fig. E1a, period ev1a), from sun-
set till the end of the rainfall event, the water input was
26.9 mm, whereas the ML system showed only an increase of
0.3 mm. The difference of 26.6 mm (98 %) might be caused
by losses from drainage-water flow. The water loss rate was
3.6 mm h−1. The 34 % higher drainage water loss compared

Hydrol. Earth Syst. Sci., 26, 91–116, 2022 https://doi.org/10.5194/hess-26-91-2022



A. Riedl et al.: High-accuracy weighing ML system for long-term measurements of NRW inputs to grasslands 109

Table E1. Start, end, and duration of the three events used to assess the duration of drainage-water flow from ML pots and the specification
of a drainage-water flow sensor.

Event Start End Duration

Event 1 28 July 2019, 06:03 UTC 29 July 2019, 02:27 UTC 20 h and 24 min
Event 2 29 July, 04:00 UTC 29 July, 19:02 UTC 15 h and 2 min
Event 3 29 July, 21:18 UTC 30 July, 06:17 UTC 8 h and 41 min

Figure E1. (a) Cumulative rainfall and ML mass during a rainfall
(event 1), an evapotranspiration (event 2), and a NRW (event 3)
event, from 28 July, 00:00, till 30 July, 12:00 UTC. The grey-shaded
areas indicate night-time duration (sunset till sunrise), the unshaded
areas day-time duration (sunrise till sunset). The ML mass and the
cumulative rainfall increased at the same rate until the ML pots were
almost saturated (indicated with an arrow). Afterwards there was
more drainage water lost from the ML pots than water gained. Dur-
ing the ev1a period (from sunset till the end of rainfall in event1),
a rainfall water input of 26.9 mm was observed, but the ML sys-
tem showed a water gain of only 0.3 mm, and the difference be-
tween the two measurements corresponds to the (unmeasured) loss
via drainage-water flow. During the ev1b period (from the end of
rainfall till sunrise in event1), there was no rainfall water input, but
the ML system showed a water loss of 0.07 mm. During event 2
there was a water loss by evapotranspiration of 2.25 mm. During
event 3 (the following night), there was no water loss but instead
a water gain by NRW input of 0.28 mm. (b) WFPS inside the ML
pots and the control, measured at a depth of 15 cm. WFPS reached
high values after the rainfall event.

to the day-time period might be due to the lower water hold-
ing capacity of the more saturated soil. During the ev1b
period, starting after the ev1a period till sunrise (Fig. E1a,
period ev1b), no further water gains and losses were ex-
pected, because evapotranspiration was absent during noctur-
nal conditions with low average wind speed (< 0.6 m s−1).
During period ev1b, the ML system showed a water loss
of 0.07 mm, which corresponds to an average water loss of

0.05 mm h−1. This water loss can clearly be attributed to
drainage-water flow. The rate of drainage-water loss was
however strongly reduced (by 98 %) compared to the ev1a
period. Thus, drainage-water flow of the ML system reached
very low values within only 1 h and 33 min after this extraor-
dinarily high rainfall, showing that even the current ML sys-
tem can handle high drainage-water flows well.

During event 2 with no rain but evapotranspiration, the ML
system indicated a water loss of 2.25 mm, which corresponds
to an average evapotranspiration rate of 0.15 mm h−1. Poten-
tially a drainage-water loss could have occurred in the morn-
ing hours on 29 July. However, the drainage-water loss most
likely was< 0.05 mm h−1, similar to the drainage-water flow
rate during the ev1b period, just before event 2, shortly af-
ter the rainfall event. Since no new rain fell, we expect
the drainage-water flow rate to decrease with time. In fact,
1 h before sunset, a further reduced ML mass loss of only
0.005 mm h−1 was recorded. This very low water loss can
be attributed either to drainage-water loss or to evapotranspi-
ration as it occurred during day-time. We conclude that the
drainage-water loss could at maximum be 0.005 mm h−1 but
was most likely lower due to concurrent evapotranspiration.
Thus, the ML system readings were no longer significantly
affected by potential drainage-water flow after only 15 h af-
ter rainfall.

During event 3, a very large dew event of 0.28 mm oc-
curred, which was above the 95th percentile of all NRW
events during the 12-month period considered in this study.
Such a large dew event is unlikely to be recorded under con-
ditions when at the same time a large drainage-water flow
would also have occurred. If this had happened, the dew wa-
ter input should have been lower. Thus, it is very unlikely that
drainage-water flow still occurred during that dew event.

