Articles | Volume 25, issue 1
https://doi.org/10.5194/hess-25-237-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-237-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hillslope and groundwater contributions to streamflow in a Rocky Mountain watershed underlain by glacial till and fractured sedimentary bedrock
Sheena A. Spencer
CORRESPONDING AUTHOR
Department of Renewable Resources, University of Alberta, Edmonton,
T6G 2G7, Canada
Axel E. Anderson
Department of Renewable Resources, University of Alberta, Edmonton,
T6G 2G7, Canada
Alberta Agriculture and Forestry, Government of Alberta, Edmonton, T5K 1E4, Canada
Uldis Silins
Department of Renewable Resources, University of Alberta, Edmonton,
T6G 2G7, Canada
Adrian L. Collins
Sustainable Agriculture Sciences, Rothamsted Research, North Wyke,
Okehampton, EX20 2SB, United Kingdom
Related authors
No articles found.
Adrian L. Collins, Des E. Walling, Valentin Golosov, Paolo Porto, Allen C. Gellis, Yuri Jaques da Silva, and Sergey Chalov
Proc. IAHS, 385, 489–497, https://doi.org/10.5194/piahs-385-489-2024, https://doi.org/10.5194/piahs-385-489-2024, 2024
Cited articles
AGS – Alberta Geologic Survey: Bedrock geology of Alberta (GIS data),
available at: https://ags.aer.ca/publication/dig-2004-0033 (last access: February 2014), 2004.
Ali, G. A., Roy, A. G., Turmel, A.-C., and Courchesne, F.: Source-to-stream
connectivity through end-member mixing analysis, J. Hydrol., 392, 119–135,
https://doi.org/10.1016/j.jhydrol.2010.07.049, 2010.
Andres, D., Van Der Vinne, G., and Sterenberg, G.: Hydrologic, hydrogeologic, thermal, sediment and channel regimes of the Tri-Creeks experimental Basin, Rep. No. SWE-87/01, Vol. 1, Alberta Research Council, Edmonton, AB, 418 pp., 1987.
Barthold, F. K., Tyralla, C., Schneider, K., Vaché, K. B., Frede, H. G.,
and Breuer, L.: How many tracers do we need for end member mixing analysis (EMMA)? a sensitivity analysis, Water Resour. Res., 47, 1–14,
https://doi.org/10.1029/2011WR010604, 2011.
Bearup, L. A., Maxwell, R. M., Clow, D. W., and McCray, J. E.: Hydrological
effects of forest transpiration loss in bark beetle-impacted watersheds, Nat. Clim. Change, 4, 481–486, https://doi.org/10.1038/nclimate2198, 2014.
Blumstock, M., Tetzlaff, D., Malcolm, I. A., Neutzmann, G., and Soulsby, C.:
Baseflow dynamics: Multi-tracer surveys to assess variable groundwater
contributions to montane streams under low flows, J. Hydrol., 527, 1021–1033, https://doi.org/10.1016/j.jhydrol.2015.05.019, 2015.
Boon, S.: Snow accumulation following forest disturbance, Ecohydrology, 5, 279–285, https://doi.org/10.1002/eco.212, 2012.
Brown, A. E., Zhang, L., McMahon, T. A., Western, A. W., and Vertessy, R. A.: A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation, J. Hydrol., 310, 28–61, https://doi.org/10.1016/j.jhydrol.2004.12.010, 2005.
Burles, K. and Boon, S.: Snowmelt energy balance in a burned forest plot,
Crowsnest Pass, Alberta, Canada, Hydrol. Process., 25, 3012–3029,
https://doi.org/10.1002/hyp.8067, 2011.
Burns, D. A., Murdoch, P. S., Lawrence, G. B., and Michel, R. L.: Effect of
groundwater springs on concentrations during summer in Catsill Mountain streams, Water Resour. Res., 34, 1987–1996, 1998.
Christophersen, N. and Hooper, R. P.: Multivariate analysis of stream water
chemical data: the use of principal components analysis for the end-member
mixing problem, Water Resour. Res., 28, 99–107, https://doi.org/10.1029/91WR02518, 1992.
Clow, D. W., Schrott, L., Webb, R., Campbell, D. H., Torizzo, A., and Dornblaser, M.: Ground water occurrence and contributions to streamflow in
an alpine catchment, Colorado front range, Groundwater, 41, 937–950, 2003.
