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Abstract. Interpolation of spatial data has been regarded in
many different forms, varying from deterministic to stochas-
tic, parametric to nonparametric, and purely data-driven to
geostatistical methods. In this study, we propose a nonpara-
metric interpolator, which combines information theory with
probability aggregation methods in a geostatistical frame-
work for the stochastic estimation of unsampled points. His-
togram via entropy reduction (HER) predicts conditional dis-
tributions based on empirical probabilities, relaxing param-
eterizations and, therefore, avoiding the risk of adding in-
formation not present in data. By construction, it provides
a proper framework for uncertainty estimation since it ac-
counts for both spatial configuration and data values, while
allowing one to introduce or infer properties of the field
through the aggregation method. We investigate the frame-
work using synthetically generated data sets and demonstrate
its efficacy in ascertaining the underlying field with varying
sample densities and data properties. HER shows a compa-
rable performance to popular benchmark models, with the
additional advantage of higher generality. The novel method
brings a new perspective of spatial interpolation and uncer-
tainty analysis to geostatistics and statistical learning, using
the lens of information theory.

1 Introduction

Spatial interpolation methods are useful tools for filling gaps
in data. Since information of natural phenomena is often col-
lected by point sampling, interpolation techniques are es-

sential and required for obtaining spatially continuous data
over the region of interest (Li and Heap, 2014). There is a
broad range of methods available that have been considered
in many different forms, from simple approaches, such as
nearest neighbor (NN; Fix and Hodges, 1951) and inverse
distance weighting (IDW; Shepard, 1968), to geostatistical
and, more recently, machine-learning methods.

Stochastic geostatistical approaches, such as ordinary
kriging (OK), have been widely studied and applied in vari-
ous disciplines since their introduction to geology and min-
ing by Krige (1951), bringing significant results in the con-
text of environmental sciences. However, like other para-
metric regression methods, it relies on prior assumptions
about theoretical functions and, therefore, includes the risk
of suboptimal performance due to suboptimal user choices
(Yakowitz and Szidarovszky, 1985). OK uses fitted func-
tions to offer uncertainty estimates, while deterministic es-
timators (NN and IDW) avoid function parameterizations at
the cost of neglecting uncertainty analysis. In this sense, re-
searchers are confronted with the trade-off between avoiding
parameterization assumptions and obtaining uncertainty re-
sults (stochastic predictions).

More recently, with the increasing availability of data
volume and computer power (Bell et al., 2009), machine-
learning methods (here referred to as “data-driven” methods)
have become increasingly popular as a substitute for or com-
plement to established modeling approaches. In the context
of data-based modeling in the environmental sciences, con-
cepts and measures from information theory are being used
for describing and inferring relations among data (Liu et al.,
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2016; Thiesen et al., 2019; Mälicke et al., 2020), quantifying
uncertainty and evaluating model performance (Chapman,
1986; Liu et al., 2016; Thiesen et al., 2019), estimating infor-
mation flow (Weijs, 2011; Darscheid, 2017), and measuring
similarity, quantity, and quality of information in hydrolog-
ical models (Nearing and Gupta, 2017; Loritz et al., 2018,
2019). In the spatial context, information-theoretic measures
were used to obtain longitudinal profiles of rivers (Leopold
and Langbein, 1962), to solve problems of spatial aggre-
gation and quantify information gain, loss, and redundancy
(Batty, 1974; Singh, 2013), to analyze spatiotemporal vari-
ability (Mishra et al., 2009; Brunsell, 2010), to address risk
of landslides (Roodposhti et al., 2016), and to assess spatial
dissimilarity (Naimi, 2015), complexity (Pham, 2010), un-
certainty (Wellmann, 2013), and heterogeneity (Bianchi and
Pedretti, 2018).

Most of the popular data-driven methods have been devel-
oped in the computational intelligence community and, since
they are not built for solving particular problems, applying
these methods remains a challenge for the researchers outside
this field (Solomatine and Ostfeld, 2008). The main issues
for researchers in hydroinformatics for applying data-driven
methods lie in testing various combinations of methods for
particular problems, combining them with optimization tech-
niques, developing robust modeling procedures able to work
with noisy data, and providing the adequate model uncer-
tainty estimates (Solomatine and Ostfeld, 2008). To over-
come these challenges and the mentioned parameterization–
uncertainty trade-off in the context of spatial interpolation,
this paper is concerned with formulating and testing a novel
method based on principles of geostatistics, information the-
ory, and probability aggregation methods to describe spatial
patterns and to obtain stochastic predictions. In order to avoid
fitting of spatial correlation functions and assumptions about
the underlying distribution of the data, it relies on empirical
probability distributions to (i) extract the spatial dependence
structure of the field, (ii) minimize entropy of predictions,
and iii) produce stochastic estimation of unsampled points.
Thus, the proposed histogram via entropy reduction (HER)
approach allows nonparametric and stochastic predictions,
avoiding the shortcomings of fitting deterministic curves and,
therefore, the risk of adding information not contained in the
data, but still relying on geostatistical concepts. HER is seen
as a solution in between geostatistics (knowledge driven) and
statistical learning (data driven) in the sense that it allows
automated learning from data bounded by a geostatistical
framework.

Our experimental results show that the proposed method
is flexible for combining distributions in different ways and
presents comparable performance to ordinary kriging (OK)
for various sample sizes and field properties (short and long
range; with and without noise). Furthermore, we show that its
potential goes beyond prediction since, by construction, HER
allows inferring of or introducing physical properties (conti-
nuity or discontinuity characteristics) of a field under study

and provides a proper framework for uncertainty prediction,
which takes into account not only the spatial configuration
but also the data values.

The paper is organized as follows. The method is pre-
sented in Sect. 2. In Sect. 3, we describe the data properties,
performance parameters, validation design, and benchmark
models. In Sect. 4, we explore the properties of three dif-
ferent aggregation methods, present the results of HER for
different samples sizes and data types, compare the results
to benchmark models, and, in the end, discuss the achieved
outcomes and model contributions. Finally, we draw conclu-
sions in Sect. 5.

2 Method description

Histogram via entropy reduction method (HER) has three
main steps, namely (i) characterization of the spatial cor-
relation, (ii) selection of aggregation method and optimal
weights via entropy minimization, and (iii) prediction of the
target probability distribution. The first and third steps are
shown in Fig. 1.

In the following sections, we start with a brief introduction
to information-theoretic measures employed in the method
and then detail all three method steps.

2.1 Information theory

Information theory provides a framework for measuring in-
formation and quantifying uncertainty. In order to extract
the spatial correlation structure from observations and to
minimize the uncertainties of predictions, two information-
theoretic measures are used in HER and will be described
here, namely Shannon entropy and Kullback–Leibler diver-
gence. We recommend Cover and Thomas (2006) for further
reference.

The entropy of a probability distribution measures the av-
erage uncertainty in a random variable. The measure, first de-
rived by Shannon (1948), is additive for independent events
(Batty, 1974). The formula of Shannon entropy, H , for a dis-
crete random variable,X, with a probability, p(x), and x ∈ χ
is defined by the following:

H(X)=−
∑
x∈χ

p(x)log2p(x). (1)

We use the logarithm to base two so that the entropy is ex-
pressed in bits. Each bit corresponds to an answer to one opti-
mal yes–no question asked with the intention of reconstruct-
ing the data. It varies from zero to log2n, where n represents
the number of bins of the discrete distribution. In the study,
Shannon entropy is used to extract the infogram and correla-
tion length of the data set (explored in Sect. 2.2).

