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Abstract. Vegetation optical depth (VOD) retrievals from
passive microwave sensors provide analog estimates of
above-ground canopy biomass. This study presents the de-
velopment and analysis of assimilating VOD retrievals from
X-, C-, and L-band passive microwave instruments within
the Noah-MP land surface model over the Continental U.S.
The results from this study demonstrate that the assimilation
of VOD retrievals have a significant beneficial impact on the
simulation of evapotranspiration and GPP, particularly over
the agricultural areas of the U.S. The improvements in the
water and carbon fluxes from the assimilation of VOD from
X- and C-band sensors are found to be comparable to those
obtained from the assimilation of vegetation indices from op-
tical sensors. The study also quantifies the relative and joint
impacts of assimilating surface soil moisture and VOD from
the Soil Moisture Active Passive (SMAP) mission. The util-
ity of soil moisture assimilation for improving evapotranspi-
ration (ET) is more significant over water-limited regions,
whereas VOD DA is more impactful over areas where soil
moisture is not the primary controlling factor on ET. The re-
sults also indicate that the information on moisture and veg-
etation states from SMAP can be simultaneously exploited
through the joint assimilation of surface soil moisture and
VOD. Since passive microwave-based VOD retrievals are
available in nearly all weather conditions, their use within
data assimilation systems offers the ability to extend and im-
prove the utility obtained from the use of optical/infrared-
based vegetation retrievals.

1 Introduction

Remote sensing estimates of vegetation are typically devel-
oped by exploiting the relationship between the stomatal
stress and the spectral reflectance of leaves and canopies
(Knipling, 1970). Multi-spectral and hyperspectral optical
and thermal satellite sensors have been used to provide re-
trievals of variables such as Leaf Area Index (LAI), Normal-
ized Difference Vegetation Index (NDVI), fraction of photo-
synthetically active radiation (fPAR), solar-induced fluores-
cence (SIF), and biomass (Myneni et al., 2002; Tucker et al.,
2005; Zheng and Moskal, 2009; Myneni et al., 2011; Ku-
mar and Mutanga, 2017). The multi-spectral vegetation in-
dices are typically derived from atmospherically corrected
bidirectional surface reflectance in the near-infrared and vis-
ible bands (Price and Bausch, 1995; Huete et al., 1997). Sim-
ilarly, hyperspectral imaging is used to characterize vegeta-
tion type, health, and function (Goetz et al., 1985) at very fine
(∼ 30 m) spatial resolution. As vegetation stress and stom-
atal closure influence canopy temperatures, thermal remote
sensing also offers the possibility of estimating vegetation
conditions. For example, Landsat (Anderson et al., 2012)
and the ECOsystem Spaceborne Thermal Radiometer Ex-
periment on Space Station (ECOSTRESS; https://ecostress.
jpl.nasa.gov/, last access: 15 December 2019) provide fine-
resolution (∼ 70–100 m) estimates of surface temperature
and evapotranspiration. Houborg et al. (2015) present a sum-
mary of the major advances in the remote sensing of vegeta-
tion from these platforms.

A significant shortcoming of the optical/thermal infrared
(TIR) sensors is that cloud cover can severely limit the ac-
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quisition of data, restricting the coverage to cloud-free, clear
days. Gap-filling strategies, such as using the nearest clear-
day observation, are often used to improve the cloud-related
gaps in spatio-temporal coverage from optical/TIR instru-
ments (Hall et al., 2010). Passive microwave measurements,
on the other hand, are nearly all-weather and are not lim-
ited by cloud cover. Holmes et al. (2016), for example, used
microwave estimates of land surface temperature as an al-
ternative to TIR measurements to retrieve evapotranspiration
(ET) during cloudy time periods. Microwave radiometry over
land has traditionally been used for retrieving estimates of
surface soil moisture by exploiting the sensitivity to low-
frequency microwave radiometric measurements to changes
in soil moisture (Njoku and Entekhabi, 1996). As this radi-
ance passes through vegetation, the microwave signal is at-
tenuated by vegetation, the level of which is described by
the vegetation optical depth (VOD) parameter. Due to its
sensitivity to plant water content, VOD can be used as an
analog of above-ground canopy biomass (Owe et al., 2001;
Y. Y. Liu et al., 2011; Konings et al., 2016, 2019; Teubner
et al., 2018, 2019). The VOD retrievals from various mi-
crowave frequencies such as the K-, X-, C- and L-bands have
been used for a variety of studies for examining vegetation
seasonality (Jones et al., 2012), characterization of extremes
such as drought (Liu et al., 2015; Konings and Gentine, 2017;
Smith et al., 2020), assessment of dryland vegetation dynam-
ics (Andela et al., 2013), and the determination of land degra-
dation and deforestation (Liu et al., 2013; van Marle et al.,
2016).

Despite the availability of vegetation measurements from
various sensing platforms, the incorporation of these mea-
surements within data assimilation systems for land surface
hydrology is relatively new. Most studies to date have fo-
cused on the assimilation of LAI retrievals to improve the
characterization of vegetation biomass, evapotranspiration,
root zone soil moisture, and CO2 fluxes within land surface
models (Sabater et al., 2008; Barbu et al., 2011, 2014; Al-
bergel et al., 2017, 2018; Fox et al., 2018). More recently,
Kumar et al. (2019b) demonstrated the beneficial impact of
LAI assimilation on improving water, energy, and carbon
fluxes over the Continental U.S. (CONUS). Most prominent
improvements from LAI assimilation are observed over the
agricultural areas, where assimilation improved the represen-
tation of vegetation seasonality impacted by cropping sched-
ules.

As the use of all-weather VOD measurements from mi-
crowave sensors provides the opportunity to extend the spa-
tial and temporal coverage of vegetation observations into
overcast and clouded conditions, here we examine the influ-
ence of assimilating VOD retrievals from microwave radiom-
etry. Specifically, we explore the utility of assimilating VOD
retrievals from X-, C-, and L-band microwave sensors in the
Noah multi-parameterization (Noah-MP) land surface model
(LSM). The study uses VOD retrievals from a range of mi-
crowave frequencies, as their current and future availabilities

vary significantly. For example, the L-band sensing platforms
such as NASA’s Soil Moisture Active Passive (SMAP; En-
tekhabi et al., 2010) mission are relatively new, whereas the
X-band and C-band retrievals of VOD are available for sig-
nificantly longer time records, with observations from mul-
tiple satellites. In addition, given the plans for sensors op-
erating in the higher microwave frequencies (e.g., Advanced
Microwave Scanning Radiometer, AMSR; the Global Precip-
itation Measurement Microwave Imager, GMI; Joint Polar
Satellite System, JPSS-2; Copernicus Imaging Microwave
Radiometer, CIMR), future observations in X- and C-band
frequencies are also likely guaranteed. Quantifying the rela-
tive utility of VOD retrievals in these frequencies is, there-
fore, important. The model simulations are conducted over
the CONUS in the North American Land Data Assimilation
System phase-2 (NLDAS-2; Xia et al., 2012) configuration.
As noted in prior data assimilation studies such as Kumar
et al. (2019b), the NLDAS-2 configuration provides an envi-
ronment with high-quality boundary conditions informed by
radar- and gauge-corrected precipitation and bias-corrected
shortwave radiation, which also leads to high skill in the
simulated land surface conditions. Partly as a result of the
high skill of the NLDAS-2 meteorology, data assimilation of
variables such as soil moisture and snow has only reported
marginal success in this configuration (Kumar et al., 2014).
The assimilation of LAI, on the other hand, has been more
impactful as it was shown to detect impacts of agricultural
activity, which is not easily captured through high-quality
boundary conditions alone (Kumar et al., 2019b). In gen-
eral, demonstration of additional improvements through data
assimilation in the NLDAS-2 configuration is indicative of
the significant utility of remote sensing inputs, as such high-
quality boundary conditions are not routinely available in
other regions of the world.