Overall, these three events showed that drainage flow oc-
curred under rainfall conditions and shortly after rainfall
events. The current ML system handled large drainage flows
well and effectively; i.e. water drained quickly, avoiding
long-lasting “memory” effects. Drainage flow was lower than
0.005 mm h−1 1 h before sunset during event 2, only 15 h af-
ter the last rainfall. However, at other sites with different soil
characteristics, different drainage flow patterns might occur
(see Appendix F), and our ML system might therefore pro-
vide conservative NRW inputs and accentuated evapotran-
spiration rates. If the current ML system were to be used for
high-rainfall conditions, potential drainage-water flow needs
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to be quantified using additional sensors. Without such ad-
ditional sensors, NRW inputs could be underestimated if the
NRW input occurs shortly after a rainfall event and drainage-
water flow indeed occurs. Consequently, the current ML sys-
tem is expected to give conservative estimates of NRW in-
puts, especially if NRW inputs happen directly after a rainfall
event.

Potential approaches to quantify the small amounts of
drainage flow from a ML system are by installing a wa-
ter flow sensor or a drip counter at the ML pot drainage-
water outlets. The maximum rainfall intensity reported above
was 16.8 mm h−1. With a ML pot diameter of 25 cm (see
Sect. 2.2.1 of the main text) and the extreme assumption that
100 % of precipitation contributes to drainage-water flow,
such an addition must be able to process 13.7 mL min−1. If
the maximum drainage-water flow is however only expected
to be < 15 % of precipitation, then a sensor capable of mea-
suring up to 2000 µLmin−1 would be an adequate choice.

We recommend using a water flow sensor or a drip counter.
One option is a liquid flow sensor (SLF3S-0600F, Sensirion
AG, Staefa, Switzerland) that is capable of detecting low flow
rates of up to ±2000 µLmin−1. A drip counter can be con-
structed with two gold electrodes attached to the ML pots’
drainage-water holes with a small gap. If a water droplet
passes the gap, an electric circuit is closed which can be
counted as a water drop by a data logger (Meter Group AG,
2020). Calibration of a drip counter is recommended for
accurate measurements of drainage-water amount. Sensors
measuring drainage-water flow would allow us to correct for
drainage-water outflow and would thereby increase the us-
ability of the current ML system for times during and shortly
after rainfall events.

Appendix F: Duration of drainage-water flow after
heavy rainfall (saturated soils)

Drainage-water flow was not quantified in the application
of the ML system described here, because the goal was to
quantify NRW inputs during dry conditions without saturated
soils. To estimate the duration of drainage-water flow from
the bottom of the ML pot, we used the approach by Zhan et
al. (2016) with modifications following Freeze and Cherry
(1979) and model input parameters from Rawls et al. (1991)
listed in Table F1. The full equation set used here is provided
in what follows.

The relation between the unsaturated hydraulic conduc-
tivity k, the volumetric water content θ , and the porewater
pressure head ψ (matrix potential) can be described by the
following formula:

∂

∂z∗

(
k
∂ψ

∂z∗

)
+ cos(γ )

∂k

∂z∗
=
∂θ

∂t
, (F1)

where γ is the slope angle (0◦ with our ML), z∗ is the axis
perpendicular to the slope, and t is time. Note that we are

only considering the case where ψ < ψae. In the case where
ψ ≥ ψae, both variables kθ are constant.

In order to solve this equation, we can substitute k =
kse

α(ψ+ψae) and
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α(ψ+ψae) (F2)

and use the product rule
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To solve this numerically, we assume a uniform saturated
ground at t = 0 given by ψ (z∗,0)=−ψae and ∂ψ

∂z∗
= 0 for

all z∗.
Moreover, we impose the boundary conditions ∂ψ

∂z∗
= 0 at

z∗ = 0 and ∂ψ
∂z∗
= cos(γ )q at the top z∗ =H∗, where q is

the rainfall intensity. Here we choose q = 0 to look at the
situation after long rainfall events.

