Articles | Volume 22, issue 9
Hydrol. Earth Syst. Sci., 22, 4621–4632, 2018
https://doi.org/10.5194/hess-22-4621-2018
Hydrol. Earth Syst. Sci., 22, 4621–4632, 2018
https://doi.org/10.5194/hess-22-4621-2018

Research article 04 Sep 2018

Research article | 04 Sep 2018

Predicting the soil water retention curve from the particle size distribution based on a pore space geometry containing slit-shaped spaces

Chen-Chao Chang and Dong-Hui Cheng

Related subject area

Subject: Vadose Zone Hydrology | Techniques and Approaches: Modelling approaches
Comparison of root water uptake models in simulating CO2 and H2O fluxes and growth of wheat
Thuy Huu Nguyen, Matthias Langensiepen, Jan Vanderborght, Hubert Hüging, Cho Miltin Mboh, and Frank Ewert
Hydrol. Earth Syst. Sci., 24, 4943–4969, https://doi.org/10.5194/hess-24-4943-2020,https://doi.org/10.5194/hess-24-4943-2020, 2020
Short summary
Understanding the mass, momentum, and energy transfer in the frozen soil with three levels of model complexities
Lianyu Yu, Yijian Zeng, and Zhongbo Su
Hydrol. Earth Syst. Sci., 24, 4813–4830, https://doi.org/10.5194/hess-24-4813-2020,https://doi.org/10.5194/hess-24-4813-2020, 2020
Short summary
Investigating the impact of exit effects on solute transport in macropored porous media
Jérôme Raimbault, Pierre-Emmanuel Peyneau, Denis Courtier-Murias, Thomas Bigot, Jaime Gil Roca, Béatrice Béchet, and Laurent Lassabatère
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-494,https://doi.org/10.5194/hess-2020-494, 2020
Revised manuscript accepted for HESS
Short summary
A field-validated surrogate crop model for predicting root-zone moisture and salt content in regions with shallow groundwater
Zhongyi Liu, Zailin Huo, Chaozi Wang, Limin Zhang, Xianghao Wang, Guanhua Huang, Xu Xu, and Tammo Siert Steenhuis
Hydrol. Earth Syst. Sci., 24, 4213–4237, https://doi.org/10.5194/hess-24-4213-2020,https://doi.org/10.5194/hess-24-4213-2020, 2020
Short summary
Characterizing uncertainty in the hydraulic parameters of oil sands mine reclamation covers and its influence on water balance predictions
M. Shahabul Alam, S. Lee Barbour, and Mingbin Huang
Hydrol. Earth Syst. Sci., 24, 735–759, https://doi.org/10.5194/hess-24-735-2020,https://doi.org/10.5194/hess-24-735-2020, 2020
Short summary

Cited articles

Arya, L. M. and Paris, J. F.: A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density, Soil Sci. Soc. Am. J., 45, 1023–1030, https://doi.org/10.2136/sssaj1981.03615995004500060004x, 1981. 
Arya, L. M., Bowman, D. C., Thapa, B. B., and Cassel, D. K.: Scaling soil water characteristics of golf course and athletic field sands from particle-size distribution, Soil Sci. Soc. Am. J., 72, 25–32, https://doi.org/10.2136/sssaj2006.0232, 2008. 
Derjaguin, B. V. and Churaev, N. V.: Polymolecular adsorption and capillary condensation in narrow slit pores, Prog. Surf. Sci., 40, 173–191, https://doi.org/10.1016/0079-6816(92)90045-J, 1992. 
Fooladmand, H. R.: Estimating soil specific surface area using the summation of the number of spherical particles and geometric mean particle-size diameter, Afr. J. Agr. Res., 6, 1758–1762, 2011. 
Hamamoto, S., Moldrup, P., Kawamoto, K., Jonge, L. W. D., Schjønning, P., and Komatsu, T.: Two-region extended archie's law model for soil air permeability and gas diffusivity, Soil Sci. Soc. Am. J., 75, 795–806, https://doi.org/10.2136/sssaj2010.0207, 2011. 
Download
Short summary
The soil water retention curve (SWRC) is fundamental to researching water flow and chemical transport in unsaturated media. However, the traditional prediction models underestimate the water content in the dry range of the SWRC. A method was therefore proposed to improve the estimation of the SWRC using a pore model containing slit-shaped spaces. The results show that the predicted SWRCs using the improved method reasonably approximated the measured SWRCs.