As described in detail in Konings et al. (2017), a num-
ber of approaches have been used to retrieve VOD from mi-
crowave sensors. Here we employ VOD retrievals primarily
from two approaches for data assimilation. The Land Param-
eter Retrieval Model (LPRM; Owe et al., 2008) uses single-
frequency, polarized brightness temperature in the range of
1–20 GHz to retrieve both soil moisture and VOD. In this
study, we use the C-band (6.9 GHz) and X-band (10.7 GHz)
based VOD retrievals from the LPRM. The C- and X-band
measurements are less sensitive to cloud water content and
more sensitive to soil moisture and vegetation canopy, which
are also prone to radio frequency interference (RFI). NASA’s
SMAP mission operates in a protected L-band over the U.S.,
which minimizes the impact of RFI contamination. The sen-
sitivity of L-band to cloud water content is lower compared
to the C- and X-bands. In addition, the L-band measurements
provide more sensitivity to deeper soil moisture and canopy
layers.

To our knowledge, this is one of the first reported stud-
ies of continental-scale assimilation of VOD retrievals within

Hydrol. Earth Syst. Sci., 24, 3431–3450, 2020 https://doi.org/10.5194/hess-24-3431-2020



S. V. Kumar et al.: Utility of VOD retrievals 3433

LSMs. Specifically, this article addresses the following re-
search questions.

– What is the impact of assimilating VOD retrievals from
X-, C-, and L-band passive microwave remote sensing
instruments on water and carbon states?

– How does the utility of passive microwave VOD assim-
ilation compare to that of assimilating vegetation (LAI)
retrievals from optical instruments?

– Does assimilating L-band VOD provide independent
benefits to that from incorporating surface soil moisture
retrievals? Can improved simulation of water and car-
bon states be developed from the simultaneous use of
VOD and soil moisture?

These questions are addressed by examining the impact
of assimilation with the use of a large suite of independent
reference datasets of soil moisture, evapotranspiration, gross
primary productivity (GPP), streamflow, and terrestrial water
storage (TWS). Section 2 describes the details of the model
configuration, datasets used, and assimilation configuration.
The results of various data assimilation simulations are de-
scribed in Sect. 3. Finally, Sect. 4 summarizes the main find-
ings of the study.

2 Study settings

2.1 Data

VOD, an integrated measure of the vegetation structure and
water content, is typically estimated as part of the radiometric
soil moisture retrieval approach based on the first-order τ -ω
model (Mo et al., 1982). In this model, the L-band bright-
ness temperature (Tb,p) estimates at the top of the atmosphere
for horizontal and vertical polarizations (denoted by the sub-
script p) are represented as

Tb,p = Ts
(
1− rp

)
γ + Tc(1−ω)(1− γ )

(
1+ rpγ

)
, (1)

where Ts is the surface soil temperature, Tc is the canopy tem-
perature, rp is the rough surface reflectivity, ωp is the scatter-
ing albedo, and γ is the vegetation transmissivity. γ , which
represents the attenuation of the emission due to vegetation,
is a function of VOD and the measurement incidence angle
θ .

γ = exp−
(

VOD
cosθ

)
(2)

VOD is determined by the canopy structure and the dielec-
tric properties of the canopy layer. When VOD is low (∼ 0),
the attenuation of the microwave signal is small. Soil mois-
ture is estimated from rp using Fresnel equations that relate
rp to the dielectric constant of the soil. A more detailed de-
scription of the VOD formulation is provided in Grant et al.
(2016).

As mentioned earlier, the X- and C-band-based VOD
datasets used in this study are based on LPRM to re-
trieve VOD and soil moisture from dual-polarized passive
microwave observations. The LPRM uses the τ -ω model
to characterize the emission and radiative transfer of low-
frequency (1–20 GHz) microwave emission from the soil,
vegetation, and atmosphere to the top-of-atmosphere bright-
ness temperature recorded by the satellite. Unique to the
LPRM, the method includes the analytical solution of the
τ -ω model for polarized emission that describes the rela-
tionship between the microwave polarization difference ra-
tio (MPDI) and VOD (Meesters et al., 2005). Within the
framework of the τ -ω model, this allows for the retrieval
of both VOD and soil moisture and has been implemented
with all existing passive microwave satellites with frequen-
cies from the L- to Ku-bands and from 1979 to present
(Owe et al., 2008; Parinussa et al., 2011; der Schalie et al.,
2016). The spatial resolution of this product is 0.25◦ with
a global extent of the non-frozen land surface. The tem-
poral resolution is 1–2 d for the morning overpass. In this
study, we employ the VOD retrievals from LPRM version 6
(Van der Schalie et al., 2018), available from the VOD cli-
mate archive (VODCA; Moesinger et al., 2020). VODCA
provides products from multiple sensors, including the Ad-
vanced Microwave Scanning Radiometer – Earth observ-
ing system (AMSR-E) aboard NASA’s Aqua satellite, the
AMSR2 instrument onboard the Global Change Observa-
tion Mission-Water (GCOM-W), the WindSat microwave ra-
diometer aboard the joint DoD/Navy Coriolis platform, the
Tropical Rainfall Measuring Mission’s (TRMM) Microwave
Imager (TMI), and the Global Precipitation Measurement
(GPM) Microwave Imager (GMI). The C-band VOD re-
trievals rely on AMSR-E, AMSR2, and WindSat, whereas
the X-band VOD retrievals include data from AMSR-E,
AMSR2, WindSat, TMI, and GMI.

The SMAP satellite launched in January 2015 is a mis-
sion dedicated to measuring soil moisture and freeze/thaw
states, employing a passive microwave radiometer to collect
measurements of vertical and horizontal polarizations of L-
band brightness temperature data at an incident angle of 40◦.
The retrievals from SMAP are also developed using the τ -ω
model. The soil moisture retrievals are made using a single-
channel algorithm using the vertical polarizations (Chan
et al., 2018), whereas the VOD retrievals employ both po-
larized brightness temperature observations (Chaubell et al.,
2020). Though the sampling resolution of the SMAP ra-
diometer is approximately 36 km, oversampling of the an-
tenna overpasses is used to enhance the spatial resolution
to 9 km. This 9 km, level 2 SMAP dataset (SPL2SMP_E) is
used in this study.

2.2 Model configuration

The model domain used in this study covers the CONUS
with an extent of 25–53◦ N and 125–67◦W at 1/8◦ spatial
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resolution (Fig. 1). Hourly NLDAS-2 meteorological inputs
are used to drive the Noah-MP land surface model (ver-
sion 3.6), which is the next generation version of the Noah
LSM. Compared to Noah, Noah-MP provides multiple op-
tions for various land surface physics computations, includ-
ing multilayer snowpack, options for surface water infiltra-
tion, runoff, and groundwater, representation of an uncon-
fined groundwater aquifer, and a dynamic vegetation model
(Niu et al., 2011; Yang et al., 2011). Note that the prognos-
tic vegetation model of Noah-MP v3.6 was used by Kumar
et al. (2019b) to demonstrate the impact of assimilating LAI
retrievals from the Moderate Resolution Imaging Spectrora-
diometer (MODIS) aboard the Terra and Aqua satellites. In
addition to Noah-MP, the Hydrological Modeling and Analy-
sis Platform (HyMAP; Getirana et al., 2012) model is used to
develop estimates of routed streamflow using the gridded sur-
face runoff and baseflow fields from Noah-MP. In this study,
the impacts of regulation and reservoir operations on stream-
flow are not modeled within HyMAP.

