Articles | Volume 25, issue 7
https://doi.org/10.5194/hess-25-4081-2021
https://doi.org/10.5194/hess-25-4081-2021
Research article
 | 
14 Jul 2021
Research article |  | 14 Jul 2021

Assimilation of probabilistic flood maps from SAR data into a coupled hydrologic–hydraulic forecasting model: a proof of concept

Concetta Di Mauro​​​​​​​, Renaud Hostache, Patrick Matgen, Ramona Pelich, Marco Chini, Peter Jan van Leeuwen, Nancy K. Nichols, and Günter Blöschl

Related authors

The effects of assimilating a sub-grid-scale sea ice thickness distribution in a new Arctic sea ice data assimilation system
Nicholas Williams, Nicholas Byrne, Daniel Feltham, Peter Jan Van Leeuwen, Ross Bannister, David Schroeder, Andrew Ridout, and Lars Nerger
The Cryosphere, 17, 2509–2532, https://doi.org/10.5194/tc-17-2509-2023,https://doi.org/10.5194/tc-17-2509-2023, 2023
Short summary
Cooperation in a transboundary river basin: a large-scale socio-hydrological model of the Eastern Nile
Mohammad Ghoreishi, Amin Elshorbagy, Saman Razavi, Günter Blöschl, Murugesu Sivapalan, and Ahmed Abdelkader
Hydrol. Earth Syst. Sci., 27, 1201–1219, https://doi.org/10.5194/hess-27-1201-2023,https://doi.org/10.5194/hess-27-1201-2023, 2023
Short summary
Exploring tracer information in a small stream to improve parameter identifiability and enhance the process interpretation in transient storage models
Enrico Bonanno, Günter Blöschl, and Julian Klaus
Hydrol. Earth Syst. Sci., 26, 6003–6028, https://doi.org/10.5194/hess-26-6003-2022,https://doi.org/10.5194/hess-26-6003-2022, 2022
Short summary
Three hypotheses on changing river flood hazards
Günter Blöschl
Hydrol. Earth Syst. Sci., 26, 5015–5033, https://doi.org/10.5194/hess-26-5015-2022,https://doi.org/10.5194/hess-26-5015-2022, 2022
Short summary
Agricultural intensification vs. climate change: what drives long-term changes in sediment load?
Shengping Wang, Borbala Szeles, Carmen Krammer, Elmar Schmaltz, Kepeng Song, Yifan Li, Zhiqiang Zhang, Günter Blöschl, and Peter Strauss
Hydrol. Earth Syst. Sci., 26, 3021–3036, https://doi.org/10.5194/hess-26-3021-2022,https://doi.org/10.5194/hess-26-3021-2022, 2022
Short summary

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Remote Sensing and GIS
Hydrological regime of Sahelian small waterbodies from combined Sentinel-2 MSI and Sentinel-3 Synthetic Aperture Radar Altimeter data
Mathilde de Fleury, Laurent Kergoat, and Manuela Grippa
Hydrol. Earth Syst. Sci., 27, 2189–2204, https://doi.org/10.5194/hess-27-2189-2023,https://doi.org/10.5194/hess-27-2189-2023, 2023
Short summary
Deriving transmission losses in ephemeral rivers using satellite imagery and machine learning
Antoine Di Ciacca, Scott Wilson, Jasmine Kang, and Thomas Wöhling
Hydrol. Earth Syst. Sci., 27, 703–722, https://doi.org/10.5194/hess-27-703-2023,https://doi.org/10.5194/hess-27-703-2023, 2023
Short summary
Long-term water clarity patterns of lakes across China using Landsat series imagery from 1985 to 2020
Xidong Chen, Liangyun Liu, Xiao Zhang, Junsheng Li, Shenglei Wang, Yuan Gao, and Jun Mi
Hydrol. Earth Syst. Sci., 26, 3517–3536, https://doi.org/10.5194/hess-26-3517-2022,https://doi.org/10.5194/hess-26-3517-2022, 2022
Short summary
Remote Quantification of the Trophic Status of Chinese Lakes
Sijia Li, Shiqi Xu, Kaishan Song, Tiit Kutser, Zhidan Wen, Ge Liu, Yingxin Shang, Lili Lyu, Hui Tao, Xiang Wang, Lele Zhang, and Fangfang Chen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-91,https://doi.org/10.5194/hess-2022-91, 2022
Revised manuscript accepted for HESS
Short summary
Changes in glacial lakes in the Poiqu River basin in the central Himalayas
Pengcheng Su, Jingjing Liu, Yong Li, Wei Liu, Yang Wang, Chun Ma, and Qimin Li
Hydrol. Earth Syst. Sci., 25, 5879–5903, https://doi.org/10.5194/hess-25-5879-2021,https://doi.org/10.5194/hess-25-5879-2021, 2021
Short summary

Cited articles

Andreadis, K. M., Clark, E. A., Lettenmaier, D. P., and Alsdorf, D. E.: Prospects for river discharge and depth estimation through assimilation of swath-altimetry into a raster-based hydrodynamics model, Geophys. Res. Lett., 34, L10403, https://doi.org/10.1029/2007GL029721, 2007. a, b
Arulampalam, M. S., Maskell, S., Gordon, N., and Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE Trans. Sig. Process., 50, 174–188, https://doi.org/10.1109/78.978374, 2002. a
Bates, P. and Roo, A. D.: A simple raster-based model for flood inundation simulation, J. Hydrol., 236, 54–77, https://doi.org/10.1016/S0022-1694(00)00278-X, 2000. a, b
Bates, P. D., Horritt, M. S., and Fewtrell, T. J.: A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling, J. Hydrol., 387, 33–45, https://doi.org/10.1016/j.jhydrol.2010.03.027, 2010. a
Bates, P., Horritt, M., Wilson, M., Hunter, N., Fewtrell, T., Trigg, M., Neal, J., de Almeida, G., and Sampson, C.: LISFLOOD-FP shareware version, Code release 5.9.6, available at: http://www.bristol.ac.uk/geography/research/hydrology/models/lisflood, last access: 5 July 2021. a
Download
Short summary
This study evaluates how the sequential assimilation of flood extent derived from synthetic aperture radar data can help improve flood forecasting. In particular, we carried out twin experiments based on a synthetically generated dataset with controlled uncertainty. Our empirical results demonstrate the efficiency of the proposed data assimilation framework, as forecasting errors are substantially reduced as a result of the assimilation.