Besides quantifying the uncertainty of a distribution, it is
also possible to compare similarities between two probabil-
ity distributions, p and q, using the Kullback–Leibler di-
vergence (DKL). Comparable to the expected logarithm of
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Figure 1. HER method. Flowcharts illustrating (a) spatial characterization and (b) z probability mass function (PMF) prediction.

the likelihood ratio (Cover and Thomas, 2006; Allard et al.,
2012), the Kullback–Leibler divergence quantifies the statis-
tical “distance” between two probability mass functions p
and q, using the following equation:

DKL(p ‖ q)=
∑
x∈χ

p(x)log2
p(x)

q(x)
. (2)

Also referred to as relative entropy, DKL can be under-
stood as a measure of information loss of assuming that
the distribution is q when in reality it is p (Weijs et al.,
2010). It is nonnegative and is zero strictly if p = q. In
HER context, Kullback–Leibler divergence is optimized to
select the weights for aggregating distributions (detailed in
Sect. 2.3). The measure is also used as a scoring rule for per-
formance verification of probabilistic predictions (Gneiting
and Raftery, 2007; Weijs et al., 2010).

Note that the measures presented by Eqs. (1) and (2) are
defined as functionals of probability distributions and do not
depend on the variableX value or its unit. This is favorable as
it allows joint treatment of many different sources and sorts
of data in a single framework.

2.2 Spatial characterization

The spatial characterization (Fig. 1a) is the first step of HER.
It consists of quantifying the spatial information available in
data and of using it to infer its spatial correlation structure. To
capture the spatial variability and related uncertainties, con-
cepts of geostatistics and information theory are integrated
into the method. As shown in Fig. 1a, the spatial characteri-
zation phase aims to, first, obtain 1z probability mass func-
tions (PMFs), where z is the variable under study; second,
the behavior of entropy as a function of lag distance (which

the authors denominate as “infogram”); and, finally, the cor-
relation length (range). These outputs are outlined in Fig. 2
and attained in the following steps:

i. Infogram cloud (Fig. 2a): calculate the difference in the
z values (1z) between pairs of observations; associate
each 1z to the Euclidean separation distance of its re-
spective point pair. Define the lag distance (demarcated
by red dashed lines), here called distance classes or,
simply, classes. Divide the range of 1z values into a
set of bins (demarcated by horizontal gray lines).

ii. 1z PMFs (Fig. 2b): construct, for each distance class,
the1z PMF from the1z values inside the class (condi-
tional PMFs). Also construct the 1z PMF from all data
in the data set (unconditional PMF).

iii. Infogram (Fig. 2c): calculate the entropy of each
1z PMF and of the unconditional PMF. Compute the
range of the data; this is the distance at which the con-
ditional entropy exceeds the unconditional entropy. Be-
yond this point, the neighbors start becoming uninfor-
mative, and it is pointless to use information outside of
this neighborhood.

The infogram cloud is the preparation needed for construct-
ing the infogram. It contains a complete cloud of point pairs.
The infogram plays a role similar to that of the variogram;
through the lens of information theory, we can characterize
the spatial dependence of the data set, calculate the spatial
(dis)similarities, and compute its correlation length (range).
It describes the statistical dispersion of pairs of observations
for the distance class separating these observations. Quan-
titatively, it is a way of measuring the uncertainty about
1z given the class. Graphically, the infogram shape is the
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Figure 2. Spatial characterization. Illustration of (a) infogram cloud, (b) 1z probability mass functions (PMFs) by class, and (c) infogram.

fingerprint of the spatial dependence, where the larger the en-
tropy of one class, the more uncertain (disperse) its distribu-
tion. It reaches a threshold (range) where the data no longer
show significant spatial correlation. We associate neighbors
beyond the range to the 1z PMF of the full data set. By do-
ing so, we restrict ourselves to the more informative classes
and reduce the number of classes to be mapped, thus improv-
ing the results and the speed of calculation. Note that, in the
illustrative case of Fig. 2, we limited the number of classes
shown to four classes beyond the range. A complete info-
gram cloud and infogram is presented and discussed in the
method application (Fig. 5 in Sect. 4.1).

Naimi (2015) introduced a similar concept to the infogram
called an entrogram, which is used for the quantification of
the spatial association of both continuous and categorical
variables. In the same direction, Bianchi and Pedretti (2018)
employed the term entrogram to quantify the degree of spa-
tial order and rank different structures. Both works, and
the present study, are carried out with a variogram-like
shape and entropy-based measures and are looking for data
(dis)similarity, yet with different purposes and metrics. The
proposed infogram terminology seeks to provide an easy-
to-follow association with the quantification of information
available in the data.

Converting the frequency distributions of 1z into PMFs
requires a cautious choice of bin width, since this decision
will frame the distributions used as the model and directly in-
fluence the statistics we compute for evaluation (DKL). Many
methods for choosing an appropriate binning strategy have
been suggested (Knuth, 2013; Gong et al., 2014; Pechlivani-
dis et al., 2016; Thiesen et al., 2018). These approaches are
either founded on a general physical understanding and re-
late, for instance, measurement uncertainties to the binning
width (Loritz et. al., 2018) or are exclusively based on statis-
tical considerations of the underlying field properties (Scott,
1979). Regardless of which approach is chosen, the choice

of bin width should be communicated in a clear manner to
make the results as reproducible as possible. Throughout this
paper, we will stick to equidistant bins since they have the
advantage of being simple, computationally efficient (Rud-
dell and Kumar, 2009), and of introducing minimal prior in-
formation (Knuth, 2013). The bin size was defined, based
on Thiesen et al. (2018), by comparing the cross entropy
(Hpq =H(p)+DKL(p ‖ q)) between the full learning set
and subsamples for various bin widths. The selected one
shows a stabilization of the cross entropy for small sample
sizes, meaning that the bin size is reasonable for small and
large sample sizes and analyzed distribution shapes. For fa-
voring comparability, the bins are kept the same for all appli-
cations and performance calculations.

Additionally, to avoid distributions with empty bins, which
might make the PMF combination (discussed in Sect. 2.3.1)
unfeasible, we assigned a small probability equivalent to the
probability of a single point pair count to all bins in the his-
togram after converting it to a PMF by normalization. This
procedure does not affect the results when the sample size is
large enough (Darscheid et al., 2018), and it was inspected
by result and cross-entropy comparison (as described in the
previous paragraph). It also guarantees that there is always
an intersection when aggregating PMFs, and that we obtain a
uniform distribution (maximum entropy) in case we multiply
distributions where the overlap happens uniquely on the pre-
viously empty bins. Furthermore, as shown in the Darscheid
et al. (2018) study, for the cases where no distribution is
known a priori, adding one counter to each empty bin per-
formed well across different distributions.

Altogether, the spatial characterization stage provides a
way of inferring conditional distributions of the target given
its observed neighbors without the need, for example, to fit
a theoretical correlation function. In the next section, we de-
scribe how these distributions can be jointly used to estimate
unknown points and how to weight them when doing so.
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2.3 Minimization of estimation entropy

To infer the conditional distribution of the target z0 (unsam-
pled point) given its neighbors zi (where i = 1, . . . , n are the
indices of the sampled points), we use the1z PMFs obtained
at the spatial characterization step (Sect. 2.2). To do so, each
neighbor zi is associated to a class and, hence, to a 1z dis-
tribution according to their distance to the target z0. This im-
plies the assumption that the empirical 1z PMFs apply ev-
erywhere in the field, irrespective of specific location, and
only depend on the distance between points. Each 1z PMF
is then shifted by the zi value of the observation it is associ-
ated to, yielding the z PMF of the target given the neighbor i,
which is denoted by p(z0|zi). Assume, for instance, three
observations, z1, z2, and z3, for which we want to predict the
probability distribution of the target z0. In this case, what we
infer at this stage is the conditional probability distributions,
p(z0|z1), p(z0|z2), and p(z0|z3).