The model and data assimilation integrations in this study
are conducted during a time period of 2000 to 2018. The ini-
tial conditions are generated through a long spinup of Noah-
MP. The model is initialized with uniform conditions and is
run from 1979 to 2018 twice. It is then reinitialized in 1979
with the climatological average conditions derived from the
spinup. Finally, the initial conditions at the beginning of year
2000 are used for the model simulations in this article.

The NASA Land Information System (LIS; Kumar et al.,
2006) is used to facilitate the model simulations presented
in this article. LIS is a comprehensive land surface model-
ing system that includes the interoperable support for a large
suite of land surface models, data assimilation algorithms,
and observational data sources. As part of this study, the DA
capabilities in LIS are extended to enable the assimilation of
VOD retrievals, described in Sect. 2.3. The LIS framework
also includes a verification system known as the Land surface
Verification Toolkit (LVT; Kumar et al., 2012), enabling the
systematic verification and evaluation of modeled land sur-
face states against independent measurements and datasets.
LVT-based evaluations are used in this study to assess the
utility of VOD assimilation approaches.

2.3 Data assimilation configuration

Similarly to the assimilation strategy employed in Kumar
et al. (2019b), a 1D ensemble Kaman filter (EnKF; Reichle
et al., 2002) method is used for the assimilation of VOD
retrievals. The EnKF algorithm works with an ensemble of
model states, which is propagated forward in time using the
LSM and updated toward the observation based on the rela-
tive uncertainty of the model states and the observation. The
model state update at time k is represented by the following
equation:

xi+k = x
i−
k +Kk

[
yik −Hkx

i−
k

]
, (3)

where xi−k and xi+k represent the model state for the ith en-
semble member before and after the update, respectively. The
observation vector is represented by yk , which is connected
to the model states through the observation operator Hk . The
relative weight given to the innovations

([
yik −Hkx

i−
k

])
in

the analysis update is determined by the Kalman gain term
(Kk). In this study, the innovation calculations employ obser-
vations interpolated to the model grid using a nearest neigh-
bor approach.

As described in Kumar et al. (2019b), the innovations in
the LAI DA configuration are specified by comparing the
model prognostic LAI variable with the observations. The
yk in this case is the remotely sensed LAI and Hkx

i−
k is the

model’s LAI estimate. In the case of VOD assimilation, the
computation of the innovations is tricky as Noah-MP does
not directly estimate VOD within the model. To overcome
this limitation, the VOD observations are rescaled into the
LAI space in the data assimilation configuration. The rescal-
ing is performed using a seasonally varying CDF matching
(Kumar et al., 2015) and by using the MODIS-based LAI
observations from the Global Land Cover Facility (GLCF)
Global LAnd Surface Satellites (GLASS; Xiao et al., 2016)
project at the University of Maryland as the LAI reference.
The MODIS-based LAI retrievals from the GLASS LAI
product are generated using a general regression neural net-
work approach, enabling a spatially and temporally continu-
ous record of LAI available at 8 d intervals on a 0.05◦ regular
latitude–longitude global grid. We use GLASS data as the
LAI reference, due to the improved spatio-temporal cover-
age as well as the high quality of the product established in
intercomparison studies (Liao et al., 2012; Fang et al., 2013;
Xiao et al., 2016). Monthly CDFs using multi-year informa-
tion are computed for both the VOD and LAI datasets using
all available data, at every model grid point. For example,
the LPRM X-band and C-band CDFs are computed using
datasets from 2002 to 2018, whereas SMAP CDFs are com-
puted using the available data from 2015 to 2019. To increase
the sampling density in the SMAP CDF calculations, a spa-
tial sampling window of 2 pixels is employed. The GLASS
LAI CDFs are computed using a time period of 2000 to 2018.
Note that the rescaling strategy used here also relies on the
fact that the systematic errors between the GLASS LAI data
and the NoahMP LAI are small, as demonstrated in Kumar
et al. (2019b). In this prior study when GLASS LAI retrievals
were assimilated within NoahMP, the demonstrated improve-
ments were primarily from the adjustment of vegetation/crop
seasonality, rather than from the correction of systematic er-
rors. In addition, the positive impacts from the use of this
strategy shown in the following sections further confirm that
this rescaling approach is reasonable.

The rescaling is performed with the assumption that there
is a strong correlation between VOD and LAI. The use of
VOD as an analog to existing vegetation measurements such
as optical-infrared indices and fluorescence has been sug-
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Figure 1. Map of the modeling domain with the UMD landcover classification as the background. The locations A, B, C, and D denote the
areas used for time series comparisons to examine the impact from VOD DA.

gested in prior studies (Konings et al., 2017). For exam-
ple, Albergel et al. (2018) demonstrated that the modeled
LAI and VOD derived from the C-band backscatter mea-
surements from the ASCAT sensor (Vreugdenhil et al., 2016,
2017) had high correlations over most of the CONUS. Fig-
ure 2 presents a similar comparison, where maps of the cor-
relation of X-, C-, and L-band retrievals of VOD against the
MODIS-based LAI retrievals from the GLASS project are
shown. Based on the mutual availability of datasets, the cor-
relation maps are generated using time periods of 2002–2018
and 2015–2018 for the LPRM and SMAP comparisons, re-
spectively. Strong correlations are observed in the LPRM X-
band VOD vs. LAI comparisons in most parts of the do-
main except over the arid, southwestern region of the U.S.
The agreements between the LPRM X-band VOD and LAI
are particularly strong over the eastern U.S., agricultural ar-
eas of the Midwest, and central California valley, which are
regions of high vegetation density. The level of agreement
between VOD and LAI is weaker in the C-band and L-band
comparisons compared to the X-band. This is consistent with
the fact that the attenuation of the lower-frequency measure-
ments from vegetation is less compared to that for the X-
band. The documented influence of RFI contamination over
the CONUS (Njoku et al., 2005) is also evident in the C-
band comparisons. Interestingly, the SMAP-based L-band re-
trievals of VOD show stronger correlations with LAI than
those from the C-band, particularly in the eastern U.S. This is
likely a function of data from different sensing platforms, the
use of different retrieval algorithms, and different data record
lengths. As documented in prior studies, the high-frequency
VOD measurements are more sensitive to the top of the veg-
etation (Konings et al., 2017). The L-band measurements,
on the other hand, are more representative of the vegetation
changes in the deeper layers of the canopy. The strong rela-
tionship between VOD and LAI observed in Fig. 2 confirms
that the rescaling procedure used in the DA configuration is
reasonable.

This article also compares and contrasts the impact of
assimilating VOD with that from incorporating soil mois-
ture retrievals from the L-band microwave instruments. Soil

Figure 2. Correlation of VOD retrievals from LPRM X-band (a),
LPRM C-band (b), and SMAP L-band (c) against the MODIS-
based LAI retrievals. The LPRM and SMAP comparisons employ
data during the 2002–2018 and 2015–2018 time periods, respec-
tively.

moisture in the LSMs is a model-specific quantity, an in-
dex of the moisture state (Koster et al., 2009). As a result,
there are significant differences in soil moisture estimates
from different LSMs, even when forced with the same mete-
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orology and land surface parameters (Dirmeyer et al., 2006).
Similarly, remote-sensing-based estimates of soil moisture
are also indirect measurements generated through a retrieval
model from direct measurements of the microwave emis-
sion of the land surface. Therefore, direct assimilation of soil
moisture without resolving these inconsistencies is meaning-
less. Here we apply the commonly used strategy of CDF
matching (Reichle and Koster, 2004) to address the relative
differences between the remote sensing and LSM-based soil
moisture by rescaling the soil moisture retrievals into the
LSM climatology before assimilation. The CDFs are com-
puted separately at each grid point on a monthly basis. Note
that such a configuration only incorporates the anomaly in-
formation into the soil moisture retrievals and ignores the in-
formation inherent in the mean soil moisture signals (Kumar
et al., 2015). Similarly to the strategy used in prior studies,
soil moisture retrievals are excluded near water bodies, for
being at the edge of the swath, when soil is frozen/covered
by snow, and when the vegetation cover is thick (Kumar
et al., 2019a), to account for the known limitations of passive
microwave-based soil moisture retrievals. Similar flags ex-
cept for thick vegetation are also applied to screen out VOD
retrievals.

