Articles | Volume 24, issue 4
https://doi.org/10.5194/hess-24-1649-2020
https://doi.org/10.5194/hess-24-1649-2020
Research article
 | 
07 Apr 2020
Research article |  | 07 Apr 2020

Coffee and shade trees show complementary use of soil water in a traditional agroforestry ecosystem

Lyssette Elena Muñoz-Villers, Josie Geris, María Susana Alvarado-Barrientos, Friso Holwerda, and Todd Dawson

Related authors

Factors influencing stream baseflow transit times in tropical montane watersheds
Lyssette E. Muñoz-Villers, Daniel R. Geissert, Friso Holwerda, and Jeffrey J. McDonnell
Hydrol. Earth Syst. Sci., 20, 1621–1635, https://doi.org/10.5194/hess-20-1621-2016,https://doi.org/10.5194/hess-20-1621-2016, 2016
Short summary
Land use change effects on runoff generation in a humid tropical montane cloud forest region
L. E. Muñoz-Villers and J. J. McDonnell
Hydrol. Earth Syst. Sci., 17, 3543–3560, https://doi.org/10.5194/hess-17-3543-2013,https://doi.org/10.5194/hess-17-3543-2013, 2013

Related subject area

Subject: Ecohydrology | Techniques and Approaches: Instruments and observation techniques
Effects of subsurface water infiltration systems on land movement dynamics in Dutch peat meadows
Sanneke van Asselen, Gilles Erkens, Christian Fritz, Rudi Hessel, and Jan J. H. van den Akker
Hydrol. Earth Syst. Sci., 29, 1865–1894, https://doi.org/10.5194/hess-29-1865-2025,https://doi.org/10.5194/hess-29-1865-2025, 2025
Short summary
Understanding ecohydrology and biodiversity in aquatic nature-based solutions in urban streams and ponds through an integrative multi-tracer approach
Maria Magdalena Warter, Dörthe Tetzlaff, Chris Soulsby, Tobias Goldhammer, Daniel Gebler, Kati Vierrikko, and Michael T. Monaghan
EGUsphere, https://doi.org/10.5194/egusphere-2024-3537,https://doi.org/10.5194/egusphere-2024-3537, 2024
Short summary
Technical note: a Weighing Forest Floor Grid-Lysimeter
Heinke Paulsen and Markus Weiler
EGUsphere, https://doi.org/10.5194/egusphere-2024-3503,https://doi.org/10.5194/egusphere-2024-3503, 2024
Short summary
Seasonal shifts in depth-to-water uptake by young thinned and overstocked lodgepole pine (Pinus contorta) forests under drought conditions in the Okanagan Valley, British Columbia, Canada
Emory C. Ellis, Robert D. Guy, and Xiaohua A. Wei
Hydrol. Earth Syst. Sci., 28, 4667–4684, https://doi.org/10.5194/hess-28-4667-2024,https://doi.org/10.5194/hess-28-4667-2024, 2024
Short summary
Self-potential signals related to tree transpiration in a Mediterranean climate
Kaiyan Hu, Bertille Loiseau, Simon D. Carrière, Nolwenn Lesparre, Cédric Champollion, Nicolas K. Martin-StPaul, Niklas Linde, and Damien Jougnot
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-240,https://doi.org/10.5194/hess-2024-240, 2024
Revised manuscript accepted for HESS
Short summary

Cited articles

Arias, R. M., Heredia, G., Sosa, V., and Fuentes-Ramírez, L. E.: Diversity and abundance of arbuscular mycorrhizal fungi spores under different coffee production systems and in a tropical montane cloud forest patch in Veracruz, Mexico, Agroforest. Syst., 85, 179–193, https://doi.org/10.1007/s10457-011-9414-3, 2012. 
Augé, R. M.: Arbuscular mycorrhizae and soil/plant water relations, Can. J. Soil Sci., 84, 373–381, https://doi.org/10.4141/S04-002, 2004. 
Baca, M., Läderach, P., Haggar, J., Schroth, G., and Ovalle, O.: An integrated framework for assessing vulnerability to climate change and developing adaptation strategies for coffee growing families in Mesoamerica, PLoS ONE, 9, e88463, https://doi.org/10.1371/journal.pone.0088463, 2014. 
Báez, A. P., Padilla, H., Cervantes, J., Pereyra, D., and Belmont, R.: Rainwater chemistry at the eastern flanks of the Sierra Madre Oriental, Veracruz, Mexico, J. Geophys. Res.-Atmos., 102, 23329–23336, 1997. 
Baker, P. S. and Haggar, J.: Global warming: the impact on global coffee, in: SCAA Conference Handout, Long Beach, USA, 2007. 
Download
Short summary
Our research showed, consistently, a complementary use of soil water sources between coffee (Coffea Arabica var. typica) plants and shade tree species during the dry and wet seasons in a traditional agroforestry ecosystem in central Veracruz, Mexico. However, more variability in plant water sources was observed among species in the rainy season when higher soil moisture conditions were present and water stress was largely absent.
Share