Articles | Volume 23, issue 8
https://doi.org/10.5194/hess-23-3335-2019
https://doi.org/10.5194/hess-23-3335-2019
Research article
 | 
14 Aug 2019
Research article |  | 14 Aug 2019

Potential application of hydrological ensemble prediction in forecasting floods and its components over the Yarlung Zangbo River basin, China

Li Liu, Yue Ping Xu, Su Li Pan, and Zhi Xu Bai

Related authors

Revealing joint evolutions and causal interactions in complex eco-hydrological systems by a network-based framework
Lu Wang, Yue-Ping Xu, Haiting Gu, Li Liu, Xiao Liang, and Siwei Chen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-226,https://doi.org/10.5194/hess-2024-226, 2024
Revised manuscript accepted for HESS
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Mapping soil moisture across the UK: assimilating cosmic-ray neutron sensors, remotely sensed indices, rainfall radar and catchment water balance data in a Bayesian hierarchical model
Peter E. Levy and the COSMOS-UK team
Hydrol. Earth Syst. Sci., 28, 4819–4836, https://doi.org/10.5194/hess-28-4819-2024,https://doi.org/10.5194/hess-28-4819-2024, 2024
Short summary
Assessing rainfall radar errors with an inverse stochastic modelling framework
Amy C. Green, Chris Kilsby, and András Bárdossy
Hydrol. Earth Syst. Sci., 28, 4539–4558, https://doi.org/10.5194/hess-28-4539-2024,https://doi.org/10.5194/hess-28-4539-2024, 2024
Short summary
Multi-objective calibration and evaluation of the ORCHIDEE land surface model over France at high resolution
Peng Huang, Agnès Ducharne, Lucia Rinchiuso, Jan Polcher, Laure Baratgin, Vladislav Bastrikov, and Eric Sauquet
Hydrol. Earth Syst. Sci., 28, 4455–4476, https://doi.org/10.5194/hess-28-4455-2024,https://doi.org/10.5194/hess-28-4455-2024, 2024
Short summary
Spatiotemporal responses of runoff to climate change in the southern Tibetan Plateau
He Sun, Tandong Yao, Fengge Su, Wei Yang, and Deliang Chen
Hydrol. Earth Syst. Sci., 28, 4361–4381, https://doi.org/10.5194/hess-28-4361-2024,https://doi.org/10.5194/hess-28-4361-2024, 2024
Short summary
FROSTBYTE: a reproducible data-driven workflow for probabilistic seasonal streamflow forecasting in snow-fed river basins across North America
Louise Arnal, Martyn P. Clark, Alain Pietroniro, Vincent Vionnet, David R. Casson, Paul H. Whitfield, Vincent Fortin, Andrew W. Wood, Wouter J. M. Knoben, Brandi W. Newton, and Colleen Walford
Hydrol. Earth Syst. Sci., 28, 4127–4155, https://doi.org/10.5194/hess-28-4127-2024,https://doi.org/10.5194/hess-28-4127-2024, 2024
Short summary

Cited articles

Alvarez-Garreton, C., Ryu, D., Western, A. W., Su, C. H., Crow, W. T., Robertson, D. E., and Leahy, C.: Improving operational flood ensemble prediction by the assimilation of satellite soil moisture: Comparison between lumped and semi-distributed schemes, Hydrol. Earth Syst. Sci.,19, 1659–1676, https://doi.org/10.5194/hess-19-1659-2015, 2015. 
Aminyavari, S., Saghafian, B., and Delavar, M.: Evaluation of TIGGE Ensemble Forecasts of Precipitation in Distinct Climate Regions in Iran, Adv. Atmos. Sci., 35, 457–468, 2018. 
Andreadis, K. M., Storck, P., and Lettenmaier, D. P.: Modeling snow accumulation and ablation processes in forested environments, Water Resour. Res., 45, W05429, https://doi.org/10.1029/2008WR007042, 2009. 
Arheimer, B., Lindström, G., and Olsson, J.: A systematic review of sensitivities in the Swedish flood-forecasting system, Atmos. Res., 100, 275–284, https://doi.org/10.1016/j.atmosres.2010.09.013, 2011. 
Arnal, L., Cloke, H. L., Stephens, E., Wetterhall, F., Prudhomme, C., Neumann, J., Krzeminski, B., and Pappenberger, F.: Skilful seasonal forecasts of streamflow over Europe?, Hydrol. Earth Syst. Sci., 22, 2057–2072, https://doi.org/10.5194/hess-22-2057-2018, 2018. 
Download
Short summary
The ensemble flood forecasting system can skillfully predict annual maximum floods with a lead time of more than 10 d and has skill in forecasting the snowmelt-related components about 7 d ahead. The accuracy of forecasts for the annual first floods is inferior, with a lead time of only 5 d. The snowmelt-induced surface runoff is the most poorly captured component by the system, and the well-predicted rainfall-related components are the major contributor to good performance.