An ensemble size of 20 is used in the data assimilation
integrations, with perturbations applied to a number of me-
teorological fields and the model state vector to develop rep-
resentations of model uncertainty. Based on the settings used
in recent DA studies in the NLDAS-2 configuration (Kumar
et al., 2019a, b), the precipitation (P ) and downward short-
wave radiation (SW) fields are perturbed with multiplicative
perturbations with a mean of 1 and standard deviations of
0.3 and 0.5, respectively. Further, additive perturbations with
mean zero and standard deviation of 50 W m−2 are applied
to the downward longwave radiation (LW) fields. The hourly
forcing perturbations also include cross-correlations (ρ) be-
tween the forcing variables, with values of ρ(SW,P )=

−0.8, ρ(SW,LW)=−0.5, and ρ(LW,P )= 0.5. For VOD
DA, additive perturbations with a standard deviation of 0.01
are applied to the model LAI fields (Kumar et al., 2019b), ev-
ery 3 h. The updated LAI from DA is divided by the specific
leaf area to revise the leaf biomass variable within Noah-
MP. The state vector used in the soil moisture DA consists
of the top soil moisture layer of Noah-MP, which is per-
turbed with an additive noise of 0.02 m3 m−3, applied every
3 h. The perturbations also include time series correlations
employed through a first-order autoregressive (AR(1)) model
with timescales of 24 and 3 h, for the forcing and model state
variables, respectively. The input observation error standard
deviation is set to 0.04 m3 m−3 for assimilating SMAP soil
moisture retrievals, whereas the observation error standard
deviation is set to 0.05 for the scaled VOD retrievals, based
on settings from recent studies employing soil moisture (Ku-
mar et al., 2019a) and LAI (Kumar et al., 2019b) retrievals.
The assimilation of each dataset is performed in a sequential

manner, based on their respective measurement or overpass
times.

3 Results

This section presents an evaluation of the impact of assimilat-
ing VOD retrievals on key terrestrial water and carbon states
and fluxes. The impact of assimilating the X-band and C-
band VOD retrievals is presented first, followed by the eval-
uation of assimilating L-band VOD retrievals from SMAP.
Since soil moisture is typically considered the primary re-
trieval from microwave remote sensing, we also evaluate
the relative benefits of assimilating both SMAP surface soil
moisture and VOD retrievals. The impact of DA is quantified
by comparing to a large suite of reference measurements of
soil moisture, evapotranspiration, GPP, and streamflow.

3.1 Impact of assimilating X-band and C-band VOD
retrievals

The impact of assimilating VOD retrievals on the simulated
ET estimates is shown in Fig. 3, which shows the change in
RMSE and correlation (R) of ET in the DA simulation rela-
tive to the OL. These evaluation metrics are computed using
two reference data products: (1) the gridded 0.5◦, monthly
FLUXNET multi-tree-ensemble (MTE) product based on
tower ET measurements (Jung et al., 2009); available from
1982 to 2008) and (2) the 4 km, daily Atmosphere-Land
Exchange Inverse (ALEXI; Anderson et al., 2007) model
product, developed using TIR measurements, available from
2001 onwards. Strictly speaking, ALEXI is a model prod-
uct with associated biases and errors of its own. Compara-
tively, FLUXNET MTE can be considered a close analog to
a true ground-reference product, since it is derived by em-
pirically upscaling eddy covariance measurements, though it
is also affected by the sampling density and consistency of
site measurements. Therefore, RMSE is used as the metric
of evaluation in the FLUXNET MTE comparison, whereas
R is used to assess the improvements in ET from DA relative
to ALEXI. Figure 3 indicates that the assimilation of VOD
generally provides beneficial impacts on ET, consistently in
the comparisons against both reference datasets. In addition,
most prominent improvements are obtained over the agricul-
tural areas over the Midwest U.S., lower Mississippi basin,
the central California valley, and parts of Mexico. Prior stud-
ies have documented that ALEXI is particularly skillful in
detecting spatial features from agricultural management im-
pacts (Hain et al., 2015). The fact that the spatial pattern of
improvements in ET in Fig. 3 is well correlated with the crop
areas provides added confirmation that VOD assimilation is
helpful in improving the representation of managed vegeta-
tion (as noted in Kumar et al., 2019b).

The impact of VOD assimilation on the carbon fluxes is as-
sessed by focusing on GPP, which represents the total carbon

Hydrol. Earth Syst. Sci., 24, 3431–3450, 2020 https://doi.org/10.5194/hess-24-3431-2020



S. V. Kumar et al.: Utility of VOD retrievals 3437

Figure 3. RMSE (W m−2) or R (–) differences of evapotranspiration from X-band VOD (a, c) and C-band VOD (b, d) assimilation relative
to the OL integration, using two reference datasets (FLUXNET MTE used in the top row and ALEXI in the bottom row). The time periods
in the comparisons are 2000–2008 and 2000–2018, for FLUXNET MTE and ALEXI, respectively. In each plot, the warm and cool colors
represent the improvement and degradation due to VOD DA, respectively.

Figure 4. Changes in RMSE of GPP (expressed as RMSE(OL)−RMSE (DA)) in units of g m−2s−1 using the FLUXCOM data as the
reference (a, b) and R of modeled GPP with solar-induced fluorescence data from GOME-2 (c, d), expressed as R (DA)−R (OL). The warm
colors represent improvements from DA and cool colors represent degradations resulting from DA.

fixation through photosynthesis. The model-simulated GPP
is compared against two datasets: (1) gridded 0.5◦ estimates
of GPP from the FLUXCOM project (Tramontana et al.,
2016; Jung et al., 2017) and (2) remote sensing retrievals
of solar-induced fluorescence (SIF) from the Global Ozone
Monitoring Experiment-2 (GOME-2) aboard the MetOp-A
satellite (Joiner et al., 2014; Guanter et al., 2014). Similarly
to FLUXNET MTE, the FLUXCOM estimates are produced
by upscaling point measurements using machine learning ap-
proaches. SIF, which is a measure of the re-emission of light

during photosynthesis, is considered an observational analog
of GPP. Figure 4 provides an evaluation of GPP against these
two reference datasets using two different metrics. Compared
to FLUXCOM, the improvements in RMSE from the X-band
and C-band VOD are shown in Fig. 4a and b. Figure 4c and d
show the improvements in correlation (R) of GPP against the
GOME-2 SIF measurements from VOD DA. These indepen-
dent comparisons against two different products further con-
firm the beneficial role of VOD DA over the agricultural re-
gions, similar to the patterns in the ET comparisons of Fig. 3.
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The RMSE of simulated GPP is reduced and the correlation
with the SIF retrievals is improved through the assimilation
of VOD.

