Articles | Volume 24, issue 5
https://doi.org/10.5194/hess-24-2399-2020
https://doi.org/10.5194/hess-24-2399-2020
Research article
 | 
12 May 2020
Research article |  | 12 May 2020

A novel regional irrigation water productivity model coupling irrigation- and drainage-driven soil hydrology and salinity dynamics and shallow groundwater movement in arid regions in China

Jingyuan Xue, Zailin Huo, Shuai Wang, Chaozi Wang, Ian White, Isaya Kisekka, Zhuping Sheng, Guanhua Huang, and Xu Xu

Related authors

The application of Budyko framework to irrigation districts in China under various climatic conditions
Hang Chen, Zailin Huo, Lu Zhang, Jing Cui, Yingying Shen, and Zhenzhong Han
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-80,https://doi.org/10.5194/hess-2021-80, 2021
Manuscript not accepted for further review
Short summary
Changing climate and implications for water use in the Hetao Basin, Yellow River, China
Ian White, Tingbao Xu, Jicai Zeng, Jian Yu, Xin Ma, Jinzhong Yang, Zailin Huo, and Hang Chen
Proc. IAHS, 383, 51–59, https://doi.org/10.5194/piahs-383-51-2020,https://doi.org/10.5194/piahs-383-51-2020, 2020
Short summary
A field-validated surrogate crop model for predicting root-zone moisture and salt content in regions with shallow groundwater
Zhongyi Liu, Zailin Huo, Chaozi Wang, Limin Zhang, Xianghao Wang, Guanhua Huang, Xu Xu, and Tammo Siert Steenhuis
Hydrol. Earth Syst. Sci., 24, 4213–4237, https://doi.org/10.5194/hess-24-4213-2020,https://doi.org/10.5194/hess-24-4213-2020, 2020
Short summary
An improved method of Newmark analysis for mapping hazards of coseismic landslides
Mingdong Zang, Shengwen Qi, Yu Zou, Zhuping Sheng, and Blanca S. Zamora
Nat. Hazards Earth Syst. Sci., 20, 713–726, https://doi.org/10.5194/nhess-20-713-2020,https://doi.org/10.5194/nhess-20-713-2020, 2020
Short summary
A unique vadose zone model for shallow aquifers: the Hetao irrigation district, China
Zhongyi Liu, Xingwang Wang, Zailin Huo, and Tammo Siert Steenhuis
Hydrol. Earth Syst. Sci., 23, 3097–3115, https://doi.org/10.5194/hess-23-3097-2019,https://doi.org/10.5194/hess-23-3097-2019, 2019
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
Cooperation in a transboundary river basin: a large-scale socio-hydrological model of the Eastern Nile
Mohammad Ghoreishi, Amin Elshorbagy, Saman Razavi, Günter Blöschl, Murugesu Sivapalan, and Ahmed Abdelkader
Hydrol. Earth Syst. Sci., 27, 1201–1219, https://doi.org/10.5194/hess-27-1201-2023,https://doi.org/10.5194/hess-27-1201-2023, 2023
Short summary
Flexible forecast value metric suitable for a wide range of decisions: application using probabilistic subseasonal streamflow forecasts
Richard Laugesen, Mark Thyer, David McInerney, and Dmitri Kavetski
Hydrol. Earth Syst. Sci., 27, 873–893, https://doi.org/10.5194/hess-27-873-2023,https://doi.org/10.5194/hess-27-873-2023, 2023
Short summary
An improved model of shade-affected stream temperature in Soil & Water Assessment Tool
Efrain Noa-Yarasca, Meghna Babbar-Sebens, and Chris Jordan
Hydrol. Earth Syst. Sci., 27, 739–759, https://doi.org/10.5194/hess-27-739-2023,https://doi.org/10.5194/hess-27-739-2023, 2023
Short summary
Seasonal forecasting of snow resources at Alpine sites
Silvia Terzago, Giulio Bongiovanni, and Jost von Hardenberg
Hydrol. Earth Syst. Sci., 27, 519–542, https://doi.org/10.5194/hess-27-519-2023,https://doi.org/10.5194/hess-27-519-2023, 2023
Short summary
Operationalizing equity in multipurpose water systems
Guang Yang, Matteo Giuliani, and Andrea Castelletti
Hydrol. Earth Syst. Sci., 27, 69–81, https://doi.org/10.5194/hess-27-69-2023,https://doi.org/10.5194/hess-27-69-2023, 2023
Short summary

Cited articles

Aghdam, E. N., Babazadeh, H., Vazifedoust, M., and Kaveh, F.: Regional modeling of wheat yield production using the distributed agro-hydrological swap, Adv. Environ. Biol., 7, 86–93, 2013. 
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – Guidelines for computing crop water requirements, FAO Irrigation and drainage paper 56, Fao, Rome, 300, D05109, 1998. 
Amor, V. M., Ashim, D. G., and Rainer, L.: Application of GIS and crop growth models in estimating water productivity, Agr. Water Manage., 54, 205–225, https://doi.org/10.1016/s0378-3774(01)00173-1, 2002. 
Bai, Z.: Numerical simulation and analysis of the groundwater and salt dynamics in Jiefangzha irrigation scheme of Hetao irrigation district, MS thesis, China Agricultural University, available at: https://www.cnki.net/ (last access: 19 October 2017), 2008. 
Bai, Z. and Xu, X.: Numerical simulation of the groundwater and salt dynamics in Jiefangzha irrigation scheme of Hetao irrigation district, Water Sav. Irrig., 2, 29–31, 2008. 
Download
Short summary
Due to increasing food demand and limited water resources, the quantification of the irrigation water productivity (IWP) is critical. Hydrological processes in irrigated areas differ in different watersheds owing to different irrigation–drainage activities, and this is more complex with shallow groundwater. Considering the complexity of the IWP, we developed a regional IWP model to simulate its spatial distribution; this informs irrigation managers on where they can improve IWP and save water.