Articles | Volume 25, issue 7
https://doi.org/10.5194/hess-25-4081-2021
https://doi.org/10.5194/hess-25-4081-2021
Research article
 | 
14 Jul 2021
Research article |  | 14 Jul 2021

Assimilation of probabilistic flood maps from SAR data into a coupled hydrologic–hydraulic forecasting model: a proof of concept

Concetta Di Mauro​​​​​​​, Renaud Hostache, Patrick Matgen, Ramona Pelich, Marco Chini, Peter Jan van Leeuwen, Nancy K. Nichols, and Günter Blöschl

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Reconsider after major revisions (further review by editor and referees) (21 Feb 2021) by Christa Kelleher
AR by Concetta Di Mauro on behalf of the Authors (04 Apr 2021)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (12 Apr 2021) by Christa Kelleher
RR by Anonymous Referee #3 (20 May 2021)
ED: Publish as is (20 May 2021) by Christa Kelleher
AR by Concetta Di Mauro on behalf of the Authors (30 May 2021)
Download
Short summary
This study evaluates how the sequential assimilation of flood extent derived from synthetic aperture radar data can help improve flood forecasting. In particular, we carried out twin experiments based on a synthetically generated dataset with controlled uncertainty. Our empirical results demonstrate the efficiency of the proposed data assimilation framework, as forecasting errors are substantially reduced as a result of the assimilation.