Figures 3 and 4 also offer assessments of the relative util-
ity of X-band and C-band VOD retrievals. While the spa-
tial patterns of improvements are generally similar in both
X- and C-band assimilation configurations, the assimila-
tion of X-band VOD provides stronger improvements. This
is consistent with the fact that the attenuation of the mi-
crowave signal reduces for lower-frequency measurements.
As both Figs. 3 and 4 indicate the strong influence of veg-
etation type in the improvement maps of ET and GPP, we
quantify the domain-averaged percentage improvements by
vegetation type, shown in Fig. 5. For simplicity, we use a
simpler vegetation classification scheme by grouping ever-
green needleleaf, broadleaf needleleaf, deciduous needleleaf,
and deciduous broadleaf forests into a “Forest” category,
the mixed forests, woodlands, and wooded grasslands into
a “Mixed forests” category, and closed shrublands and open
shrublands into a “Shrublands” category. Note also that the
percentage improvements shown in Fig. 5 are for different
metrics. For FLUXNET and FLUXCOM comparisons, the
percentage improvements are shown for RMSE, whereas for
ALEXI and GOME-2, the percentage improvements in R are
shown. Figure 5 confirms that the largest impact of VOD as-
similation is over croplands, providing domain-averaged im-
provements of up to 10 % and 38 % in ET and GPP, respec-
tively. Significant improvements are also observed over areas
with moderate vegetation such as grasslands and shrublands,
while over forests and mixed forests, the level of improve-
ments reduces. Over bare soil and urban areas, the impact of
VOD assimilation is very small, due to the lack of vegeta-
tion influence on ET and GPP. As seen in Fig. 5, compared
to X-band VOD-DA, the level of improvements with C-band
VOD-DA reduces. For ET, at a domain-averaged scale, the
assimilation of C-band and X-band VOD retrievals provides
4.6 % and 6.8 % improvements in RMSE, respectively, when
compared to FLUXNET MTE. Compared to ALEXI, C-band
VOD DA provides 3.1 (2.0) % domain-wide improvements
in RMSE (R) of ET, respectively. These percentage improve-
ments in RMSE (R) increase to 4.0 (2.7) % for X-band VOD
assimilation. Similarly, the domain-averaged percentage im-
provement in RMSE of GPP with C-band VOD assimilation
is 17.3, and it improves to 22.3 with X-band VOD assimila-
tion. The domain-averaged correlation of the OL-based GPP
with GOME-2 SIF is 0.53, and it improves to 0.62 and 0.66
with C-band and X-band assimilation, respectively.

The impact of VOD assimilation on other land surface
states such as soil moisture, terrestrial water storage, and
streamflow is also evaluated using a number of reference
products. The in situ measurements from the International
Soil Moisture Network (ISMN; Hollinger and Isard, 1994;
Jackson et al., 2010; Dorigo et al., 2011, 2013) are used
for evaluating soil moisture fields. Similarly to the Kumar
et al. (2019b) study, hourly data from 934 stations from nine

different networks within ISMN are used for evaluating the
soil moisture estimates. The surface and root zone soil mois-
ture values are defined as the soil moisture content of the
top 10 cm and 1 m of the soil column, respectively. These
are computed from the layer soil moisture values as suitably
weighted vertical averages based on the thickness of the soil
layers. As it is well known that model-simulated soil mois-
ture and in situ measurements are significantly biased relative
to each other, the soil moisture evaluations are performed
using the anomaly correlation (R) metric. The anomaly R
value at each grid point is computed based on daily soil
moisture anomalies (of model and in situ observations) cal-
culated by subtracting the multi-year monthly mean values
from the daily averages. The surface and root zone soil mois-
ture anomalies are computed as the differences between the
daily soil moisture and the respective monthly mean values.

Overall, VOD assimilation has marginal impacts on the
simulated soil moisture estimates. The domain-averaged
anomalyR values for the OL surface and root zone soil mois-
ture are 0.54 and 0.47, respectively. With the C-band assimi-
lation, these values marginally improve to 0.55 and 0.48, re-
spectively. Similarly, the X-band assimilation also leads to
domain-averaged anomaly R values of 0.55 for surface soil
moisture and 0.49 for root zone soil moisture. Though these
domain-averaged changes from assimilation are not statis-
tically significant, there are larger regional improvements,
particularly for the root zone estimates. Notably, regional
improvements are observed over the Central Plains and the
lower Mississippi regions (not shown), consistent with the
spatial patterns seen in the ET and GPP evaluations.

The impact of VOD assimilation on streamflow is evalu-
ated by comparing to the U.S. Geological Survey (USGS)
daily gauge measurements at locations minimally impacted
by reservoir operations (Kumar et al., 2014, 2019b). The
impact of DA is quantified using the normalized informa-
tion contribution (NIC) metric on Nash–Sutcliffe efficiency
(NSE) of streamflow (Kumar et al., 2014), with positive and
negative NIC values indicating benefit and degradation from
assimilation, respectively. Overall, there is a small but ben-
eficial impact from VOD assimilation on streamflow. The
domain-averaged NIC improvements from X-band and C-
band VOD DA are 0.03 and 0.02, respectively, with larger
improvements noticed over the agricultural areas of the Mid-
west U.S.

Finally, the simulated TWS anomalies are also evalu-
ated against the Gravity Recovery and Climate Experi-
ment (GRACE) satellite-based Tellus product (http://grace.
jpl.nasa.gov/data/get-data/jpl_global_mascons/, last access:
15 December 2019), available on 1◦ horizontal resolution
grids (Landerer and Swenson, 2012), during the lifespan of
the mission (2003–2017). The domain-averaged anomaly R
for the OL-based TWS is 0.45, and it improves to 0.48 with
C-band and X-band VOD assimilation. These improvements
are statistically significant. In addition, larger improvements
in anomaly R (as high as ∼ 0.28) are observed over the agri-
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Figure 5. Domain-averaged percentage improvements in ET (a, b) and GPP (c, d) stratified by vegetation type. Panels (a, c) represent the
impact of DA from X-band VOD, whereas panels (b, d) represent the impact of C-band VOD DA. The percentage improvements in ET
using the FLUXNET and ALEXI reference datasets are expressed for the RMSE and R metrics, respectively. Similarly, the percentage
improvements in GPP using FLUXCOM and GOME-2 SIF are for the RMSE and R metrics, respectively.

cultural areas of the Central Plains and central California (not
shown).

3.2 Comparing assimilation of optical sensor-based
LAI and passive microwave-based VOD

The impact of passive microwave-based VOD assimilation
relative to assimilating LAI retrievals from optical instru-
ments is presented in Table 1. The percentage improvements
in various terrestrial water and carbon components against
reference datasets, from the assimilation of MODIS LAI
(from the Kumar et al., 2019b study) and the X- and C-band
VOD retrievals, are presented in this table. Note that both Ku-
mar et al. (2019b) and the current study use the exact same
model configuration, land surface parameters, and boundary
conditions. Overall, the magnitude of improvements from
VOD assimilation is comparable to that of assimilating LAI.
There is a marginal improvement in the aggregate soil mois-
ture skill, where the domain-averaged anomaly R values for
both surface and root zone soil moisture are improved from
LAI and VOD assimilation. VOD and LAI assimilation im-
proves ET estimates, with the percentage improvements in
RMSE ranging from 3 % to 7 %, depending on the reference
dataset used. Overall, comparable improvements in ET are
obtained with X-band VOD DA and LAI DA, with ET esti-
mates from C-band VOD DA being marginally less skillful
than those from LAI DA. LAI and VOD assimilation pro-

vides significant improvements (with approximately 17 %–
24 % domain-averaged improvements) in GPP. Similarly to
the changes in soil moisture, marginal improvements in TWS
and streamflow are obtained from both VOD and LAI assim-
ilation. Note that though the magnitude of added improve-
ments is small for certain variables, larger regional improve-
ments are observed in these comparisons.

