Articles | Volume 23, issue 8
https://doi.org/10.5194/hess-23-3335-2019
https://doi.org/10.5194/hess-23-3335-2019
Research article
 | 
14 Aug 2019
Research article |  | 14 Aug 2019

Potential application of hydrological ensemble prediction in forecasting floods and its components over the Yarlung Zangbo River basin, China

Li Liu, Yue Ping Xu, Su Li Pan, and Zhi Xu Bai

Related authors

Revealing joint evolutions and causal interactions in complex ecohydrological systems by a network-based framework
Lu Wang, Haiting Gu, Li Liu, Xiao Liang, Siwei Chen, and Yue-Ping Xu
Hydrol. Earth Syst. Sci., 29, 361–379, https://doi.org/10.5194/hess-29-361-2025,https://doi.org/10.5194/hess-29-361-2025, 2025
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Observation-driven model for calculating water-harvesting potential from advective fog in (semi-)arid coastal regions
Felipe Lobos-Roco, Jordi Vilà-Guerau de Arellano, and Camilo del Río
Hydrol. Earth Syst. Sci., 29, 109–125, https://doi.org/10.5194/hess-29-109-2025,https://doi.org/10.5194/hess-29-109-2025, 2025
Short summary
Review of gridded climate products and their use in hydrological analyses reveals overlaps, gaps, and the need for a more objective approach to selecting model forcing datasets
Kyle R. Mankin, Sushant Mehan, Timothy R. Green, and David M. Barnard
Hydrol. Earth Syst. Sci., 29, 85–108, https://doi.org/10.5194/hess-29-85-2025,https://doi.org/10.5194/hess-29-85-2025, 2025
Short summary
Downscaling the probability of heavy rainfall over the Nordic countries
Rasmus E. Benestad, Kajsa M. Parding, and Andreas Dobler
Hydrol. Earth Syst. Sci., 29, 45–65, https://doi.org/10.5194/hess-29-45-2025,https://doi.org/10.5194/hess-29-45-2025, 2025
Short summary
Modelling convective cell life cycles with a copula-based approach
Chien-Yu Tseng, Li-Pen Wang, and Christian Onof
Hydrol. Earth Syst. Sci., 29, 1–25, https://doi.org/10.5194/hess-29-1-2025,https://doi.org/10.5194/hess-29-1-2025, 2025
Short summary
Downscaling precipitation over High-mountain Asia using multi-fidelity Gaussian processes: improved estimates from ERA5
Kenza Tazi, Andrew Orr, Javier Hernandez-González, Scott Hosking, and Richard E. Turner
Hydrol. Earth Syst. Sci., 28, 4903–4925, https://doi.org/10.5194/hess-28-4903-2024,https://doi.org/10.5194/hess-28-4903-2024, 2024
Short summary

Cited articles

Alvarez-Garreton, C., Ryu, D., Western, A. W., Su, C. H., Crow, W. T., Robertson, D. E., and Leahy, C.: Improving operational flood ensemble prediction by the assimilation of satellite soil moisture: Comparison between lumped and semi-distributed schemes, Hydrol. Earth Syst. Sci.,19, 1659–1676, https://doi.org/10.5194/hess-19-1659-2015, 2015. 
Aminyavari, S., Saghafian, B., and Delavar, M.: Evaluation of TIGGE Ensemble Forecasts of Precipitation in Distinct Climate Regions in Iran, Adv. Atmos. Sci., 35, 457–468, 2018. 
Andreadis, K. M., Storck, P., and Lettenmaier, D. P.: Modeling snow accumulation and ablation processes in forested environments, Water Resour. Res., 45, W05429, https://doi.org/10.1029/2008WR007042, 2009. 
Arheimer, B., Lindström, G., and Olsson, J.: A systematic review of sensitivities in the Swedish flood-forecasting system, Atmos. Res., 100, 275–284, https://doi.org/10.1016/j.atmosres.2010.09.013, 2011. 
Arnal, L., Cloke, H. L., Stephens, E., Wetterhall, F., Prudhomme, C., Neumann, J., Krzeminski, B., and Pappenberger, F.: Skilful seasonal forecasts of streamflow over Europe?, Hydrol. Earth Syst. Sci., 22, 2057–2072, https://doi.org/10.5194/hess-22-2057-2018, 2018. 
Download
Short summary
The ensemble flood forecasting system can skillfully predict annual maximum floods with a lead time of more than 10 d and has skill in forecasting the snowmelt-related components about 7 d ahead. The accuracy of forecasts for the annual first floods is inferior, with a lead time of only 5 d. The snowmelt-induced surface runoff is the most poorly captured component by the system, and the well-predicted rainfall-related components are the major contributor to good performance.