Now, since we are in fact interested in the probability dis-
tribution of the target conditioned to multiple observations,
namely p(z0|z1, z2, z3), how can we optimally combine the
information gained from individual observations to predict
this target probability? In the next sections, we address this
issue by using aggregation methods. After introducing poten-
tial ways to combine PMFs (Sect. 2.3.1), we propose an op-
timization problem, via entropy minimization, to define the
weight parameters needed for the aggregation (Sect. 2.3.2).

2.3.1 Combining distributions

The problem of combining multiple conditional probability
distributions into a single one is treated here by using aggre-
gation methods. This subsection is based on the work by Al-
lard et al. (2012), which we recommend as a summary of ex-
isting aggregation methods (also called opinion pools), with
a focus on their mathematical properties.

The main objective of this process is to aggregate probabil-
ity distributions coming from different sources into a global
probability distribution. For this purpose, the computation of
the full conditional probability p(z0|z1, . . . , zn) – where z0 is
the event we are interested in (target), and zi with i = 1, . . . , n
is a set of data events (or neighbors) – is obtained by the use
of an aggregation operator, PG, called pooling operator, with
the following:

p(z0|z1, . . ., zn)≈ PG (p (z0|z1) , . . ., p (z0|zn)) . (3)

From now on, we will adopt a similar notation to that of Al-
lard et al. (2012), using the more concise expressions Pi(z0)

to denote p(z0|zi) and PG(z0) for the global probability,
PG(P1(z0), . . . ,Pn(z0)).

The most intuitive way to aggregate the probabilities
p1, . . . ,pn is by linear pooling, which is defined as follows:

PGOR (z0)=

n∑
i=1

wORiPi (z0) , (4)

where n is the number of neighbors, and wORi are positive

weights verifying
n∑
i=1
wORi = 1. Equation (4) describes mix-

ture models in which each probability pi represents a differ-
ent population. If we set equal weights wORi to every prob-
ability Pi the method reduces to an arithmetic average, co-
inciding with the disjunction of probabilities proposed by
Tarantola and Valette (1982) and Tarantola (2005), as illus-
trated in Fig. 3b. Since it is a way of averaging distributions,
the resulting distribution PGOR is often multimodal. Additive
methods, such as linear pooling, are related to union of events
and to the logical operator OR.

Multiplication of probabilities, in turn, is described by the
logical operator AND, and it is associated to the intersec-
tion of events. One aggregation method based on the multi-
plication of probabilities is the log-linear pooling operator,
defined by the following:

lnPGAND (z0)= lnζ +
n∑
i=1

wANDi lnPi (z0) , (5)

or, equivalently, PGAND(z0)∝
n∏
i=1
Pi(z0)

wANDi , where ζ is a

normalizing constant, n is the number of neighbors, and
wANDi are positive weights. One particular case consists of
setting wANDi = 1 for every i. This refers to the conjunction
of probabilities proposed by Tarantola and Valette (1982) and
Tarantola (2005), as shown in Fig. 3c. In contrast to linear
pooling, log-linear pooling is typically unimodal and less dis-
persed.

Aggregation methods are not limited to the log-linear
and linear pooling presented here. However, the selection
of these two different approaches to PMF aggregation seeks
to embrace distinct physical characteristics of the field. The
authors naturally associate the intersection of distributions
(AND combination; Eq. 5) to fields with continuous proper-
ties. This idea is supported by Journel (2002), who remarked
that a logarithmic expression evokes the simple kriging ex-
pression (used for continuous variables). For example, if we
have two points z1 and z2 with different values and want to
estimate the target z0 at a location between them in a con-
tinuous field, we would expect that the estimate z0 would
be somewhere between z1 and z2, which can be achieved by
an AND combination. In a more intuitive way, if we notice
that, for kriging, the shape of the predicted distribution is as-
sumed to be fixed (Gaussian, for example), multiplying two
distributions with different means would result in a Gaussian
distribution as well, less dispersed than the original ones, as
also seen for the log-linear pooling. It is worth mentioning
that some methods for modeling spatially dependent data,
such as copulas (Bárdossy, 2006; Kazianka and Pilz, 2010)
and effective distribution models (Hristopulos and Baxevani,
2020), also use log-linear pooling to construct conditional
distributions.
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Figure 3. Examples of the different pooling operators. Illustration of (a) normal PMFs N(µ, σ 2) to be combined, (b) linear aggregation
of (a) – Eq. (4), (c) log-linear aggregation of (a) – Eq. (5), and (d) log-linear aggregation of (b) and (c) – Eq. (6).

On the other hand, Krishnan (2008) pointed out that the
linear combination, given by linear pooling, identifies a
dual-indicator kriging estimator (kriging used for categori-
cal variables), which we see as an appropriate method for
fields with discontinuous properties. Along the same lines,
Goovaerts (1997, p. 420) defended the idea that phenomena
that show abrupt changes should be modeled as mixture of
populations. In this case, if we have two points z1 and z2
belonging to different categories, a target z0 between them
will either belong to the category of z1 or z2, which can be
achieved by the mixture distribution given by the OR pool-
ing. In other words, the OR aggregation is a way of combin-
ing information from different sides of the truth; thus, a con-
servative way of considering the available information from
all sources.

Note that, for both linear and log-linear pooling, weights
equal to zero will lead to uniform distributions, therefore by-
passing the PMFs in question. Conveniently, the uniform dis-
tribution is the maximum entropy distribution among all dis-
crete distributions with the same finite support. A practical
example of the pooling operators is illustrated at the end of
this section.

The selection of the most suitable aggregation method de-
pends on the specific problem (Allard et al., 2012), and it
will influence the PMF prediction and, therefore, the uncer-
tainty structure of the field. Thus, depending on the knowl-
edge about the field, a user can either add information to the
model by applying an a priori chosen aggregation method or
infer these properties from the field. Since, in practice, there
is often a lack of information to accurately describe the in-
teractions between the sources of information (Allard et al.,
2012), inference is the approach we tested in the comparison
analysis (Sect. 4.2). For that, we propose estimating the dis-
tribution PG of a target, by combining PGAND and PGOR , as
follows:

PG (z0)∝ PGAND(z0)
αPGOR(z0)

β , (6)

where α and β are positive weights varying from zero to one,
which will be found by optimization. Equation (6) is the

choice made by the authors as a way of balancing both na-
tures of the PMF aggregation. The idea is to find the appro-
priate proportion of α (continuous) and β (discontinuous)
properties of the field by minimizing the estimated relative
entropy. Note that, when the weight α or β is set to zero, the
final distribution results, respectively, in a pure OR, Eq. (4),
or pure AND aggregation, Eq. (5), as special cases. The equa-
tion is based on the log-linear aggregation, as opposed to lin-
ear aggregation, since the latter is often multimodal, which is
an undesirable property for geoscience applications (Allard
et al., 2012). Alternatively, Eqs. (4) or (5) or a linear pooling
of PGAND(z0) and PGOR(z0) could be used. We explore the
properties of the linear and log-linear pooling in Sect. 4.1.