Overall, the comparison in Table 1 confirms that VOD DA
is an effective option for incorporating remote sensing-based
inputs of vegetation conditions. Note that the spatial resolu-
tion of passive microwave retrievals is typically coarser than
those from the optical/IR sensors. In addition, passive mi-
crowave measurements are only available from low-earth or-
bits (LEOs) due to the antenna size requirements, so they
cannot provide the diurnal view as available for optical/IR in-
struments from geostationary satellites. Since the results sug-
gest that assimilation of passive microwave-based VOD re-
trievals provides comparable skill to that from optical sensor-
based LAI, assimilation of both types of datasets will allow
the sensing, coverage, and spatial resolution-based limita-
tions of each sensor to be minimized.

3.3 Impact of assimilating L-band VOD retrievals from
SMAP

In this section, the impact of assimilating L-band VOD re-
trievals from SMAP is evaluated and is contrasted with cor-
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Table 1. Comparison of the percentage improvements in domain-averaged skill metrics (relative to the model OL) for DA configurations that
assimilate MODIS LAI (from Kumar et al., 2019b) and those that employ X- and C-band VOD retrievals, for different variables. SFSM –
surface soil moisture, RZSM – root zone soil moisture, ET – evapotranspiration, GPP – gross primary productivity, TWS – terrestrial water
storage, SF – streamflow.

Variable Reference data Metric DA DA-VOD DA-VOD
(units) (LAI) (X-band) (C-band)

SFSM ISMN Anomaly R 0.6 0.7 0.6

RZSM ISMN Anomaly R 2.3 2.6 1.5

ET FLUXNET MTE RMSE 6.5 6.8 4.6
ALEXI RMSE/R 3.3/1.9 4.0/2.7 3.1/2.0

GPP FLUXCOM RMSE 21.8 22.3 17.3
GOME-2 SIF R (–) 17.0 24.5 17.0

TWS GRACE Anomaly R 6.0 6.6 6.8

SF USGS RMSE 1.3 1.8 1.4

responding improvements obtained with higher-frequency
VOD assimilation. As SMAP data availability is limited to
April 2015–present, all evaluations in this section are limited
to April 2015–December 2018. Note that not all reference
datasets used in Sect. 3.1 are available during this limited
time period.

Figure 6 quantifies the impact of assimilating L-band VOD
retrievals from SMAP on ET and GPP. Similarly to the re-
sults seen with the X- and C-band VOD assimilation, SMAP
VOD DA also provides systematic improvements in the sim-
ulated ET and GPP, comparable to those from X-band VOD
assimilation. The patterns of improvements in ET in the
ALEXI comparison are similar to those in Fig. 3. Strong im-
provements in ET and GPP over the corn and soybean areas
of the Midwest and lower Mississippi are observed in the
SMAP VOD DA evaluations. The ALEXI comparison indi-
cates that the assimilation of VOD retrievals also improves
the simulation of ET over the southeastern U.S., an area with
thick vegetation density. Similar patterns are seen in the com-
parisons to GOME-2 SIF, where significant improvements in
the correlation of simulated GPP with SIF observations are
obtained over the southeastern U.S. and agricultural areas of
the Midwest. These results suggest that the significant utility
of the VOD retrievals is over the agricultural areas and lo-
cations with strong vegetation seasonality. Note that the pat-
terns in Figs. 3 and 6 are not exactly equivalent due to the
different time periods used in the evaluations.

To further examine the impact of VOD DA, Fig. 7 shows
the time series of VOD, rescaled VOD (using CDF match-
ing) as LAI, and the corresponding change in ET in DA sim-
ulations (relative to OL) at two locations. Location A is in
Iowa with cropland as the dominant land cover and location
B is in Montana with grassland as the dominant land cover
(Fig. 1). The cropland location is used as an analog of an
area where agricultural activity is likely present, whereas the

Figure 6. Changes in the skill of simulated evapotranspiration
and GPP as a result of assimilating L-band VOD estimates from
SMAP. Panel (a) represents the changes in R of evapotranspira-
tion (expressed as R(DA)−R (OL)), using ALEXI data as the ref-
erence. Panel (b) shows the changes in R of modeled GPP using
solar-induced fluorescence data from GOME-2 as the reference, ex-
pressed as R (DA)−R (OL). The warm colors represent improve-
ments from DA and cool colors represent degradations resulting
from DA.

grassland location is representative of a region where the nat-
ural variability is the dominant factor in the vegetation and
ET seasonality. Note also that at location A, large improve-
ments in ET and GPP are observed, whereas at location B,
only marginal improvements are noticed in ET and GPP.

Over the cropland location A, both the L-band and X-band
VOD estimates are consistent with each other, in terms of
the amplitude and seasonality. The peak VOD seasonality is
in the late summer and early fall, which is reflected in the
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Figure 7. Time series of VOD (a, b), LAI (c, d), and changes in evapotranspiration relative to the OL (e, f), for years 2017 and 2018, averaged
over a cropland (location A in Fig. 1) and woodland (location B in Fig. 1) area. The left- and the right-hand side columns represent locations
A and B, respectively.

rescaled LAI estimates. The model OL-based LAI, on the
other hand, has an earlier peak, in the summer months. The
assimilation of the rescaled VOD estimates leads to correc-
tions in both the magnitude and phase of the LAI relative to
the OL estimates. This also leads to a corresponding phase
shift and increase in the peak ET estimates from DA. The
changes in the ET in the DA simulations over location A
range from approximately−30 to 40 W m−2 during the sum-
mer and fall months.

Compared to location A, over the grassland location B,
there are small climatological differences in the VOD re-
trievals from the X- and L-bands. These amplitudinal differ-
ences are reduced by the CDF matching, as the rescaled X-
and L-band VOD estimates are similar to each other. Over-
all, the changes in LAI in the assimilation runs relative to the
OL are small, likely because this is an area with sparse veg-
etation. In year 2017, the main impact of DA is to increase
the amplitude of LAI, whereas in 2018, the LAI estimates in
the DA and OL are fairly consistent, except for a small phase
shift. In the summer and fall months, the assimilation leads to
approximately ±10 W m−2 changes in ET. The independent
evaluations of ET in Fig. 3 confirm that these phase and mag-
nitude corrections in LAI through the VOD DA (particularly
at location A) are accurate. Similar but more muted impacts
relative to the X-band DA are seen from the C-band DA (not
shown).

3.4 Comparison of soil moisture and VOD DA

As there is a long legacy of retrieving soil moisture from
microwave radiometry, the key focus of the associated mis-
sions and data assimilation studies has been on evaluating
and demonstrating the utility of retrieved soil moisture mea-
surements (Reichle et al., 2007; Q. Liu et al., 2011; Draper
et al., 2012; Hain et al., 2012; Kumar et al., 2014; Lievens
et al., 2017). These studies demonstrate the potential of re-
mote sensing soil moisture retrievals to improve the simu-
lation of moisture states. Efforts to translate the improve-
ments in the soil moisture states to other water and energy
stores, on the other hand, have only reported marginal suc-
cess. Though changes in soil moisture states from DA im-
pact the land–atmosphere fluxes at diurnal temporal scales
(Santanello et al., 2016), their impacts at broader spatial and
temporal scales are small. For example, studies at continental
scales such as Peters-Lidard et al. (2011) and Martens et al.
(2016) reported minor impacts on the simulated ET estimates
from the assimilation of LPRM soil moisture retrievals. Here
we compare and contrast the relative utility of assimilating
the soil moisture and VOD retrievals from SMAP on various
water and carbon states.

