Articles | Volume 24, issue 7
Hydrol. Earth Syst. Sci., 24, 3431–3450, 2020
https://doi.org/10.5194/hess-24-3431-2020
Hydrol. Earth Syst. Sci., 24, 3431–3450, 2020
https://doi.org/10.5194/hess-24-3431-2020
Research article
07 Jul 2020
Research article | 07 Jul 2020

Assimilation of vegetation optical depth retrievals from passive microwave radiometry

Sujay V. Kumar et al.

Related authors

Satellite soil moisture data assimilation impacts on modeling weather variables and ozone in the southeastern US – Part 2: Sensitivity to dry-deposition parameterizations
Min Huang, James H. Crawford, Gregory R. Carmichael, Kevin W. Bowman, Sujay V. Kumar, and Colm Sweeney
Atmos. Chem. Phys., 22, 7461–7487, https://doi.org/10.5194/acp-22-7461-2022,https://doi.org/10.5194/acp-22-7461-2022, 2022
Short summary
Precipitation Biases and Snow Physics Limitations Drive the Uncertainties in Macroscale Modeled Snow Water Equivalent
Eunsang Cho, Carrie M. Vuyovich, Sujay V. Kumar, Melissa L. Wrzesien, Rhae Sung Kim, and Jennifer M. Jacobs
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-136,https://doi.org/10.5194/hess-2022-136, 2022
Preprint under review for HESS
Short summary
Towards effective drought monitoring in the Middle East and North Africa (MENA) region: implications from assimilating leaf area index and soil moisture into the Noah-MP land surface model for Morocco
Wanshu Nie, Sujay V. Kumar, Kristi R. Arsenault, Christa D. Peters-Lidard, Iliana E. Mladenova, Karim Bergaoui, Abheera Hazra, Benjamin F. Zaitchik, Sarith P. Mahanama, Rachael McDonnell, David M. Mocko, and Mahdi Navari
Hydrol. Earth Syst. Sci., 26, 2365–2386, https://doi.org/10.5194/hess-26-2365-2022,https://doi.org/10.5194/hess-26-2365-2022, 2022
Short summary
Soil moisture estimation in South Asia via assimilation of SMAP retrievals
Jawairia A. Ahmad, Barton A. Forman, and Sujay V. Kumar
Hydrol. Earth Syst. Sci., 26, 2221–2243, https://doi.org/10.5194/hess-26-2221-2022,https://doi.org/10.5194/hess-26-2221-2022, 2022
Short summary
A Hydrologic Monitoring Dataset for Food and Water Security Applications in Central Asia
Amy McNally, Jossy Jacob, Kristi Arsenault, Kimberly Slinski, Daniel Sarmiento, Andrew Hoell, Shahriar Pervez, James Rowland, Mike Budde, Sujay Kumar, Christa Peters-Lidard, and James Verdin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-420,https://doi.org/10.5194/essd-2021-420, 2021
Revised manuscript accepted for ESSD
Short summary

Related subject area

Subject: Global hydrology | Techniques and Approaches: Remote Sensing and GIS
High-resolution (1 km) satellite rainfall estimation from SM2RAIN applied to Sentinel-1: Po River basin as a case study
Paolo Filippucci, Luca Brocca, Raphael Quast, Luca Ciabatta, Carla Saltalippi, Wolfgang Wagner, and Angelica Tarpanelli
Hydrol. Earth Syst. Sci., 26, 2481–2497, https://doi.org/10.5194/hess-26-2481-2022,https://doi.org/10.5194/hess-26-2481-2022, 2022
Short summary
Characterizing natural variability in complex hydrological systems using Passive Microwave based Climate Data Records: a case study for the Okavango Delta
Robin van der Schalie, Mendy van der Vliet, Clément Albergel, Wouter Dorigo, Piotr Wolski, and Richard de Jeu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-637,https://doi.org/10.5194/hess-2021-637, 2022
Revised manuscript accepted for HESS
Short summary
The accuracy of temporal upscaling of instantaneous evapotranspiration to daily values with seven upscaling methods
Zhaofei Liu
Hydrol. Earth Syst. Sci., 25, 4417–4433, https://doi.org/10.5194/hess-25-4417-2021,https://doi.org/10.5194/hess-25-4417-2021, 2021
Short summary
Remotely sensed reservoir water storage dynamics (1984–2015) and the influence of climate variability and management at global scale
Jiawei Hou, Albert van Dijk, Hylke Beck, Luigi Renzullo, and Yoshihide Wada
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-350,https://doi.org/10.5194/hess-2021-350, 2021
Revised manuscript accepted for HESS
Short summary
Global component analysis of errors in three satellite-only global precipitation estimates
Hanqing Chen, Bin Yong, Pierre-Emmanuel Kirstetter, Leyang Wang, and Yang Hong
Hydrol. Earth Syst. Sci., 25, 3087–3104, https://doi.org/10.5194/hess-25-3087-2021,https://doi.org/10.5194/hess-25-3087-2021, 2021

Cited articles

Albergel, C., Munier, S., Leroux, D. J., Dewaele, H., Fairbairn, D., Barbu, A. L., Gelati, E., Dorigo, W., Faroux, S., Meurey, C., Le Moigne, P., Decharme, B., Mahfouf, J.-F., and Calvet, J.-C.: Sequential assimilation of satellite-derived vegetation and soil moisture products using SURFEX_v8.0: LDAS-Monde assessment over the Euro-Mediterranean area, Geosci. Model Dev., 10, 3889–3912, https://doi.org/10.5194/gmd-10-3889-2017, 2017. a
Albergel, C., Munier, S., Bocher, A., Bonan, B., Zheng, Y., Draper, C., Leroux, D., and Calvet, J.-C.: LDAS-Monde sequential assimilation of satellite derived observations applied to the contiguous US: An ERA-5 driven reanalysis of the land surface variables, Remote Sens., 10, 1627, https://doi.org/10.3390/rs10101627, 2018. a, b
Andela, N., Liu, Y. Y., van Dijk, A. I. J. M., de Jeu, R. A. M., and McVicar, T. R.: Global changes in dryland vegetation dynamics (1988–2008) assessed by satellite remote sensing: comparing a new passive microwave vegetation density record with reflective greenness data, Biogeosciences, 10, 6657–6676, https://doi.org/10.5194/bg-10-6657-2013, 2013. a
Anderson, M., Norman, J., Mecikalski, J., Otkin, J., and Kustas, W.: A climatological study of evapotranspiration and moisture stress across the continental U.S. based on thermal remote sensing: I. Model formulation, J. Geophys. Res., 112, D11112, https://doi.org/10.1029/2006JD007506, 2007. a
Anderson, M. C., Allen, R. G., Morse, A., and Kustas, W. P.: Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources, Remote Sens. Environ., 122, 50–65, https://doi.org/10.1016/j.rse.2011.08.025, 2012. a
Download
Short summary
Vegetation optical depth (VOD) is a byproduct of the soil moisture retrieval from passive microwave instruments. This study demonstrates that VOD information can be utilized for improving land surface water budget and carbon conditions through data assimilation.