The practical differences between the pooling operators
used in this paper are illustrated in Fig. 3, where Fig. 3a intro-
duces two PMFs to be combined, and Fig. 3b–d show the re-
sulting PMFs for Eqs (4)–(6), respectively. In Fig. 3b, we use
equal weights for both PMFs, and the resulting distribution is
the arithmetic average of the bin probabilities. In Fig. 3c, we
use unitary PMF weights so that the multiplication of the bins
(AND aggregation) leads to a simple intersection of PMFs
weighted by the bin height. Figure 3d shows a log-linear ag-
gregation of the two previous distributions (Fig. 3b and c).
In all three cases, if the weight of one distribution is set to
one and the other is set to zero (not shown), the resulting
PMF would be equal to the distribution which receives all
the weight.

The following section addresses the optimization problem
for estimating the weights of the aggregation methods.

2.3.2 Weighting PMFs

Scoring rules assess the quality of probabilistic estimations
(Gneiting and Raftery, 2007) and, therefore, can be used
to estimate the parameters of a pooling operator (Allard et
al., 2012). We selected Kullback–Leibler divergence (DKL,
Eq. 2) as the loss function to optimize α and β, Eq. (6),
and the wORk and wANDk weights (Eqs. (4) and (5), respec-
tively), here generalized as wk . The logarithmic score pro-
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posed by Good (1952), associated to Kullback–Leibler di-
vergence by Gneiting and Raftery (2007) and reintroduced
from an information-theoretic point of view by Roulston
and Smith (2002), is a strictly proper scoring rule since
it provides summary metrics that address calibration and
sharpness simultaneously by rewarding narrow prediction in-
tervals and penalizing intervals missed by the observation
(Gneiting and Raftery, 2007).

By means of a leave one out cross-validation (LOOCV),
the optimization problem is then defined in order to find the
set of weights which minimizes the expected relative en-
tropy (DKL) of all targets. The idea is to choose weights
so that the disagreement of the “true” distribution (or ob-
servation value when no distribution is available) and esti-
mated distribution is minimized. Note that the optimization
goal can be tailored for different purposes, e.g., by binarizing
the probability distribution (observed and estimated) with re-
spect to a threshold in risk analysis problems or categorical
data. In Eqs. (4) and (5), we assign one weight to each dis-
tance class k. This means that, given a target z0, the neighbors
grouped in the same distance class will be assigned the same
weight. For a more continuous weighting of the neighbors,
as an extra step we linearly interpolate the weights according
to the Euclidean distance and the weight of the next class.
Another option could be narrowing down the class width,
in which case more data are needed to estimate the respec-
tive PMFs.

Firstly, we obtained, in parallel, the weights of Eqs. (4)
and (5) by convex optimization and later α and β by a grid
search with both weight values ranging from zero to one
(steps of 0.05 were used in the application case). In order to
facilitate the convergence of the convex optimization, the fol-
lowing constraints were employed: (i) set wOR1 = 1 to avoid
nonunique solutions for linear pooling, (ii) force weights to
decrease monotonically (i.e.,wk+1 ≤ wk), (iii) define a lower
bound to avoid numerical instabilities (e.g., wk ≥ 10−6), and
(iv) define an upper bound (wk ≤ 1). Finally, after the op-
timization, normalize the weights to verify

∑
k

wORk = 1 for

linear pooling (for log-linear pooling, the resulting PMFs are
normalized).

In order to increase computational efficiency, and due to
the minor contribution of neighbors in classes far away from
the target, the authors only used the 12 neighbors closest to
the target when optimizing α and β and when predicting the
target. Note that this procedure is not applicable for the opti-
mization of the wORk and wANDk weights, since we are look-
ing for one weight wk for each class k, and therefore, we
cannot risk neglecting those classes for which we have an in-
terest in their weights. For the optimization phase discussed
here, and for the prediction phase (in next section), the limi-
tation of the number of neighbors together with the removal
of classes beyond the range are efficient means of reducing
the computational effort involved in both phases.

2.4 Prediction

With the results of the spatial characterization step (classes,
1z PMFs, and range, as described in Sect. 2.2), the defini-
tion of the aggregation method and its parameters (Sect. 2.3.1
and 2.3.2, respectively), and the set of known observations,
we have the model available to predict distributions.

Thus, to estimate a specific unsampled point (target), first,
we calculate the Euclidean distance from the target to its
neighbors (sampled observations). Based on this distance, we
obtain the class of each neighbor and associate to each its
corresponding 1z PMF. As mentioned in Sect. 2.2, neigh-
bors beyond the range are associated to the 1z PMF of the
full data set. To obtain the z PMF of target z0 given each
neighbor zi , we simply shift the 1z PMF of each neigh-
bor by its zi value. Finally, by applying the defined aggre-
gation method, we combine the individual z PMFs of the
target given each neighbor to obtain the PMF of the target
conditional on all neighbors. Figure 1b presents the z PMF
prediction steps for a single target.

3 Testing HER

For the purpose of benchmarking, this section presents the
data used for testing the method, establishes the performance
metrics, and introduces the calibration and test design. Addi-
tionally, we briefly present the benchmark interpolators used
for the comparison analysis and some peculiarities of the cal-
ibration procedure.

3.1 Data properties

To test the proposed method in a controlled environment,
four synthetic 2D spatial data sets with grid size 100× 100
were generated from known Gaussian processes. A Gaus-
sian process is a stochastic method that is specified by its
mean and a covariance function or kernel (Rasmussen and
Williams, 2006). The data points are determined by a given
realization of a prior, which is randomly generated from
the chosen kernel function and the associated parameters.
In this work, we used a rational quadratic kernel (Pedregosa
et al., 2011) as the covariance function, with two different
correlation length parameters for the kernel, namely 6 and
18 units, to produce two data sets with fundamentally dif-
ferent spatial dependence. For both short- and long-range
fields, white noise was introduced by a Gaussian distribution,
with a mean of zero and standard deviation equal to 0.5. The
implementation was taken from the Python library, namely
scikit-learn (Pedregosa et al., 2011). The generated sets com-
prise (i) a short-range field without noise (SR0), (ii) a short-
range field with noise (SR1), (iii) a long-range field without
noise (LR0), and (iv) a long-range field with noise (LR1).
Figure 4 presents the field characteristics and their summary
statistics. The summary statistics of each field type are in-
cluded in Supplement S1.
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Figure 4. Synthetic fields and summary statistics. (a) Short-range field without noise (SR0), (b) short-range field with noise (SR1), (c) long-
range field without noise (LR0), and (d) long-range field with noise (LR1).

3.2 Performance criteria

To evaluate the predictive power of the models, a quality as-
sessment was carried out with three criteria, namely mean ab-
solute error (EMA) and Nash–Sutcliffe efficiency (ENS), for
the deterministic cases, and mean of the Kullback–Leibler
divergence (DKL), for the probabilistic cases. EMA was se-
lected because it gives the same weight to all errors, while
ENS penalizes variance as it gives more weight to errors with
larger absolute values. ENS also shows a normalized met-
ric (limited to one), which favors general comparison. All
three metrics are shown in Eqs. (7), (8), and (2), respectively.
The validity of the model can be asserted when the mean
error is close to zero, Nash–Sutcliffe efficiency is close to
one, and mean of Kullback–Leibler divergence is close to
zero. The deterministic performance coefficients are defined
as follows:

EMA =
1
n

n∑
i=1
|ẑi − zi |, (7)

ENS = 1−

n∑
i=1

(
ẑi − zi

)2
n∑
i=1
(zi − z)

2
, (8)

where ẑi and zi are, respectively, the predicted and observed
values at the ith location, z is the mean of the observations,
and n is the number of tested locations. For the probabilistic
methods, ẑi is the expected value of the predictions.