Figures 8 to 10 show the impacts of separately assimi-
lating SMAP soil moisture and VOD retrievals on various
land surface water and carbon states. Using the in situ soil
moisture measurements from ISMN as the reference, Fig. 8
shows the changes in anomalyR of surface and root zone soil
moisture from soil moisture and VOD assimilation. Overall,
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Figure 8. Differences in anomaly R values for surface soil moisture (a, b) and root zone soil moisture (c, d) from the assimilation of soil
moisture (a, c) and VOD (b, d), relative to the OL integration. The warm and cool colors indicate improvements and degradations from DA.
The gray shading indicates locations where the anomaly R differences are not statistically significant.

soil moisture DA has a positive impact on the simulation of
surface soil moisture, particularly in the western U.S. and
High Plains. Approximately 2.14 % improvement in domain-
averaged anomaly R is obtained from SMAP soil moisture
assimilation. The impact of soil moisture DA over the eastern
U.S. is small, as these regions of high vegetation density are
generally excluded from soil moisture DA. Comparatively,
VOD assimilation has little impact on surface soil moisture,
as the changes in anomaly R are not statistically significant
in most locations. Both soil moisture and VOD assimilation
also impact root zone soil moisture estimates, with varying
levels of improvements and degradations across the domain.
The assimilation of SMAP soil moisture improves the root
zone estimates over the lower Mississippi and parts of the
western U.S., including California, Nevada, and Colorado.
The patterns of improvements and degradations in root zone
soil moisture are more mixed in the VOD assimilation re-
sults, over these same areas.

Figure 9 shows the impact of soil moisture assimilation on
ET and GPP. Consistent with prior studies, the impact of soil
moisture assimilation on ET and GPP is small over most of
the domain. Compared to ALEXI, SMAP soil moisture as-
similation marginally improves the correlation of simulated
ET over parts of central California, Washington, Montana,
Texas, and lower Mississippi, with small degradations over
several western states. The SMAP soil moisture assimilation
has little impact on the simulation of GPP, as the change map
of R against the GOME-2 SIF measurements shows no dis-
tinct spatial patterns of improvements or degradations. Com-
paratively, VOD assimilation has a strong and mostly ben-

Figure 9. Differences in R values for ET (a) and GPP (b) from the
assimilation of SMAP soil moisture and VOD relative to the OL
integration, using ALEXI ET and GOME-2 SIF datasets. The warm
and cool colors indicate improvements and degradations from DA.

eficial impact on the simulation of ET and GPP, as shown
in Fig. 6. In the comparisons against ALEXI and GOME-2,
strong patterns of improvements are observed over the agri-
cultural areas of the U.S. such as the Central Plains, lower
Mississippi basin, and central California, from VOD DA.

Similarly to the description in Sect. 3.1, the normalized
NSE improvements are represented using the NIC metric.
Soil moisture assimilation has a beneficial impact on the
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Figure 10. Improvements in streamflow NSE shown as NIC using the USGS daily streamflow observations as the reference for SMAP soil
moisture DA (a) and SMAP VOD DA (b).

streamflow simulation, with improvements over the Midwest
and eastern U.S. and degradations over the southeast and
parts of the Missouri basin and western locations. The im-
pact of VOD assimilation on streamflow is marginal and is
mostly restricted to the Midwest areas, which also are corre-
lated with the corn-growing areas. Note that though there are
some regional patterns of improvements and degradations in
streamflow from soil moisture or VOD DA, these changes
are small (most of the NIC changes are in the range of±0.05
to 0.02).

To further investigate the relative utility of VOD and soil
moisture DA, we compare the time series of changes in sur-
face soil moisture, ET, transpiration, and bare soil evapora-
tion at two locations (C and D) in the domain, in Fig. 11. Lo-
cation C is in the arid western U.S. with moderate vegetation,
whereas location D is in the eastern U.S., representing a wet
region with thick vegetation. In the arid location C, soil mois-
ture DA leads to changes in surface soil moisture primarily in
the summer months, with differences as large as 0.05 m3 m−3

relative to the OL. The changes in soil moisture subsequently
drive the changes in ET estimates. The comparison of the
time series of transpiration and bare soil evaporation indi-
cates that the changes in ET at location C are more directly
connected to the changes in bare soil evaporation. There is
essentially no change in transpiration from soil moisture DA
at this location, but larger changes in bare soil evaporation
occur as a result of changing soil moisture. Comparatively,
at location C, VOD DA has little impact on soil moisture and
ET. The changes in LAI introduced by VOD DA lead to a
small increase in transpiration and a minor reduction in bare
soil evaporation. These changes in the evaporative fluxes are
not driven by the soil moisture changes, but rather by the
small change to the vegetation coverage.

In contrast, over location D, there are little changes in soil
moisture and ET from soil moisture DA, because not many
observations are assimilated over this area with thick vegeta-
tion. The time series of transpiration and bare soil evapora-
tion confirms that soil moisture DA has little impact on the
evaporation regime. VOD DA, on the other hand, leads to

large changes in ET as a result of the changes in LAI. The
increased LAI leads to increased transpiration and root up-
take of soil moisture. The reduction in root zone soil moisture
also leads to reduced bare soil evaporation. Overall, VOD DA
leads to increased ET in the summer months at this location
because of these changes. These comparisons indicate that
there is information in both soil moisture and VOD retrievals
of SMAP that is useful in improving estimates of ET. Soil
moisture information is more impactful over water-limited
regions, where moisture conditions on the land are the pri-
mary controls on the evaporative fluxes. Over areas with high
vegetation and little water limitation, vegetation growth and
stomatal control, more than surface moisture conditions, in-
fluence the ET evolution. Since passive microwave retrievals
of soil moisture are unreliable over such areas, the use of
VOD provides an effective alternative. The above cases show
a direct impact on the relative importance of transpiration vs.
bare soil evaporation in the ET generation. Accurate estima-
tion of this ET partitioning is important for a proper connec-
tion to the carbon cycle (Kumar et al., 2018).

The small improvements in hydrological budget terms
such as ET and streamflow from soil moisture DA are also
partly due to the mechanisms used in soil moisture DA con-
figurations. As noted earlier, because of the use of rescaled
retrievals (using CDF matching) in soil moisture DA, the
analysis updates only reflect the corrections in the anomalies
of soil moisture, rather than large changes in mean soil mois-
ture estimates. The transformed VOD retrievals, on the other
hand, are ingested directly as LAI within the LSM, essen-
tially allowing the incorporation of the information inherent
in the mean VOD/LAI signals. The limited use of the infor-
mation in the soil moisture DA configuration is partly the
reason for the limited impact on water budget states such as
ET.

3.5 Joint assimilation of soil moisture and VOD
retrievals

As the results in the previous section indicate that assimila-
tion of soil moisture and VOD can provide mutually exclu-
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Figure 11. Time series of changes (relative to the OL) in ET, surface soil moisture, transpiration, and bare soil evaporation for years 2017
and 2018, at locations C (western U.S.) and D (eastern U.S.). The left- and right-hand columns represent locations C and D, respectively.

sive information, an assimilation configuration that employs
these retrievals simultaneously is developed. Note that in this
joint configuration, rather than augmenting the observation
vector to encompass both VOD and soil moisture retrievals,
we simply combine the two separate sequential univariate as-
similation instances within a single integration. Similarly to
the univariate configurations, in this multivariate configura-
tion, soil moisture retrievals are used to update the surface
soil moisture state, whereas VOD retrievals are used to up-
date the prognostic LAI variable within the LSM.