We simulated the drying of the 25 cm-deep soil monolith
using a finite-difference approach with 1z∗ = 0.01 m and
1t = 10 min. The procedure carried out at each timestep was
(1) to compute the drainage-water loss across the bottom of
the soil monolith Per using Zhan et al.’s (2016) equation,

Per = k
′kscosγ, (F5)

where k′ is the dimensionless ratio of the unsaturated hy-
draulic conductivity normalized by its value at saturation
(ks), k′ = k/ks, and γ is the slope angle. For the simulations
we assumed γ = 0◦; thus, in case of a sloping surface, the
drying of the soil monolith takes less time (td) than what we
present in Fig. F1.

(2) This amount of water was removed from the lowest soil
layer θ(z∗ = 0). (3) Then the updated soil water content pro-
file θ(z∗) was converted to an updated pressure head profile
ψ (z∗) using the relationship in Eq. (F2) solved for ψ ,

ψ =
1
α

ln
θ − θr

θs− θr−ψae
. (F6)

(4) Then the drainage flow rate for all soil layers was com-
puted with Eq. (F5), and the respective amount was trans-
ferred from each layer to its lower adjacent layer. (5) Then

Hydrol. Earth Syst. Sci., 26, 91–116, 2022 https://doi.org/10.5194/hess-26-91-2022



A. Riedl et al.: High-accuracy weighing ML system for long-term measurements of NRW inputs to grasslands 111

Figure F1. Estimated duration of percolation (td) at the bottom of
a 25 cm soil monolith in a ML for various soil types. Bars show
the best estimate for each soil type for completely saturated soils,
and whiskers show the range that results when the parameter range
given by Rawls et al. (1991) in Table F1 is used. Symbols show the
reduced td when the average water content of the soil monolith is
90 % of its saturation (yellow circles), 80 % (green circles), or 70 %
(blueish circles). Because the system is highly non-linear, the pa-
rameters given in Table F1 do not result in the full range of td, and
hence we added the maximum that can be obtained with intermedi-
ate model parameters for each soil type (dashed whiskers) and the
70 %, 80 %, and 90 % two-sided confidence intervals (grey bars of
varying width; see legend) for all td resulting from combinations of
parameter values within the bandwidth given in Table F1.

the θ(z∗) profile was converted to ψ(z∗) and the change over
time from Eq. (F3) was added, and then the θ(z∗) profile was
updated accordingly before the next timestep was simulated.

The threshold for the end of the drainage period was set to
one drop of water per day percolating out of the soil mono-
lith’s bottom (0.05 mm d−1, or 0.35 µm at the 1t = 10 min
timestep).

Following Timlin et al. (2004) we used the Brooks–Corey
pore size distribution λ tabulated in Table F1 in combination
with the effective porosity φe (m3 m−3) defined as the dif-
ference between total porosity φ (m3 m−3) minus the water
retained in the soil matrix at a suction pressure of −33 kPa
(θ33; m3 m−3), φe = φ− θ33,

ks = 0.000259× 100.6λ
·φ2.54

e . (F7)

The results for different soil textures are shown in Fig. F1.
Given the initial condition that the soil monolith is com-
pletely water saturated at t = 0, our results show rather con-
servative estimates of how long water is percolating out of
the ML pot after heavy rainfall or long rainfall that saturated
the entire soil volume (which typically takes a few days to a
week with precipitation).

Most soils on average fall dry within less than 24 h; the
absolute maximum was modelled for silty clay, which can
produce drainage for up to 41.5 h. At the sandy end short
maximum td are realistic because of easy drainage of soils
with high sand content, whereas the results on the clay side
show a range from no drainage up to 30.0–41.5 h that can
be explained by the high capillary retention of water that
retains more water inside the soil volume without generat-
ing drainage-water flow. The modelling however is based on
a traditional micropore flow approach, whereas macropore
flow (e.g. Alaoui and Eugster, 2004) is not explicitly repre-
sented in the model. However, the range of parameter esti-
mates in Table F1 seems to also include macropore flow via
parameter combinations that result in td = 0 h, which is most
likely not realistic but should be interpreted that in the pres-
ence of macropore flow (wormholes, dry cracks in clay), the
drainage is restricted to very short intervals even after soils
were fully saturated. Thus, in reality most but not all soils
will most likely not produce measurable drainage after 1 d or
so. Adding a sensor to measure drainage-water flux (item q
in Fig. 1b) is recommended if in contrast to this study the
entire hydrological soil water budget shall be quantified and
not only the NRW gain during dry and drought periods.
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Appendix G: NRW inputs vs. night-time duration

Figure G1. Average monthly NRW input with average monthly
NRW input duration and average night duration (potential NRW
input duration).
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