Articles | Volume 22, issue 9
https://doi.org/10.5194/hess-22-4621-2018
https://doi.org/10.5194/hess-22-4621-2018
Research article
 | 
04 Sep 2018
Research article |  | 04 Sep 2018

Predicting the soil water retention curve from the particle size distribution based on a pore space geometry containing slit-shaped spaces

Chen-Chao Chang and Dong-Hui Cheng

Related subject area

Subject: Vadose Zone Hydrology | Techniques and Approaches: Modelling approaches
Mesoscale permeability variations estimated from natural airflows in the decorated Cosquer Cave (southeastern France)
Hugo Pellet, Bruno Arfib, Pierre Henry, Stéphanie Touron, and Ghislain Gassier
Hydrol. Earth Syst. Sci., 28, 4035–4057, https://doi.org/10.5194/hess-28-4035-2024,https://doi.org/10.5194/hess-28-4035-2024, 2024
Short summary
Identification of parameter importance for benzene transport in the unsaturated zone using global sensitivity analysis
Meirav Cohen, Nimrod Schwartz, and Ravid Rosenzweig
Hydrol. Earth Syst. Sci., 28, 1585–1604, https://doi.org/10.5194/hess-28-1585-2024,https://doi.org/10.5194/hess-28-1585-2024, 2024
Short summary
Evapotranspiration prediction for European forest sites does not improve with assimilation of in situ soil water content data
Lukas Strebel, Heye Bogena, Harry Vereecken, Mie Andreasen, Sergio Aranda-Barranco, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 28, 1001–1026, https://doi.org/10.5194/hess-28-1001-2024,https://doi.org/10.5194/hess-28-1001-2024, 2024
Short summary
A comprehensive study of deep learning for soil moisture prediction
Yanling Wang, Liangsheng Shi, Yaan Hu, Xiaolong Hu, Wenxiang Song, and Lijun Wang
Hydrol. Earth Syst. Sci., 28, 917–943, https://doi.org/10.5194/hess-28-917-2024,https://doi.org/10.5194/hess-28-917-2024, 2024
Short summary
Modelling groundwater recharge, actual evaporation, and transpiration in semi-arid sites of the Lake Chad basin: the role of soil and vegetation in groundwater recharge
Christoph Neukum, Angela Morales-Santos, Melanie Ronelngar, Aminu Bala, and Sara Vassolo
Hydrol. Earth Syst. Sci., 27, 3601–3619, https://doi.org/10.5194/hess-27-3601-2023,https://doi.org/10.5194/hess-27-3601-2023, 2023
Short summary

Cited articles

Arya, L. M. and Paris, J. F.: A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density, Soil Sci. Soc. Am. J., 45, 1023–1030, https://doi.org/10.2136/sssaj1981.03615995004500060004x, 1981. 
Arya, L. M., Bowman, D. C., Thapa, B. B., and Cassel, D. K.: Scaling soil water characteristics of golf course and athletic field sands from particle-size distribution, Soil Sci. Soc. Am. J., 72, 25–32, https://doi.org/10.2136/sssaj2006.0232, 2008. 
Derjaguin, B. V. and Churaev, N. V.: Polymolecular adsorption and capillary condensation in narrow slit pores, Prog. Surf. Sci., 40, 173–191, https://doi.org/10.1016/0079-6816(92)90045-J, 1992. 
Fooladmand, H. R.: Estimating soil specific surface area using the summation of the number of spherical particles and geometric mean particle-size diameter, Afr. J. Agr. Res., 6, 1758–1762, 2011. 
Hamamoto, S., Moldrup, P., Kawamoto, K., Jonge, L. W. D., Schjønning, P., and Komatsu, T.: Two-region extended archie's law model for soil air permeability and gas diffusivity, Soil Sci. Soc. Am. J., 75, 795–806, https://doi.org/10.2136/sssaj2010.0207, 2011. 
Download
Short summary
The soil water retention curve (SWRC) is fundamental to researching water flow and chemical transport in unsaturated media. However, the traditional prediction models underestimate the water content in the dry range of the SWRC. A method was therefore proposed to improve the estimation of the SWRC using a pore model containing slit-shaped spaces. The results show that the predicted SWRCs using the improved method reasonably approximated the measured SWRCs.