Figure 12 summarizes the impact on key water budget
terms as a result of the joint assimilation of soil moisture
and VOD. Overall, the joint assimilation consolidates the
beneficial impact from the univariate assimilation configu-
rations. For example, the multivariate DA configuration pro-
vides improved skills in both surface and root zone soil mois-
ture, whereas the univariate VOD DA has little impact on
surface soil moisture. Similarly, the univariate soil moisture
DA configuration has little influence on the ET skill, whereas
the ET improvement maps from the joint assimilation mirror
the patterns of changes obtained with univariate VOD DA.
The spatial influence of the individual assimilation configu-
rations is also evident in these comparisons. For example, the

ET improvement map (with ALEXI as the reference) from
the joint DA shows strong patterns of improvements in the
eastern U.S. similar to the result from the VOD DA con-
figuration. The improvement in ET is accompanied by even
higher percentage improvements in GPP. It is interesting to
note the strong improvements centered on the Mississippi, as
in where partitioning contributes to ET uncertainty (Kumar
et al., 2018). In the western U.S., there are some patterns
of degradation in ET, similar to what is observed when as-
similating soil moisture alone. Similarly, in the streamflow
comparisons, the joint assimilation shows strong patterns of
improvements in areas east of Mississippi, whereas the im-
pact of assimilation is mostly disadvantageous in the western
parts of the domain. As noted earlier, these patterns reflect
the larger impact of soil moisture and VOD in the water-
limited (western U.S.) and water-sufficient (eastern U.S.) do-
mains.

4 Summary

Vegetation conditions have a significant influence on the ter-
restrial water, energy, and carbon exchanges and feedbacks.
Through stomatal control, plants influence transpiration, root
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Figure 12. Impact of jointly assimilating SMAP surface soil moisture and VOD retrievals on surface soil moisture (a), root zone soil
moisture (b), ET (c), GPP (d), and streamflow (e). Panels (a) and (b) show differences in anomaly R values using ISMN data as the reference;
panel (c) shows the differences in R values for ET using ALEXI as the reference dataset; panel (d) shows the difference in R values for GPP
with GOME-2 SIF retrievals as the reference; panel (e) shows the NIC in streamflow using USGS daily streamflow observations as the
reference. In each panel, the differences in the metric of evaluation are computed relative to the OL.

uptake of soil moisture, and evaporative fluxes. The presence
of vegetation also impacts the evolution of snow by influenc-
ing surface albedo and the amount of net radiation on the land
surface. In addition to the changes in vegetation phenology
driven by natural variability, anthropogenic activities such as
agriculture and vegetation disturbances also significantly al-
ter the vegetation characteristics on the land surface. Data
assimilation of remotely sensed estimates of vegetation con-
ditions within land surface models enables the refinement of
modeled estimates, enhancement of the spatio-temporal cov-
erage of remote sensing measurements, and the extension of
the remote sensing vegetation information to water, energy,
and carbon states and fluxes.

Remote-sensing-based estimates of vegetation conditions
are typically developed from multi-spectral and hyperspec-
tral optical and thermal satellite sensors. Though passive mi-
crowave sensors are often used for retrieving soil moisture
estimates, they also enable the estimation of vegetation op-
tical depth, an analog of above-ground canopy biomass. As
microwave measurements are not influenced by clouds, they
can be made in virtually all weather conditions. This arti-
cle examines the utility of VOD retrievals from passive mi-

crowave sensors by assimilating them within the dynamic
phenology model of the Noah-MP LSM.

The study is conducted in the NLDAS-2 configuration
over the Continental U.S. A suite of publicly available VOD
retrievals from X-, C-, and L-band instruments is assimilated
in Noah-MP using a 1-D ensemble Kalman filter algorithm.
The X- and C-band retrievals are from the Land Parameter
Retrieval Model, whereas the L-band retrievals of VOD are
from SMAP. Since Noah-MP does not include a prognos-
tic representation of VOD, the assimilation is conducted by
transforming the VOD retrievals into LAI estimates, using
the MODIS-based GLASS LAI product. The impact of as-
similating VOD on key water and carbon budget terms is
evaluated by comparing against a large suite of reference
datasets.

The assimilation of VOD from the passive microwave sen-
sors is found to have a significant beneficial impact on im-
proving the simulation of ET and GPP, particularly over the
agricultural areas of the U.S. The assimilation of X-band-
based VOD retrievals is found to provide larger improve-
ments in ET, relative to the assimilation of C-band VOD re-
trievals. The impacts on soil moisture, terrestrial water stor-
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age, and streamflow from VOD DA are found to be marginal.
Regionally, the largest impacts on these variables are also ob-
served over the agricultural areas. Though the time period of
available data is limited, the assimilation of L-band VOD re-
trievals from SMAP is also found to have significant benefi-
cial impacts on the simulation of ET and GPP, similar to that
from the X-band VOD DA. It must be stressed that as the
retrieval algorithms used to develop these VOD products are
different, this particular study is not structured to assess the
relative merits of each algorithm.

Though passive microwave-based measurements are avail-
able in nearly all-weather conditions, their spatial resolu-
tion and temporal frequency are coarser than the optical/IR-
based vegetation estimates. This study compared the impact
of VOD assimilation to that of assimilating optical sensor-
based LAI from a prior study. Overall, the magnitude of im-
provements from VOD DA is comparable to that from assim-
ilating MODIS LAI. These findings confirm that assimilation
of VOD retrievals can provide an effective augmentation or
alternative to assimilating data from optical sensors, enabling
the mitigation of sensing, coverage, and spatial-resolution-
based limitations of each type of sensor.

The relative and joint utilities of assimilating soil mois-
ture and VOD retrievals from SMAP are also examined in
this study. Overall, the assimilation of soil moisture retrievals
has a positive impact on the simulation of surface soil mois-
ture and little impact on evaporative fluxes. In contrast, VOD
DA has significant impacts on the simulation of vegetation
conditions, root zone soil moisture, and evapotranspiration.
Over water-limited domains with sparse vegetation where
soil moisture is the primary control on ET, the assimilation of
surface soil moisture is more beneficial than VOD DA. Over
regions with dense vegetation and where water availability is
not limiting, transpiration has a significant influence on evap-
otranspiration. The assimilation of VOD is more beneficial
in developing improvements in ET over such locations. In
addition, when vegetation coverage is dense, the soil mois-
ture retrievals have large uncertainty and are unreliable. In
those areas, the use of VOD provides an alternate way to de-
velop improved estimates of terrestrial hydrologic responses
informed by remote sensing. The results in the paper also
confirm that the soil moisture and VOD retrievals provide
information that can be jointly exploited through their simul-
taneous assimilation.

As noted in the description of the data assimilation
methodology, the VOD retrievals are assimilated by rescal-
ing them to the GLASS MODIS LAI climatology. This ap-
proach was employed as the prior study Kumar et al. (2019b)
demonstrated significant positive impacts from the assimila-
tion of the GLASS LAI data. Such an approach is needed
also because the LSM does not have a prognostic representa-
tion of VOD. Though the beneficial impacts observed in the
results indicate that this is a reasonable strategy, the rescaling
essentially ignores the information on vertical heterogeneity
in the canopy from these sensors. For example, the X-band

data are documented to be more sensitive to the vegetation,
whereas the L-band data are more representative of the lower
canopy. A more direct use of the VOD data is likely to help in
resolving these sensitivities within modeling. Extensions to
this study that either use a prognostic representation of VOD
or a forward model that simulates VOD will enable such ap-
proaches. The current study serves as a useful benchmark for
such future efforts.

Finally, as noted earlier, the NLDAS-2 configuration is a
conservative environment to evaluate the utility of data as-
similation configurations due to availability of high-quality
boundary condition data. The significant utility of VOD DA
demonstrated in this paper suggests that larger benefits from
VOD DA are likely over areas with lower-quality meteoro-
logical boundary conditions.

Code and data availability. The underlying data can be obtained
by contacting the lead author of this manuscript. The data will then
be served through NASA’s open source data distribution mecha-
nisms, which provide temporary storage for large datasets for a lim-
ited time period. Note that the total data size for all the model runs
and analysis presented in this paper amounts to 966 GB, which is
too large for commonly available open source public data reposito-
ries.

The source code used for the model and data assimilation inte-
grations used in this article can be obtained at Kumar (2020).
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