For the applications in the study, we considered that there
is no true distribution (ground truth) available for the obser-
vations in all field types. Thus, theDKL scoring rule was cal-
culated by comparing the filling of the single bin in which the
observed value is located; i.e., in Eq. (2), we set p equal to

one for the corresponding bin and compared it to the proba-
bility value of the same bin in the predicted distribution. This
procedure is just applicable to probabilistic models, and it en-
ables one to measure how confident the model is in predicting
the correct observation. In order to calculate this metric for
ordinary kriging, we must convert the predicted probability
density functions (PDFs) to PMFs, employing the same bins
used in HER.

3.3 Calibration and test design

To benchmark and investigate the effect of sample size, we
applied holdout validation as follows. Firstly, we randomly
shuffled the data, and then divided it into three mutually ex-
clusive sets: one to generate the learning subsets (contain-
ing up to 2000 data points), one for validation (containing
2000 data points), and another 2000 data points (20 % of the
full data set) were used as the test set. We calibrated the mod-
els on learning subsets with increasing sizes of 200, 400, 600,
800, 1000, 1500, and 2000 observations. We used the val-
idation set for fine adjustments and plausibility checks. To
avoid multiple calibration runs, the resampling was designed
in a way that the learning subsets increased in size by adding
new data to the previous subset; i.e., the observations of small
sample sizes were always contained in the larger sets. To fa-
cilitate model comparison, the validation and test data sets
were fixed for all performance analyses, independently of the
analyzed learning set. This procedure also avoided variabil-
ity of results coming from multiple random draws since, by
construction, we improved the learning with growing sam-
ple size, and we always assessed the results in the same set.
The test set was kept unseen until the final application of
the methods, as a “lock-box approach” (Chicco, 2017), and
its results were used to evaluate the model performance pre-
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sented in Sect. 4. See Supplement S1 for the summary statis-
tics of the learning, validation, and test subsets.

3.4 Benchmark interpolators

In addition to presenting a complete application of HER
(Sect. 4.1), a comparative analysis among the best-known
and used methods for spatial interpolation in the earth sci-
ences (Myers, 1993; Li and Heap, 2011) is performed (Sect.
4.2). Covering deterministic, probabilistic, and geostatistical
methods, three interpolators were chosen for the compari-
son, namely nearest neighbor (NN), inverse distance weight-
ing (IDW), and ordinary kriging (OK).

As in HER, all these methods assume that the similarity
of two point values decreases with increasing distance. Since
NN simply selects the value of the nearest sample to predict
the value at an unsampled point without considering the re-
maining observations, it was employed as a baseline compar-
ison. IDW, in turn, linearly combines the set of sample points
to predict the target, inversely weighting the observations ac-
cording to their distance to the target. The particular case in
which the exponent of the weighting function equals two is
the most popular choice (Li and Heap, 2008). It is known as
the inverse distance squared (IDS), and it is the one applied
here.

OK is more flexible than NN and IDW since the weights
are selected depending on how the correlation function varies
with distance (Kitanidis, 1997, p. 78). The spatial structure
is extracted by the variogram, which is a mathematical de-
scription of the relationship between the variance of pairs
of observations and the distance separating these observa-
tions (also known as lag). It is also described as the best
linear unbiased estimator (BLUE; Journel and Huijbregts,
1978, p. 57), which aims at minimizing the error variance,
and provides an indication of the uncertainty of the esti-
mate. The authors suggest consulting Kitanidis (1997) and
Goovaerts (1997), for a more detailed explanation of vari-
ogram and OK, and Li and Heap (2008), for NN and IDW.

NN and IDS do not require calibration. To calibrate HER
aggregation weights, we applied LOOCV, as described in
Sect. 2.3.2, to optimize the performance of the left-out sam-
ple in the learning set. As the loss function, the minimization
of the mean DKL was applied. After learning the model, we
used the validation set for plausibility check of the calibrated
model and, eventually, adjustment of parameters. Note that
no function fitting is needed to apply HER.

For OK, the fitting of the model was applied in a semi-
automated approach. The variogram range, sill, and nugget
were fitted individually to each of the samples taken from
the four fields. They were selected by least squares (Branch
et al., 1999). The remaining parameters, namely the semi-
variance estimator, the theoretical variogram model, and the
minimum and maximum number of neighbors considered
during OK, were jointly selected for each field type (short
and long range; SR and LR, respectively), since they are de-

rived from the same field characteristics. This means that, for
all sample sizes of SR0 and SR1, the same parameters were
used, except for the range, sill, and nugget, which were fitted
individually to each sample size. The same applies to LR0
and LR1. These parameters were chosen by expert decision,
supported by result comparisons for different theoretical var-
iogram functions, validation, and LOOCV. Variogram fitting
and kriging interpolation were applied using the scikit-gstat
Python module (Mälicke and Schneider, 2019).

The selection of lag size has important effects on the HER
infogram and, as discussed in Oliver and Webster (2014), on
the empirical variogram of OK. However, since the goal of
the benchmarking analysis was to find a fair way to compare
the methods, we fixed the lag distances of OK and HER at
equal intervals of two distance units (three times smaller than
the kernel correlation length of the short-range data set).

Since all methods are instance-based learning algorithms,
due to the fact that the predictions are based on the sample of
observations, the learning set is stored as part of the model
and used in the test phase for the performance assessment.

4 Results and discussion

In this section, three analyses are presented. Firstly, we ex-
plore the results of HER using three different aggregation
methods on one specific synthetic data set (Sect. 4.1). In
Sect. 4.2, we summarize the results of the synthetic data
sets LR0, LR1, SR0, and SR1 for all calibration sets and
numerically compare HER performance with traditional in-
terpolators. For all applications, the performance was cal-
culated on the same test set. For brevity, the model outputs
were omitted in the comparison analysis, and only the perfor-
mance metrics for each data set and interpolator are shown.
Finally, Sect. 4.3 provides a theoretical discussion on the
probabilistic methods (OK and HER), contrasting their dif-
ferent properties and assumptions.

4.1 HER application

This section presents three variants of HER, applied to the
LR1 field with a calibration subset of 600 observations (LR1-
600). This data set was selected since, due to its optimized
weights, α and β (which reach almost the maximum value of
one suggested for Eq. 6), it favors contrasting the uncertainty
results of HER when applying the three distinct aggregation
methods proposed in Eqs. (4)–(6).

As a first step, the spatial characterization of the selected
field is obtained and shown in Fig. 5. For brevity, only the odd
classes are shown in Fig. 5b. In the same figure, the Euclidean
distance (in grid units) relative to the class is indicated after
the class name in interval notation (left-open, right-closed
interval). For both z PMFs and 1z PMFs, a bin width of 0.2
(10 % of the distance class width) was selected and kept the
same for all applications and performance calculations. As
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Figure 5. Spatial characterization of LR1-600 showing the (a) infogram cloud, (b) 1z PMFs by class, and (c) infogram.

mentioned in Sect. 3.4, we fixed the lag distances to equal
intervals of two distance units.

