Articles | Volume 23, issue 1
https://doi.org/10.5194/hess-23-207-2019
https://doi.org/10.5194/hess-23-207-2019
Research article
 | 
16 Jan 2019
Research article |  | 16 Jan 2019

Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS

Hylke E. Beck, Ming Pan, Tirthankar Roy, Graham P. Weedon, Florian Pappenberger, Albert I. J. M. van Dijk, George J. Huffman, Robert F. Adler, and Eric F. Wood

Related authors

Technical note: Surface fields for global environmental modelling
Margarita Choulga, Francesca Moschini, Cinzia Mazzetti, Stefania Grimaldi, Juliana Disperati, Hylke Beck, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 28, 2991–3036, https://doi.org/10.5194/hess-28-2991-2024,https://doi.org/10.5194/hess-28-2991-2024, 2024
Short summary
On the timescale of drought indices for monitoring streamflow drought considering catchment hydrological regimes
Oscar M. Baez-Villanueva, Mauricio Zambrano-Bigiarini, Diego G. Miralles, Hylke E. Beck, Jonatan F. Siegmund, Camila Alvarez-Garreton, Koen Verbist, René Garreaud, Juan Pablo Boisier, and Mauricio Galleguillos
Hydrol. Earth Syst. Sci., 28, 1415–1439, https://doi.org/10.5194/hess-28-1415-2024,https://doi.org/10.5194/hess-28-1415-2024, 2024
Short summary
Deep Dive into Global Hydrologic Simulations: Harnessing the Power of Deep Learning and Physics-informed Differentiable Models (δHBV-globe1.0-hydroDL)
Dapeng Feng, Hylke Beck, Jens de Bruijn, Reetik Kumar Sahu, Yusuke Satoh, Yoshihide Wada, Jiangtao Liu, Ming Pan, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-190,https://doi.org/10.5194/gmd-2023-190, 2023
Revised manuscript accepted for GMD
Short summary
The suitability of differentiable, physics-informed machine learning hydrologic models for ungauged regions and climate change impact assessment
Dapeng Feng, Hylke Beck, Kathryn Lawson, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 27, 2357–2373, https://doi.org/10.5194/hess-27-2357-2023,https://doi.org/10.5194/hess-27-2357-2023, 2023
Short summary
FarmCan: a physical, statistical, and machine learning model to forecast crop water deficit for farms
Sara Sadri, James S. Famiglietti, Ming Pan, Hylke E. Beck, Aaron Berg, and Eric F. Wood
Hydrol. Earth Syst. Sci., 26, 5373–5390, https://doi.org/10.5194/hess-26-5373-2022,https://doi.org/10.5194/hess-26-5373-2022, 2022
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Instruments and observation techniques
Technical note: Investigating the potential for smartphone-based monitoring of evapotranspiration and land surface energy-balance partitioning
Adriaan J. Teuling, Belle Holthuis, and Jasper F. D. Lammers
Hydrol. Earth Syst. Sci., 28, 3799–3806, https://doi.org/10.5194/hess-28-3799-2024,https://doi.org/10.5194/hess-28-3799-2024, 2024
Short summary
Exploring patterns in precipitation intensity–duration–area–frequency relationships using weather radar data
Talia Rosin, Francesco Marra, and Efrat Morin
Hydrol. Earth Syst. Sci., 28, 3549–3566, https://doi.org/10.5194/hess-28-3549-2024,https://doi.org/10.5194/hess-28-3549-2024, 2024
Short summary
An intercomparison of four gridded precipitation products over Europe using the three-cornered-hat method
Llorenç Lledó, Thomas Haiden, and Matthieu Chevallier
EGUsphere, https://doi.org/10.5194/egusphere-2024-807,https://doi.org/10.5194/egusphere-2024-807, 2024
Short summary
Merging with crowdsourced rain gauge data improves pan-European radar precipitation estimates
Aart Overeem, Hidde Leijnse, Gerard van der Schrier, Else van den Besselaar, Irene Garcia-Marti, and Lotte Wilhelmina de Vos
Hydrol. Earth Syst. Sci., 28, 649–668, https://doi.org/10.5194/hess-28-649-2024,https://doi.org/10.5194/hess-28-649-2024, 2024
Short summary
Statistical characteristics of raindrop size distribution during rainy seasons in complicated mountain terrain
Wenqian Mao, Wenyu Zhang, and Menggang Kou
Hydrol. Earth Syst. Sci., 27, 3895–3910, https://doi.org/10.5194/hess-27-3895-2023,https://doi.org/10.5194/hess-27-3895-2023, 2023
Short summary

Cited articles

Adam, J. C., Clark, E. A., Lettenmaier, D. P., and Wood, E. F.: Correction of global precipitation products for orographic effects, J. Climate, 19, 15–38, https://doi.org/10.1175/JCLI3604.1, 2006. a
Adler, R. F. and Negri, A. J.: A satellite infrared technique to estimate tropical convective and stratiform rainfall, J. Appl. Meteorol., 27, 30–51, 1988. a
Adler, R. F., Kidd, C., Petty, G., Morissey, M., and Goodman, H. M.: Intercomparison of global precipitation products: The third precipitation intercomparison project (PIP-3), B. Am. Meteorol. Soc., 82, 1377–1396, 2001. a, b
Adler, R. F., Sapiano, M. R. P., Huffman, G. J., Wang, J.-J., Gu, G., Bolvin, D., Chiu, L., Schneider, U., Becker, A., Nelkin, E., Xie, P., Ferraro, R., and Shin, D.-B.: The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation, Atmosphere, 9, 138, https://doi.org/10.3390/atmos9040138, 2018. a
AghaKouchak, A., Behrangi, A., Sorooshian, S., Hsu, K., and Amitai, E.: Evaluation of satellite retrieved extreme precipitation rates across the central United States, J. Geophys. Res.-Atmos., 116, https://doi.org/10.1029/2010JD014741, 2011. a, b
Download
Short summary
We conducted a comprehensive evaluation of 26 precipitation datasets for the US using the Stage-IV gauge-radar dataset as a reference. The best overall performance was obtained by MSWEP V2.2, underscoring the importance of applying daily gauge corrections and accounting for reporting times. Our findings can be used as a guide to choose the most suitable precipitation dataset for a particular application.