Adamowski, K. and Bocci, C.: Geostatistical regional trend detection in river
flow data, Hydrol. Process., 15, 3331–3341, https://doi.org/10.1002/hyp.1045,
2001. a

Bakka, H., Rue, H., Fuglstad, G.-A., Riebler, A., Bolin, D., Illian, J.,
Krainski, E., Simpson, D., and Lindgren, F.: Spatial modeling with R-INLA: A
review, WIREs Computational Statistics, 10, e1443, https://doi.org/10.1002/wics.1443, 2018. a

Banerjee, S., Gelfand, A., and Carlin, B.: Hierarchical Modeling and Analysis
for Spatial Data, vol. 101 of Monographs on Statistics and Applied
Probability, Chapman & Hall, Boca Raton, Florida, 2004. a

Blöschl, G., Sivapalan, M., Wagener, T., Viglione, A., and Savenije, H.:
Runoff Prediction in Ungauged Basins: Synthesis across Processes,
Places and Scales, Camebridge University Press, Cambridge, 2013. a, b, c, d, e, f, g, h, i, j

Brenner, S. and Scott, L.: The Mathematical Theory of Finite Element
Methods, 3rd Edition. Vol. 15 of Texts in Applied Mathematics,
Springer, New York, 2008. a

Casella, G. and Berger, R.: Statistical Inference, Duxbury Press, Belmont, 1990. a

Cressie, N.: Statistics for spatial data, J. Wiley & Sons, New York, 1993. a, b, c

Eidsvik, J., Finley, A. O., Banerjee, S., and Rue, H.: Approximate Bayesian
inference for large spatial datasets using predictive process models,
Comput. Stat. Data An., 56, 1362–1380,
https://doi.org/10.1016/j.csda.2011.10.022, 2012. a

Eidsvik, J., Mukerji, T., and Bhattacharjya, D.: Value of Information in the
Earth Sciences: Integrating Spatial Modeling and Decision Analysis, Cambridge
University Press, Cambridge, https://doi.org/10.1017/CBO9781139628785, 2015. a

Engeland, K. and Hisdal, H.: A Comparison of Low Flow Estimates in Ungauged
Catchments Using Regional Regression and the HBV-Model, Water Resour.
Manag., 23, 2567–2586, https://doi.org/10.1007/s11269-008-9397-7, 2009. a

Farmer, W. H.: Ordinary kriging as a tool to estimate historical daily streamflow records, Hydrol. Earth Syst. Sci., 20, 2721–2735, https://doi.org/10.5194/hess-20-2721-2016, 2016. a

Ferkingstad, E. and Rue, H.: Improving the INLA approach for approximate
Bayesian inference for latent Gaussian models, Electron. J.
Stat., 9, 2706–2731, https://doi.org/10.1214/15-EJS1092, 2015. a

Fiering, M.: Use of correlation to improve estimates of the mean and variance,
USGS Publications Warehouse, Washington, 1963. a, b, c

Fong, Y., Rue, H., and Wakefield, J.: Bayesian inference for generalized linear
mixed models, Biostatistics, 11, 397–412,
https://doi.org/10.1093/biostatistics/kxp053, 2009. a

Fuglstad, G.-A., Simpson, D., Lindgren, F., and Rue, H.: Constructing Priors
that Penalize the Complexity of Gaussian Random Fields, J.
Am. Stat. Assoc., 114, 445–452,
https://doi.org/10.1080/01621459.2017.1415907, 2019. a

Førland, E. J.: Nedbørens høydeavhengighet, Klima, 2, 3–24, 1979. a

Gamerman, D. and Lopes, H. F.: Markov chain Monte Carlo: stochastic simulation
for Bayesian inference, 2 Edn., Chapman and Hall/CRC, Boca Raton, 2006. a

Gneiting, T. and Raftery, A. E.: Strictly Proper Scoring Rules,
Prediction, and Estimation, J. Am. Stat.
Assoc., 102, 359–378, https://doi.org/10.1198/016214506000001437, 2007. a

Gottschalk, L.: Correlation and covariance of runoff, Stoch. Hydrol.
Hydraul., 7, 85–101, https://doi.org/10.1007/BF01581418, 1993. a, b