Based on the infogram cloud (Fig. 5a), the1z PMFs for all
classes were obtained. Subsequently, the range was identified
as the point beyond which the class entropy exceeded the en-
tropy of the full data set (seen as the intersect of the blue and
red-dotted lines in Fig. 5c). This occurs at class 23, corre-
sponding to a Euclidean distance of 44 grid units. In Fig. 5c,
it is also possible to notice a steep reduction in entropy (red
curve) for furthest classes due to the reduced number of pairs
composing the1z PMFs. A similar behavior is also typically
found in experimental variograms (not shown).

The number of pairs forming each 1z PMF and the opti-
mum weights obtained for Eqs. (4) and (5) are presented in
Fig. 6.

Figure 6a shows the number of pairs which compose
the 1z PMF by class, where the first class has just under
500 pairs and the last class inside the range (light blue) has
almost 10 000 pairs. About 40 % of the pairs (142 512 out
of 359 400 pairs) are inside the range. We obtained the
weight of each class by convex optimization, as described
in Sect. 2.3.2. The dots in Fig. 6b represent the optimized
weights of each class. As expected, the weights reflect the
decreasing spatial dependence of variable z with distance.
Regardless of the aggregation method, LR1-600 models are
highly influenced by neighbors up to a distance of 10 grid

units (distance class 5). To estimate the z PMFs of target
points, the following three different methods were tested:

i. Model 1: AND/OR combination, proposed by Eq. (6),
where LR1-600 weights resulted in α = 1 and β = 0.95;

ii. Model 2: pure AND combination, given by Eq. (5);

iii. Model 3: pure OR combination, given by Eq. (4).

The model results are summarized in Table 1 and illustrated
in Fig. 7, where the first column of the panel refers to the
AND/OR combination, the second column to the pure AND
combination, and the third column to the pure OR combina-
tion. To assist in visually checking the heterogeneity of z, the
calibration set representation is scaled by its z value, with the
size of the cross increasing with z. For the target identifica-
tion, we used its grid coordinates (x,y).

Figure 7a shows the E-type estimate1 of z (expected z ob-
tained from the predicted z PMF) for the three analyzed
models. Neither qualitatively (Fig. 7a) nor quantitatively (Ta-
ble 1) is it possible to distinguish the three models based on
their E-type estimate or its summary statistics. Determinis-
tic performance metrics (EMA and ENS; Table 1) are also

1E-type estimate refers to the expected value derived from a
conditional distribution, which depends on data values (Goovaerts,
1997, p. 341). They differ, therefore, from ordinary kriging esti-
mates, which are obtained by linear combination of neighboring
values.
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Figure 6. LR1-600, with (a) class cardinality and (b) optimum weights – Eqs. (4) and (5).

Figure 7. LR1-600 results showing the (a) E-type estimate of z, (b) entropy map (bit), and (c) z PMF prediction for selected points. The first,
second, and third columns of the panel refer to the results of model 1 (AND/OR), model 2 (AND), and model 3 (OR), respectively.
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Table 1. Summary statistics and model performance of LR1-600.

Test set HER, HER, HER, True
AND/OR pure AND pure OR test set
(model 1) (model 2) (model 3)

Summary Mean −0.98 −0.98 −0.98 −1.00
statistics of Standard deviation 0.89 0.89 0.90 1.03
the E-type Entropy (H ) 4.07 4.04 4.10 4.39
estimate of z Maximum 1.32 1.26 1.33 2.14

Median −0.83 −0.82 −0.85 −0.96
Minimum −2.82 −2.77 −2.92 −3.75
Kurtosis 2.23 2.19 2.27 2.44
Skewness 0.02 0.02 0.03 0.02

Summary Median entropy 3.45 3.75 4.17 –
statistics of z maximum∗ 2.40 3.20 2.60 –
predicted z minimum∗ −4.20 −7.00 −4.80 –
distribution Target A (10,42) 95 % CI [−3.00, −1.20] [−3.20, −1.20] [−3.80, −0.80] –

mean −2.06 −2.06 −2.05 −1.64
Target B (25,63) 95 % CI [−2.40, −0.40] [−2.40, −0.40] [−4.00, 0.60] –

mean −1.19 −1.33 1.20 −1.34
Target C (47,16) 95 % CI [−2.00, −0.20] [−2.20, 0.00] [−2.60, 0.20] –

mean −0.99 −1.00 −0.98 −1.02
Target D (49,73) 95 % CI [−0.40, 1.60] [−0.60, 1.60] [−1.20, 2.20] –

mean 0.69 0.66 0.70 1.35

Performance EMA 0.43 0.43 0.44 –
ENS 0.72 0.72 0.71 –
mean DKL 3.54 3.58 3.76 –

∗ Considering a 95 % confidence interval (CI).

similar among the three models. However, in probabilistic
terms, the representation given by the entropy map (Fig. 7b;
which shows the Shannon entropy of the predicted z PMFs),
the statistics of predicted z PMFs, and the DKL performance
(Table 1) reveal differences.

By its construction, HER takes into account not only the
spatial configuration of data but also the data values. In
this fashion, targets close to known observations will not
necessarily lead to reduced predictive uncertainty (or vice-
versa). This is, for example, the case of targets A (10,42)
and B (25,63). Target B (25,63) is located in between two
sampled points in a heterogeneous region (small and large
z values, both in the first distance class) and presents distribu-
tions with a bimodal shape and higher uncertainty (Fig. 7c),
especially for model 3 (4.68 bits). For the more assertive
models (1 and 2), the distributions of target B (25,63) have
lower uncertainty (3.42 and 3.52 bits, respectively). They
shows some peaks, due to small bumps in the PMF neighbors
(not shown), which are boosted by the wANDk exponents in
Eq. (5). In contrast, target A (10,42), which is located in a
more homogeneous region, with the closest neighbors in the
second distance class, shows a sharper z PMF in comparison
to target B (25,63) for models 1 and 3 and a Gaussian-like
shape for all models.

Targets C (47,16) and D (49,73) are predictions for loca-
tions where observations are available. They were selected in
regions with high and low z values to demonstrate the uncer-
tainty prediction in locations coincident with the calibration
set. For all three models, target C (47,16) presented lower en-
tropy andDKL (not shown) in comparison to target D (49,73)
due to the homogeneity of z values in the region.

Although the z PMFs (Fig. 7c) from models 1 and 2
present comparable shapes, the uncertainty structure (color
and shape displayed in Fig. 7b) of the overall field differs.
Since model 1 is derived from the aggregation of models 2
and 3, as presented in Eq. (6), this combination is also re-
flected in its uncertainty structure, lying somewhere in be-
tween models 2 and 3.

Model 1 is the bolder (more confident) model since it has
the smallest median entropy (3.45 bits; Table 1). On the other
hand, due to the averaging of PMFs, model 3 is the more con-
servative model, verified by the highest overall uncertainty
(median entropy of 4.17 bits). Model 3 also predicts a smaller
minimum and higher maximum of the E-type estimate; in
addition, for the selected targets, it provides the widest con-
fidence interval.

The authors selected model 1 (AND/OR combination) for
the sample size and benchmarking investigation presented in
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Figure 8. Performance comparison of NN, IDS, OK, and HER. (a, b) Mean absolute error, (c, d) Nash–Sutcliffe efficiency, and
(e, f) Kullback–Leibler divergence scoring rule for the SR data sets in the left panels (a, c, and e) and the LR data sets in the right
panels (b, d, and f). Continuous line refers to data sets without noise and dashed lines to data sets with noise.

the next section. There, we evaluate various models via direct
comparison of performance measures.