Collins, A. L., Pulley, S., Foster, I. D. L., Gellis, A., Porto, P., and
Horowitz, A. J.: Sediment source fingerprinting as an aid to catchment management: A review of the current state of knowledge and a methodological
decision-tree for end-users, J. Environ. Manage., 194, 86–108,
https://doi.org/10.1016/j.jenvman.2016.09.075, 2017.
Correa, A., Breuer, L., Crespo, P., Célleri, R, Feyen, J., Birkel, C.,
Silva, C., and Windhorst, D.: Spatially distributed hydro-chemical data with
temporally high-resolution is needed to adequately assess the hydrological
functioning of headwater catchments, Sci. Total Environ., 651, 1613–1626,
https://doi.org/10.1016/j.scitotenv.2018.09.189, 2019.
Covino, T. P. and McGlynn, B. L.: Stream gains and losses across a mountain-to-valley transition: impacts on watershed hydrology and stream water chemistry, Water Resour. Res., 43, W10431, https://doi.org/10.1029/2006WR005544,
2007.
Cowie, R. M., Knowles, J. F., Dailey, K. R., Williams, M. W., Mills, T. J., and Molotch, N. P.: Sources of streamflow along a headwater catchment
elevational gradient, J. Hydrol., 549, 163–178, https://doi.org/10.1016/j.jhydrol.2017.03.044, 2017.
Creed, I. F. and Band L. E.: Export of nitrogen from catchments with a temperate forest: evidence for a unifying mechanism regulated by variable
source area dynamics, Water Resour. Res., 34, 3105–3120, 1998.
Dahlke, H. E., Easton, Z. M., Lyon, S. W., Walter, M. T., Destouni, G., and
Steenhuis, T. S.: Dissecting the variable source area concept – subsurface
flow pathways and water mixing processes in a hillslope, J. Hydrol., 420,
125–141, https://doi.org/10.1016/j.jhydrol.2011.11.052, 2012.
Dixon, D., Boon, S., and Silins, U.: Watershed-scale controls on snow accumulation in a small montane watershed, southwestern Alberta, Canada, Hydrol. Process., 28, 1294–1306, https://doi.org/10.1002/hyp.9667, 2014.
Evans, J. E., Prepas, E. E., Devito, K. J., and Kotak B. G.: Phosphorus dynamics in shallow subsurface waters in an uncut and cut subcatchment of a
lake on the Boreal Plain, Can. J. Fish. Aquat. Sci., 57, 60–72, 2000.
Floriancic, M. G., van Meerveld, I., Smoorenburg, M., Margreth, M., Naef, F., Kirchner, J. W., and Molnar, P.: Spatio-temporal variability in contributions to low flows in the high Alpine Poschiavino catchment, Hydrol. Process., 32, 3938–3953, https://doi.org/10.1002/hyp.13302, 2018.
Freeze, R. A. and Cherry J. A. (Eds.): Groundwater, Prentice-Hall, New Jersey, USA, 1979.
Freeze, R. A. and Witherspoon P. A.: Theoretical analysis of regional groundwater flow 2. Effect of water-table configuration and subsurface permeability variation., Water Resour. Res., 3, 623–634, 1967.
Goodbrand, A. and Anderson, A.: Hydrologic resilience of a Canadian Foothills watershed to forest harvest, in: EGU General Assembly, 17–22 April 2016, Vienna, Austria, EGU2016-10932, 2016.
Grabs, T., Bishop, K., Laudon, H., Lyon, S. W., and Seibert, J.: Riparian zone hydrology and soil water total organic carbon (TOC): implications for
spatial variability and upscaling of lateral riparian TOC exports,
Biogeosciences, 9, 3901–3916, https://doi.org/10.5194/bg-9-3901-2012, 2012.
Harder, P., Pomeroy, J. W., and Westbrook, C. J.: Hydrological resilience of a Canadian Rockies headwaters basin subject to changing climate, extreme weather, and forest management, Hydrol. Process., 29, 3905–3924,
https://doi.org/10.1002/hyp.10596, 2015.