Gottschalk, L., Jensen, J. L., Lundquist, D., Solantie, R., and Tollan, A.:
Hydrologic Regions in the Nordic Countries, Hydrol. Res., 10, 273–286,
1979. a

Guillot, G., Vitalis, R., le Rouzic, A., and Gautier, M.: Detecting correlation
between allele frequencies and environmental variables as a signature of
selection. A fast computational approach for genome-wide studies, Spat.
Stat., 8, 145–155, https://doi.org/10.1016/j.spasta.2013.08.001, 2014. a

Guttorp, P. and Gneiting, T.: Studies in the history of probability and
statistics XLIX On the Matérn correlation family, Biometrika, 93,
989–995, https://doi.org/10.1093/biomet/93.4.989, 2006. a

Hirsch, R. M.: A comparison of four record extension techniques, Water Resour.
Res., 8, 1081–1088, 1982. a, b, c

Huang, J., Malone, B., Minasny, B., Mcbratney, A., and Triantafilis, J.:
Evaluating a Bayesian modelling approach (INLA-SPDE) for environmental
mapping, Sci. Total Environ., 609, 621–632,
https://doi.org/10.1016/j.scitotenv.2017.07.201, 2017. a, b

Ingebrigtsen, R., Lindgren, F., and Steinsland, I.: Spatial models with
explanatory variables in the dependence structure, Spat. Stat., 8, 20–38, https://doi.org/10.1016/j.spasta.2013.06.002, 2014. a

Ingebrigtsen, R., Lindgren, F., Steinsland, I., and Martino, S.: Estimation of
a non-stationary model for annual precipitation in southern Norway using
replicates of the spatial field, Spat. Stat., 14, 338–364,
https://doi.org/10.1016/j.spasta.2015.07.003, 2015. a

Khan, D. and Warner, M.: A Bayesian spatial and temporal modeling approach to
mapping geographic variation in mortality rates for subnational areas with
r-inla, Journal of Data Science, 18, 147–182, 2018. a

Laaha, G. and Blöschl, G.: Low flow estimates from short stream flow records
– a comparison of methods, J. Hydrol., 306, 264–286,
https://doi.org/10.1016/j.jhydrol.2004.09.012, 2005. a, b, c, d

Lindgren, F., Rue, H., and Lindström, J.: An explicit link between Gaussian
fields and Gaussian Markov random fields: the stochastic partial
differential equation approach, J. Roy. Stat. Soc.-B, 73, 423–498,
https://doi.org/10.1111/j.1467-9868.2011.00777.x, 2011. a, b, c

Martino, S., Akerkar, R., and Rue, H.: Approximate Bayesian Inference for
Survival Models, Scand. J. Stat., 38, 514–528,
https://doi.org/10.1111/j.1467-9469.2010.00715.x, 2011. a

Matalas, N. C. and Jacobs, B.: A correlation procedure for augmenting
hydrologic data, U.S. Geol. Surv. Prof. Pap., 434-E, https://doi.org/10.3133/pp434E, 1964. a, b

Merz, R. and Blöschl, G.: Flood frequency regionalisation – spatial proximity
vs. catchment attributes, J. Hydrol., 302, 283–306,
https://doi.org/10.1016/j.jhydrol.2004.07.018, 2005. a, b, c

Moraga, P., Cramb, S. M., Mengersen, K. L., and Pagano, M.: A geostatistical
model for combined analysis of point-level and area-level data using INLA
and SPDE, Spat. Stat., 21, 27–41,
https://doi.org/10.1016/j.spasta.2017.04.006, 2017. a

Opitz, T., Huser, R., Bakka, H., and Rue, H.: INLA goes extreme: Bayesian tail
regression for the estimation of high spatio-temporal quantiles, Extremes,
21, 331–462, https://doi.org/10.1007/s10687-018-0324-x, 2018. a

Patil, S. and Stieglitz, M.: Controls on hydrologic similarity: role of nearby gauged catchments for prediction at an ungauged catchment, Hydrol. Earth Syst. Sci., 16, 551–562, https://doi.org/10.5194/hess-16-551-2012, 2012. a

Petersen-Øverleir, A.: Accounting for heteroscedasticity in rating curve
estimates, J. Hydrol., 292, 173–181,
https://doi.org/10.1016/j.jhydrol.2003.12.024, 2004. a

Roksvåg, T.:
Code for implementing the centroid model, https://doi.org/10.5281/zenodo.3630348, last access: 29 January 2020.