4.2 Comparison analysis

In this section, the test set was used to calculate the perfor-
mance of all methods (NN, IDS, OK, and HER) as a function
of sample size and data set type (SR0, SR1, LR0, and LR1).
HER was applied using the AND/OR model proposed by
Eq. (6). See Supplement S2 for the calibrated parameters of
all models discussed in this section.

Figure 8 summarizes the values of mean absolute er-
ror (EMA), Nash–Sutcliffe efficiency (ENS), and mean
Kullback–Leibler divergence (DKL) for all interpolation
methods, sampling sizes, and data set types. The SR fields
are located in the left column and the LR in the right. Data
sets without noise are represented by continuous lines, and
data sets with noise are represented by dashed lines.
EMA is presented in Fig. 8a and b for the SR and LR fields,

respectively. All models have the same order of magnitude
of EMA for the noisy data sets (SR1 and LR1; dashed lines),
with the performance of the NN model being the poorest,
and OK being slightly better than IDS and HER. For the

data sets without noise (SR0 and LR0; continuous lines),
OK performed better than the other models, with a decreas-
ing difference given sample size. In terms of ENS, all models
have comparable results for LR (Fig. 8d), except NN in the
LR1 field. A larger contrast in the model performances can be
seen for the SR field (Fig. 8c), where, for SR1, NN performed
the worst and OK the best. For SR0, especially for small sam-
ple sizes, OK performed better and NN poorly, while IDS and
HER had similar results, with a slightly better performance
for HER.

The probabilistic models of OK and HER were compa-
rable in terms of DKL, with OK being slightly better than
HER, especially for small sample sizes (Fig. 8e and f). An
exception is made for OK in LR0. Since the DKL scoring
rule penalizes extremely confident but erroneous predictions,
DKL of OK tended to infinity for LR0 and, therefore, it is not
shown in Fig. 8f.

For all models, the performance metrics for LR showed
better results when compared to SR (compare the left and
right columns in Fig. 8). The performance improvement
given the sample size is similar for all models, which can
be seen by the similar slopes of the curves. In general,
we noticed a prominent improvement in the performance in
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SR fields up to a sample size of 1000 observations. On the
other hand, in LR fields, the learning process already stabi-
lizes at around 400 observations. In addition to the model
performance presented in this section, the summary statistics
of the predictions and the correlation of the true value and
the residue of predictions can be found in Supplement S3.

In the next section, we discuss the fundamental aspects of
HER and debate its properties with a focus on comparing it
to OK.

4.3 Discussion

4.3.1 Aggregation methods

Several important points emerge from this study. Because
the primary objective was to explore the characteristics of
HER, we first consider the effect of selecting the aggrega-
tion method (Sect. 4.1). Independent of the choice of the ag-
gregation method, the deterministic results (E-type estimate
of z) of all the models were remarkably similar. In contrast,
we could see different uncertainty structures of the estimates
for all three cases analyzed, ranging from a more confident
method to a more conservative one. The uncertainty struc-
tures also reflected the expected behavior of larger errors in
locations surrounded by data that are very different in value,
as mentioned in Goovaerts (1997, p. 180, 261). In this sense,
HER has proved effective in considering both the spatial con-
figuration of data and the data values regardless of which ag-
gregation method is selected.

As previously introduced in Sect. 2.3.1, the choice of pool-
ing method can happen beforehand in order to introduce
physical knowledge to the system, or several can be tested
to learn about the response of the field to the selected model.
Aside from their different mathematical properties, the mo-
tivation behind the selection of the two aggregation methods
(linear and log-linear) was the incorporation of continuous
or discontinuous field properties. The interpretation is sup-
ported by Journel (2002), Goovaerts (1997, p. 420), and Kr-
ishnan (2008), where the former connects a logarithmic ex-
pression (AND) to continuous variables, while the latter two
associate linear pooling (OR) to abrupt changes in the field
and categorical variables.

As verified in Sect. 4.1, the OR (= averaging) combina-
tion of distributions to estimate target PMFs was the most
conservative (with the largest uncertainty) method among all
those tested. For this method of PMF merging, all distribu-
tions are considered feasible, and each point adds new possi-
bilities to the result, whereas the AND combination of PMFs
was a bolder approach, intersecting distributions to extract
their agreements. Here, we are narrowing down the range of
possible values so that the final distribution satisfies all ob-
servations at the same time. Complementarily, considering
the lack of information to accurately describe the interactions
between the sources of information, we proposed inferring
α and β weights (the proportion of AND and OR contribu-

tions, respectively) using Eq. (6). It resulted in a reasonable
trade-off between the pure AND and the pure OR model and
was hence used for benchmarking HER against traditional
interpolation models in Sect. 4.2.

With HER, the spatial dependence was analyzed by ex-
tracting 1z PMFs and expressed by the infogram, where
classes composed of point pairs further apart were more un-
certain (presented higher entropy) than classes formed by
point pairs close to each other. Aggregation weights (Sup-
plement S2; Figs. S2.1–S2.2) also characterize the spatial de-
pendence structure of the field. In general, as expected, noisy
fields (SR1 and LR1) lead to smaller influence (weights) of
the closer observations than nonnoisy data sets (Fig. S2.1). In
terms of α and β contribution (Fig. S2.2), while α received,
for all sample sizes, the maximum weight, β increased with
the sample size. As expected, in general the noisy fields re-
flected a higher contribution of β due to their discontinu-
ity. For LR0, starting at 1000 observations, β also stabilized
at 0.55, indicating that the model identified the character-
istic β of the population. The most noticeable result along
these lines was that the aggregation method directly influ-
ences the probabilistic results, and therefore, the uncertainty
(entropy) maps can be adapted according to the characteris-
tics of the variable or interest of the expert.

4.3.2 Benchmarking and applicability

Although the primary objective of this study is to investigate
the characteristics of HER, Sect. 4.2 compares it to three es-
tablished interpolation methods. In general, HER performed
comparably to OK, which was the best-performing method
among the analyzed ones. The probabilistic performance
comparison was only possible between HER and OK where
both methods also produced comparable results. Note that
the data sets were generated using Gaussian process (GP)
so that they perfectly fulfilled all recommended requisites
of OK (field mean independent of location; normally dis-
tributed data), thus favoring its performance. Additionally,
OK was also favored when converting their predicted PDFs
to PMFs, since the defined bin width was often orders
of magnitude larger than the standard deviation estimated
by OK. However, the procedure was a necessary step for the
comparison, since HER does not fit continuous functions for
their predicted PMFs.

Although environmental processes hardly fulfill Gaussian
assumptions (Kazianka and Pilz, 2010; Hristopulos and Bax-
evani, 2020), GP allows the generation of a controlled data
set in which we could examine the method performances
in fields with different characteristics. Considering that it is
common to transform the data so that it fits the model as-
sumptions and back transform it in the end, the used data sets
are, to a certain extent, related to environmental data. How-
ever, the authors understand that, due to being nonparamet-
ric, HER handles different data properties without the need
to transform the available data to fulfill model assumptions.
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And since HER uses binned transformations of the data, it
is also possible to handle binary (e.g., contaminated and safe
areas) or even, with small adaptations, categorical data (e.g.,
soil types), covering another spectrum of real-world data.