Hjerdt, K. N., McDonnell, J. J., Seibert, J., and Rodhe, A.: A new topographic index to quantify downslope controls on local drainage, Water
Resour. Res., 40, W05602, https://doi.org/10.1029/2004WR003130, 2004.
Hoeg, S., Uhlenbrook, S., and Leibundgut, C.: Hydrograph separation in a
mountainous catchment – combining hydrochemical and isotopic tracers, Hydrol. Process., 14, 1199–1216, 2000.
Hood, J. L. and Hayashi, M.: Characterization of snowmelt flux and groundwater storage in an alpine headwater basin, J. Hydrol., 521, 482–497, https://doi.org/10.1016/j.jhydrol.2014.12.041, 2015.
Hooper, R. P.: Diagnostic tools for mixing models of stream water chemistry,
Water Resour. Res., 39, 1055, https://doi.org/10.1029/2002WR001528, 2003.
Inamdar, S.: The use of geochemical mixing models to derive runoff sources
and hydrologic flow paths, in: Forest hydrology and biogeochemistry: synthesis of past research and future directions, edited by: Levia, D. F.,
Carlyle-Moses, D., and Tanaka, T., Springer, New York, USA, 163–183,
https://doi.org/10.1007/978-94-007-1363-5, 2011.
Inamdar, S., Dhillon, G., Singh, S., Dutta, S., Levia, D., Scott, D., Mitchell, M., Van Stan, J., and McHale, P.: Temporal variation in end-member
chemistry and its influence on runoff mixing patterns in a forested,
Piedmont catchment, Water Resour. Res., 49, 1828–1844, https://doi.org/10.1002/wrcr.20158, 2013.
James, A. L. and Roulet, N. T.: Investigating the applicability of end-member mixing analysis (EMMA) across scale: a study of eight small, nested catchments in a temperate forested watershed, Water Resour. Res., 42, 1–17, https://doi.org/10.1029/2005WR004419, 2006.
Jencso, K. G., McGlynn, B. L., Gooseff, M. N., Wondzell, S. M., Bencala, K.
E., and Marshall, L.A.: Hydrologic connectivity between landscapes and streams: Transferring reach-and plot-scale understanding to the catchment scale, Water Resour. Res., 45, W04428, https://doi.org/10.1029/2008WR007225, 2009.
Jencso, K. G., McGlynn, B. L., Gooseff, M. N., Bencala, K. E., and Wondzell,
S. M.: Hillslope hydrologic connectivity controls riparian groundwater turnover: Implications of catchment structure for riparian buffering and
stream water sources, Water Resour. Res., 46, W10524, https://doi.org/10.1029/2009WR008818, 2010.
Johannessen, M. and Henriksen, A.: Chemistry of snow meltwater: changes in
concentration during melting, Water Resour. Res., 14, 615–619, 1978.
Kienzle, S. W.: A new temperature based method to separate rain and snow, Hydrol. Process., 22, 5067–5085, https://doi.org/10.1002/hyp.7131, 2008.
Langston, G., Bentley, L. R., Hayashi, M., McClymont, A., and Pidlisecky, A.: Internal structure and hydrological functions of an alpine proglacial moraine, Hydrol. Process., 25, 2967–2982, https://doi.org/10.1002/hyp.8144, 2011.
Liu, F., Williams, M. W., and Caine, N.: Source waters and flow paths in an
alpine catchment, Colorado Front Range, United States, Water Resour. Res., 40, W09401, https://doi.org/10.1029/2004WR003076, 2004.
McClymont, A. F., Hayashi, M., Bentley, L. R., Muir, D., and Ernst, E.: Groundwater flow and storage within an alpine meadow-talus complex, Hydrol. Earth Syst. Sci., 14, 859–872, https://doi.org/10.5194/hess-14-859-2010, 2010.
McGlynn, B. L. and Seibert, J.: Distributed assessment of contributing area
and riparian buffering along stream networks, Water Resour. Res., 39, 1082, https://doi.org/10.1029/2002WR001521, 2003.
McGlynn, B. L., McDonnell, J. J., Shanley, J. B., and Kendall, C.: Riparian
zone flowpath dynamics during snowmelt in a small headwater catchment, J.
Hydrol., 222, 75–92, https://doi.org/10.1016/S0022-1694(99)00102-X, 1999.