Roksvåg, T., Steinsland, I., and Engeland, K.: A geostatistical two field
model that combines point observations and nested areal observations, and
quantifies long-term spatial variability – A case study of annual runoff
predictions in the Voss area, arXiv:1904.02519v2, 2020. a, b, c, d, e

Rue, H. and Held, L.: Gaussian Markov Random Fields: Theory and
Applications, vol. 104 of Monographs on Statistics and Applied
Probability, Chapman & Hall, London, 2005. a, b

Rue, H., Martino, S., and Chopin, N.: Approximate Bayesian inference for
latent Gaussian models using integrated nested Laplace approximations,
J. Roy. Stat. Soc.-B,
71, 319–392, https://doi.org/10.1111/j.1467-9868.2008.00700.x, 2009. a, b

Sauquet, E., Gottschalk, L., and Lebois, E.: Mapping average annual runoff: A
hierarchical approach applying a stochastic interpolation scheme,
Hydrolog. Sci. J., 45, 799–815, https://doi.org/10.1080/02626660009492385,
2000. a, b, c

Siegel, S.: Non-parametric statistics for the behavioral sciences,
McGraw-Hill, New York, 1956. a

Simpson, D., Rue, H., Riebler, A., Martins, T. G., and Sørbye, S. H.:
Penalising Model Component Complexity: A Principled, Practical
Approach to Constructing Priors, Stat. Sci., 32, 1–28,
https://doi.org/10.1214/16-STS576, 2017. a

Skøien, J. O., Merz, R., and Blöschl, G.: Top-kriging - geostatistics on stream networks, Hydrol. Earth Syst. Sci., 10, 277–287, https://doi.org/10.5194/hess-10-277-2006, 2006. a, b, c, d, e

Skøien, J., Blöschl, G., Laaha, G., Pebesma, E., Parajka, J., and Viglione,
A.: rtop: An R package for interpolation of data with a variable spatial
support, with an example from river networks, Comput. Geosci., 67,
180–190, https://doi.org/10.1016/j.cageo.2014.02.009, 2014. a

Skøien, J. O. and Blöschl, G.: Spatiotemporal topological kriging of runoff
time series, Water Resour. Res., 43, W09419, https://doi.org/10.1029/2006WR005760, 2007. a

Skøien, J. O., Blöschl, G., and Western, A. W.: Characteristic space scales
and timescales in hydrology, Water Resour. Res., 39, 1304,
https://doi.org/10.1029/2002WR001736, 2003. a, b

Stohl, A., Forster, C., and Sodemann, H.: Remote sources of water vapor forming
precipitation on the Norwegian west coast at 60^{∘} N – a tale of
hurricanes and an atmospheric river, J. Geophys. Res.-Atmos., 113, D05102, https://doi.org/10.1029/2007JD009006, 2008. a

Sælthun, N., Tveito, O., Bøsnes, T., and Roald, L.: Regional
flomfrekvensanalyse for norske vassdrag, Tech. Rep., Oslo, NVE, 1997. a

Viglione, A., Parajka, J., Rogger, M., Salinas, J. L., Laaha, G., Sivapalan, M., and Blöschl, G.: Comparative assessment of predictions in ungauged basins – Part 3: Runoff signatures in Austria, Hydrol. Earth Syst. Sci., 17, 2263–2279, https://doi.org/10.5194/hess-17-2263-2013, 2013. a, b

Vogel, R. M. and Stedinger, J. R.: Minimum variance streamflow record
augmentation procedures, Water Resour. Res., 21, 715–723,
https://doi.org/10.1029/WR021i005p00715, 1985. a

Yuan, Y., Bachl, F., Lindgren, F., Borchers, D., Illian, J., Buckland, S., Rue,
H., and Gerrodette, T.: Point process models for spatio-temporal distance
sampling data from a large-scale survey of blue whales, Ann. Appl. Stat., 11, 2270–2297, https://doi.org/10.1214/17-AOAS1078, 2017. a