4.3.3 Model generality

Especially for HER, the number of distance classes and the
bin width define the accuracy of our prediction. For compar-
ison purposes, bin widths and distance classes were kept the
same for all models and were defined based on small sample
sizes. However, with more data available, it would be possi-
ble to better describe the spatial dependence of the field by
increasing the number of distance classes and the number of
bins. Although the increase in the number of classes would
also affect OK performance (as it improves the theoretical
variogram fitting), it would allow more degrees of freedom
for HER (since it optimizes weights for each distance class),
which would result in a more flexible model and closer re-
producibility of data characteristics. In contrast, the degrees
of freedom in OK would be unchanged, since the number of
parameters of the theoretical variogram does not depend on
the number of classes.

HER does not require the fitting of a theoretical func-
tion; its spatial dependence structure (1z PMFs; infogram)
is derived directly from the available data, while, according
to Putter and Young (2001), OK predictions are only opti-
mal if the weights are calculated from the correct underly-
ing covariance structure, which, in practice, is not the case
since the covariance is unknown and estimated from the data.
Thus, the choice of the theoretical variogram for OK can
strongly influence the predicted z, depending on the data. In
this sense, for E-type estimates, HER is more robust against
user decisions than OK. Moreover, HER is flexible in the way
that it aggregates the probability distributions, not being a
linear estimator like OK. In terms of the number of observa-
tions, and being a nonparametric method, HER requires suf-
ficient data to extract the spatial dependence structure, while
OK can fit a mathematical equation with fewer data points.
The mathematical function of the theoretical variogram pro-
vides advantages with respect to computational effort. Nev-
ertheless, relying on fitted functions can mask the lack of ob-
servations since it still produces attractive, but not necessarily
reliable, maps (Oliver and Webster, 2014).

OK and HER have different levels of generality.
OK weights depend on how the fitted variogram varies in
space (Kitanidis, 1997, p. 78), whereas HER weights take
into consideration the spatial dependence structure of the
data (via 1z PMFs) and the z values of the observations,
since they are found by minimizing DKL between the true z
and its predicted distribution. In this sense, the variance es-
timated by kriging ignores the observation values, retaining
only the spatial geometry from the data (Goovaerts, 1997,
p. 180), while HER is additionally influenced by the z value
of the observations. This means that HER predicts distribu-

tions for unsampled points that are conditioned to the avail-
able observations and based on their spatial correlation struc-
ture, a characteristic which was first possible with the advent
of indicator kriging (Journel, 1983). Conversely, when no
nugget effect is expected, HER can lead to undesired uncer-
tainty when predicting the value at or near sampled locations.
This can be overcome by defining a small distance class for
the first class, changing the binning to obtain a point–mass
distribution as a prediction, or asymptotically increasing the
weight towards infinity as the distance approaches zero. With
further developments, the matter could be handled by cou-
pling HER with sequential simulation or using kernels to
smooth the spatial characterization model.

4.3.4 Weight optimization

Another important difference is that OK performs multiple
local optimizations (one for each target), and the weight of
the observations varies for each target, whereas HER per-
forms only one optimization for each one of the aggregation
equations, obtaining a global set of weights which are kept
fixed for the classes. Additionally, OK weights can reach ex-
treme values (negative or greater than one), which, on the one
hand, is a useful characteristic for reducing redundancy and
predicting values outside the range of the data (Goovaerts,
1997, p. 176) but, on the other hand, can lead to unacceptable
results, such as negative metal concentrations (Goovaerts,
1997, p. 174–177) and negative kriging variances (Manchuk
and Deutsch, 2007). HER weights are limited to the range
of [0, 1]. Since the used data set was evenly spaced, a pos-
sible issue of redundant information in the case of clustered
samples was not considered in this paper. The influence of
data clusters could be reduced by splitting the search neigh-
borhood into equal-angle sectors and retaining within each
sector a specified number of nearest data (Goovaerts, 1997,
p. 178) or discarding measurements that contain no extra in-
formation (Kitanidis, 1997, p. 70). Although kriging weights
naturally control redundant measurements based on the data
configuration, OK does not account for clusters with hetero-
geneous data since it presumes that two measurements lo-
cated near each other contribute the same type of information
(Goovaerts, 1997, p. 176, 180; Kitanidis, 1997, p. 77).

Considering the probabilistic models, both OK and HER
present similarities. The two approaches take into considera-
tion the spatial structure of the variables, since their weights
depend on its spatial correlation. As with OK (Goovaerts,
1997, p. 261), we verified that HER is a smoothing method
since the true values are overestimated in low-valued areas
and underestimated in high-valued areas (Supplement S3;
Fig. S3.1). However, HER revealed a reduced smoothing
(residue correlation closer to zero) compared to OK for SR0,
SR1, and LR1. In particular, for points beyond the range,
both methods predict by averaging the available observa-
tions. While OK calculates the same weight for all obser-
vations beyond the range and proceeds with their linear com-
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bination, HER associates 1z PMF of the full data set to all
observations beyond the range and aggregates them using the
same weight (last-class weight).

5 Summary and conclusion

In this paper, we introduced a spatial interpolator which com-
bines statistical learning and geostatistics for overcoming
parameterization with functions and uncertainty trade-offs
present in many existing methods. Histogram via entropy re-
duction (HER) is free of normality assumptions, covariance
fitting, and parameterization of distributions for uncertainty
estimation. It is designed to globally minimize the predictive
entropy (uncertainty) and uses probability aggregation meth-
ods to introduce or infer the (dis)continuity properties of the
field and estimate conditional distributions (target point con-
ditioned to the sampled values).

Throughout the paper, three aggregation methods (OR,
AND, and AND/OR) were analyzed in terms of uncertainty
and resulted in predictions ranging from conservative to
more confident ones. HER’s performance was also compared
to popular interpolators (nearest neighbor, inverse distance
weighting, and ordinary kriging). All methods were tested
under the same conditions. HER and ordinary kriging (OK)
were the most accurate methods for different sample sizes
and field types. HER has featured the following properties:
(i) it is nonparametric in the sense that predictions are di-
rectly based on empirical distribution, thus bypassing func-
tion fitting and, therefore, avoiding the risk of adding infor-
mation not available in the data; (ii) it allows one to incorpo-
rate different uncertainty properties according to the data set
and user interest by selecting the aggregation method; (iii) it
enables the calculation of confidence intervals and probabil-
ity distributions; (iv) it is nonlinear, and the predicted con-
ditional distribution depends on both the spatial configura-
tion of the data and the field values; (v) it has the flexibility
of adjusting the number of parameters to be optimized ac-
cording to the amount of data available; (vi) it is adaptable
for handling binary or even categorical data, since HER uses
binned transformations of the data; and (vii) it can be ex-
tended to conditional stochastic simulations by directly per-
forming sequential simulations on the predicted conditional
distribution.

Considering that the quantification and analysis of uncer-
tainties are important in all cases where maps and models of
uncertain properties are the basis for further decisions (Well-
mann, 2013), HER proved to be a suitable method for un-
certainty estimation, where information-theoretic measures,
geostatistics, and aggregation-method concepts are put to-
gether to bring more flexibility to uncertainty prediction and
analysis. Additional investigation is required to analyze the
method in the face of spatiotemporal domains, categorical
data, probability and uncertainties maps, sequential simu-
lation, sampling designs, and handling additional variables

(covariates), all of which are possible topics to be explored
in future studies.

Code availability. The source code for an implementation of HER,
containing spatial characterization, convex optimization, and distri-
bution prediction, is published alongside this paper at https://github.
com/KIT-HYD/HER (Thiesen et al., 2020). The repository also in-
cludes scripts for exemplifying the use of the functions and the data
set used in the case study.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-24-4523-2020-supplement.
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