Articles | Volume 24, issue 9
https://doi.org/10.5194/hess-24-4523-2020
https://doi.org/10.5194/hess-24-4523-2020
Research article
 | 
17 Sep 2020
Research article |  | 17 Sep 2020

Histogram via entropy reduction (HER): an information-theoretic alternative for geostatistics

Stephanie Thiesen, Diego M. Vieira, Mirko Mälicke, Ralf Loritz, J. Florian Wellmann, and Uwe Ehret

Related authors

Quantitative comparison of three-dimensional bodies using geometrical properties to validate the dissimilarity of a standard collection of 3D geomodels
Friedrich Carl, Peter Achtziger-Zupančič, Jian Yang, Marlise Colling Cassel, and Florian Wellmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-3203,https://doi.org/10.5194/egusphere-2025-3203, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Is drought protection possible without compromising flood protection? Estimating the potential dual-use benefit of small flood reservoirs in southern Germany
Sarah Quỳnh-Giang Ho and Uwe Ehret
Hydrol. Earth Syst. Sci., 29, 2785–2810, https://doi.org/10.5194/hess-29-2785-2025,https://doi.org/10.5194/hess-29-2785-2025, 2025
Short summary
About the trustworthiness of physics-based machine learning – considerations for geomechanical applications
Denise Degen, Moritz Ziegler, Oliver Heidbach, Andreas Henk, Karsten Reiter, and Florian Wellmann
Solid Earth, 16, 477–502, https://doi.org/10.5194/se-16-477-2025,https://doi.org/10.5194/se-16-477-2025, 2025
Short summary
CAMELS-LUX: Highly Resolved Hydro-Meteorological and Atmospheric Data for Physiographically Characterized Catchments around Luxembourg
Judith Nijzink, Ralf Loritz, Laurent Gourdol, Davide Zoccatelli, Jean François Iffly, and Laurent Pfister
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-482,https://doi.org/10.5194/essd-2024-482, 2025
Preprint under review for ESSD
Short summary
When physics gets in the way: an entropy-based evaluation of conceptual constraints in hybrid hydrological models
Manuel Álvarez Chaves, Eduardo Acuña Espinoza, Uwe Ehret, and Anneli Guthke
EGUsphere, https://doi.org/10.5194/egusphere-2025-1699,https://doi.org/10.5194/egusphere-2025-1699, 2025
Short summary

Cited articles

Allard, D., Comunian, A., and Renard, P.: Probability aggregation methods in geoscience, Math. Geosci., 44, 545–581, https://doi.org/10.1007/s11004-012-9396-3, 2012. 
Bárdossy, A.: Copula-based geostatistical models for groundwater quality parameters, Water Resour. Res., 42, 1–12, https://doi.org/10.1029/2005WR004754, 2006. 
Batty, M.: Spatial Entropy, Geogr. Anal., 6, 1–31, https://doi.org/10.1111/j.1538-4632.1974.tb01014.x, 1974. 
Bell, G., Hey, T., and Szalay, A.: Computer science: Beyond the data deluge, Science, 323, 1297–1298, https://doi.org/10.1126/science.1170411, 2009. 
Bianchi, M. and Pedretti, D.: An entrogram-based approach to describe spatial heterogeneity with applications to solute transport in porous media, Water Resour. Res., 54, 4432–4448, https://doi.org/10.1029/2018WR022827, 2018. 
Download
Short summary
A spatial interpolator has been proposed for exploring the information content of the data in the light of geostatistics and information theory. It showed comparable results to traditional interpolators, with the advantage of presenting generalization properties. We discussed three different ways of combining distributions and their implications for the probabilistic results. By its construction, the method provides a suitable and flexible framework for uncertainty analysis and decision-making.
Share