McGlynn, B. L., McDonnell, J. J., and Brammer, D. D.: A review of the evolving perceptual model of hillslope flowpaths at the Maimai catchments, New Zealand, J. Hydrol., 257, 1–26, 2002.
McNamara, J. P., Chandler, D., Seyfried, M., and Achet, S.: Soil moisture
states, lateral flow, and streamflow generation in a semi-arid, snowmelt-driven catchment, Hydrol. Process., 19, 4023–4038,
https://doi.org/10.1002/hyp.5869, 2005.
Nippgen, F., McGlynn, B. L., and Emanuel, R. E.: The spatial and temporal
evolution of contributing areas, Water Resour. Res., 51, 4551–4573, https://doi.org/10.1002/2014WR016719, 2015.
Orlova, J. and Branfireun, B. A.: Surface water and groundwater contributions to streamflow in the James Bay Lowland, Canada, Arct. Antarct. Alp. Res., 46, 236–250, https://doi.org/10.1657/1938-4246-46.1.236, 2014.
Pfister, L., Martínez-Carreras, N., Hissler, C., Klaus, J., Carrer, G. E., Stewart, M. K., and McDonnell, J. J.: Bedrock geology controls on catchment storage, mixing, and release: a comparative analysis of 16 nested
catchments, Hydrol. Process., 31, 1828–1845, https://doi.org/10.1002/hyp.11134, 2017.
Pugh E. and Small, E.: The impact of pine beetle infestation on snow accumulation and melt in the headwaters of the Colorado River, Ecohydrology,
5, 467–477, https://doi.org/10.1002/eco.239, 2012.
Pulley, S. and Collins, A. L.: Tracing catchment fine sediment sources using the new SIFT (SedIment Fingerprinting Tool) open source software, Sci. Total Environ., 635, 838–858, https://doi.org/10.1016/j.scitotenv.2018.04.126, 2018.
Pulley, S., Foster, I., and Antunes, P.: The uncertainties associated with
sediment fingerprinting suspended and recently deposited fluvial sediment in
the Nene river basin, Geomorphology, 228, 303–319,
https://doi.org/10.1016/j.geomorph.2014.09.016, 2015.
Rademacher, L. K., Clark, J. F., Clow, D. W., and Hudson, G. B.: Old groundwater influence on stream hydrochemistry and catchment response times
in a small Sierra Nevada catchment: Sagehen Creek, California, Water Resour.
Res., 41, 1–10, https://doi.org/10.1029/2003WR002805, 2005.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, available at:
http://www.R-project.org/ (last access: March 2020), 2014.
Remenda, V. H. and van der Kamp, G.: Contamination from sand-bentonite seal
in monitoring wells installed in aquitards, Groundwater, 35, 39–46, 1997.
Rinderer, M., van Meerveld, H. J., and Seibert, J.: Topographic controls on
shallow groundwater levels in a steep, prealpine catchment: when are the TWI
assumptions valid?, Water Resour. Res., 50, 6067–6080, https://doi.org/10.1002/2013WR015009, 2014.
Scott, D. F.: The hydrological effects of fire in South African mountain
catchments, J. Hydrol., 150, 409–432, https://doi.org/10.1016/0022-1694(93)90119-T, 1993.
Shaman, J., Stieglitz, M., and Burns, D.: Are big basins just the sum of small catchments?, Hydrol. Process., 18, 3195–3206, https://doi.org/10.1002/hyp.5739,
2004.
Shanley, J. B., Sebestyen, S. D., McDonnell, J. J., McGlynn, B. L., and
Dunne, T.: Water's Way at Sleepers River watershed–revisiting flow generation in a post-glacial landscape, Vermont USA, Hydrol. Process., 29, 3447–3459, https://doi.org/10.1002/hyp.10377, 2015.
Silins, U., Stone, M., Emelko, M. B., and Bladon, K. D.: Sediment production
following severe wildfire and post-fire salvage logging in the Rocky Mountain headwaters of the Oldman River Basin, Alberta, Catena, 79, 189–197, https://doi.org/10.1016/j.catena.2009.04.001, 2009.
Silins, U., Anderson, A., Bladon, K. D., Emelko, M. B., Stone, M., Spencer, S. A., Williams, C. H. S., Wagner, M. J., Martens, A. M., and Hawthorn, K.:
Southern Rockies Watershed Project, Forest. Chron., 92, 39–42, https://doi.org/10.5558/tfc2016-012, 2016.
