Articles | Volume 23, issue 10
https://doi.org/10.5194/hess-23-4129-2019
https://doi.org/10.5194/hess-23-4129-2019
Research article
 | 
08 Oct 2019
Research article |  | 08 Oct 2019

WHAT-IF: an open-source decision support tool for water infrastructure investment planning within the water–energy–food–climate nexus

Raphaël Payet-Burin, Mikkel Kromann, Silvio Pereira-Cardenal, Kenneth Marc Strzepek, and Peter Bauer-Gottwein

Related authors

River hydraulic modeling with ICESat-2 land and water surface elevation
Monica Coppo Frias, Suxia Liu, Xingguo Mo, Karina Nielsen, Heidi Ranndal, Liguang Jiang, Jun Ma, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 27, 1011–1032, https://doi.org/10.5194/hess-27-1011-2023,https://doi.org/10.5194/hess-27-1011-2023, 2023
Short summary
High-resolution water level and storage variation datasets for 338 reservoirs in China during 2010–2021
Youjiang Shen, Dedi Liu, Liguang Jiang, Karina Nielsen, Jiabo Yin, Jun Liu, and Peter Bauer-Gottwein
Earth Syst. Sci. Data, 14, 5671–5694, https://doi.org/10.5194/essd-14-5671-2022,https://doi.org/10.5194/essd-14-5671-2022, 2022
Short summary
Calibrating 1D hydrodynamic river models in the absence of cross-section geometry using satellite observations of water surface elevation and river width
Liguang Jiang, Silja Westphal Christensen, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 25, 6359–6379, https://doi.org/10.5194/hess-25-6359-2021,https://doi.org/10.5194/hess-25-6359-2021, 2021
Short summary
Sentinel-3 radar altimetry for river monitoring – a catchment-scale evaluation of satellite water surface elevation from Sentinel-3A and Sentinel-3B
Cecile M. M. Kittel, Liguang Jiang, Christian Tøttrup, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 25, 333–357, https://doi.org/10.5194/hess-25-333-2021,https://doi.org/10.5194/hess-25-333-2021, 2021
Short summary
Temporal interpolation of land surface fluxes derived from remote sensing – results with an unmanned aerial system
Sheng Wang, Monica Garcia, Andreas Ibrom, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 24, 3643–3661, https://doi.org/10.5194/hess-24-3643-2020,https://doi.org/10.5194/hess-24-3643-2020, 2020
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
Cooperation in a transboundary river basin: a large-scale socio-hydrological model of the Eastern Nile
Mohammad Ghoreishi, Amin Elshorbagy, Saman Razavi, Günter Blöschl, Murugesu Sivapalan, and Ahmed Abdelkader
Hydrol. Earth Syst. Sci., 27, 1201–1219, https://doi.org/10.5194/hess-27-1201-2023,https://doi.org/10.5194/hess-27-1201-2023, 2023
Short summary
Flexible forecast value metric suitable for a wide range of decisions: application using probabilistic subseasonal streamflow forecasts
Richard Laugesen, Mark Thyer, David McInerney, and Dmitri Kavetski
Hydrol. Earth Syst. Sci., 27, 873–893, https://doi.org/10.5194/hess-27-873-2023,https://doi.org/10.5194/hess-27-873-2023, 2023
Short summary
An improved model of shade-affected stream temperature in Soil & Water Assessment Tool
Efrain Noa-Yarasca, Meghna Babbar-Sebens, and Chris Jordan
Hydrol. Earth Syst. Sci., 27, 739–759, https://doi.org/10.5194/hess-27-739-2023,https://doi.org/10.5194/hess-27-739-2023, 2023
Short summary
Seasonal forecasting of snow resources at Alpine sites
Silvia Terzago, Giulio Bongiovanni, and Jost von Hardenberg
Hydrol. Earth Syst. Sci., 27, 519–542, https://doi.org/10.5194/hess-27-519-2023,https://doi.org/10.5194/hess-27-519-2023, 2023
Short summary
Operationalizing equity in multipurpose water systems
Guang Yang, Matteo Giuliani, and Andrea Castelletti
Hydrol. Earth Syst. Sci., 27, 69–81, https://doi.org/10.5194/hess-27-69-2023,https://doi.org/10.5194/hess-27-69-2023, 2023
Short summary

Cited articles

Albrecht, T. R., Crootof, A., and Scott, C. A.: The Water-Energy-Food Nexus?: A systematic review of methods for nexus assessment OPEN ACCESS The Water-Energy-Food Nexus?: A systematic review of methods for nexus assessment, Environ. Res. Lett., 13, 043002, https://doi.org/10.1088/1748-9326/aaa9c6, 2018. 
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration: guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper No. 56, FAO, Rome, Italy, 1998. 
Ansar, A., Flyvbjerg, B., Budzier, A., and Lunn, D.: Should we build more large dams? The actual costs of hydropower megaproject development, Energ. Policy, 69, 43–56, https://doi.org/10.1016/j.enpol.2013.10.069, 2014. 
Awojobi, O. and Jenkins, G. P.: Were the hydro dams financed by the World Bank from 1976 to 2005 worthwhile?, Energ. Policy, 86, 222–232, https://doi.org/10.1016/j.enpol.2015.06.040, 2015. 
Bauer-Gottwein, P., Schneider, R., and Davidsen, C.: Optimizing Wellfield Operation in a Variable Power Price Regime, Groundwater, 54, 92–103, https://doi.org/10.1111/gwat.12341, 2016. 
Download
Short summary
We present an open-source tool for water infrastructure investment planning considering interrelations between the water, food, and energy systems. We apply it to the Zambezi River basin to evaluate economic impacts of hydropower and irrigation development plans. We find trade-offs between the development plans and sensitivity to uncertainties (e.g. climate change, carbon taxes, capital costs of solar technologies, environmental policies) demonstrating the necessity for an integrated approach.