Spencer, S. A., Silins, U., and Anderson, A. E.: Precipitation-runoff and
storage dynamics in watersheds underlain by till and permeable bedrock in
Alberta's Rocky Mountains, Water Resour. Res., 55, 10690–10706,
https://doi.org/10.1029/2019WR025313, 2019.
Stednick, J. D.: Monitoring the effects of timber harvest on annual water yield, J. Hydrol., 176, 79–95, https://doi.org/10.1016/0022-1694(95)02780-7, 1996.
Sueker, J. K., Ryan, J. N., Kendall, C., and Jarrett, R. D.: Determination
of hydrologic pathways during snowmelt for alpine/subalpine basins, Rocky
Mountain National Park, Colorado, Water Resour. Res., 36, 63–75, 2000.
Taniguchi, M.: Evaluation of vertical groundwater fluxes and thermal properties of aquifers based on transient temperature-depth profiles, Water
Res., 29, 2021–2026, 1993.
Tromp-van Meerveld, H. J. and McDonnell, J. J.: Threshold relations in subsurface stormflow: 2. The fill and spill hypothesis, Water Resour. Res.,
42, W02411, https://doi.org/10.1029/2004WR003800, 2006.
Uchida, T., McDonnell, J. J., and Asano, Y.: Functional intercomparison of
hillslopes and small catchments by examining water source, flowpath and mean
residence time, J. Hydrol., 327, 627–642, https://doi.org/10.1016/j.jhydrol.2006.02.037, 2006.
Varhola, A., Coops, N. C., Weiler, M., and Moore, R. D.: Forest canopy effects on snow accumulation and ablation: an integrative review of empirical
results, J. Hydrol., 392, 219–233, https://doi.org/10.1016/j.jhydrol.2010.08.009, 2010.
Venables, W. N. and Ripley, B. D.: Modern applied statistics with S, 4th Edn., Springer, New York, USA, ISBN 0-387-95457-0, 2002.
Waterline Resources Inc.: Crowsnest River watershed aquifer mapping and groundwater management planning study: TWPS 006 to 009, RGES 01 to 06 W5 Alberta, Report # 2170-12-001, for Oldman Watershed Council, 2013.
Weihs, C., Ligges, U., Luebke, K., and Raabe, N.: klaR analyzing German business cycles, in: Data analysis and decision support, edited by: Baier,
D., Decker, R., and Schmidt-Thieme, L., Springer-Verlag, Berlin, Germany, 335–343, 2005.
Williams, C., Silins, U., Bladon, K. D., Martens, A. M., Wagner, M. J., and
Anderson, A.: Rainfall-runoff dynamics following wildfire in mountainous
headwater catchments, Alberta, Canada, in: American Geophysical Union Fall Meeting, 14–18 December 2015, San Francisco, USA, H34B-06, 2015.
Williams, C. H. S., Silins, U., Spencer, S. A., Wagner, M. J., Stone, M., and Emelko, M. B.: Net precipitation in burned and unburned subalpine forest stands after wildfire in the northern Rocky Mountains, Int. J. Wildland Fire., 28, 750–760, https://doi.org/10.1071/WF18181, 2019.
Williams, M. W., Seibold, C., and Chowanski, K.: Storage and release of solutes from a subalpine seasonal snowpack: soil and stream water response,
Niwot Ridge, Colorado, Biogeochemistry, 95, 77–94, https://doi.org/10.1007/s10533-009-9288-x, 2009.
Winkler, R., Spittlehouse, D., and Boon, S.: Streamflow response to clear-cut logging on British Columbia's Okanagan Plateau, Ecohydrology, 10, 1–15, https://doi.org/10.1002/eco.1836, 2017.
Short summary
We used unique chemical signatures of precipitation, hillslope soil water, and groundwater sources of streamflow to explore seasonal variation in runoff generation in a snow-dominated mountain watershed underlain by glacial till and permeable bedrock. Reacted hillslope water reached the stream first at the onset of snowmelt, followed by a dilution effect by snowmelt from May to June. Groundwater and riparian water were important sources later in the summer. Till created complex subsurface flow.
We used unique chemical signatures of precipitation, hillslope soil water, and groundwater...