Articles | Volume 22, issue 1
https://doi.org/10.5194/hess-22-143-2018
https://doi.org/10.5194/hess-22-143-2018
Research article
 | 
09 Jan 2018
Research article |  | 09 Jan 2018

Does objective cluster analysis serve as a useful precursor to seasonal precipitation prediction at local scale? Application to western Ethiopia

Ying Zhang, Semu Moges, and Paul Block

Related authors

Unfolding the relationship between seasonal forecast skill and value in hydropower production: a global analysis
Donghoon Lee, Jia Yi Ng, Stefano Galelli, and Paul Block
Hydrol. Earth Syst. Sci., 26, 2431–2448, https://doi.org/10.5194/hess-26-2431-2022,https://doi.org/10.5194/hess-26-2431-2022, 2022
Short summary
Leveraging multi-model season-ahead streamflow forecasts to trigger advanced flood preparedness in Peru
Colin Keating, Donghoon Lee, Juan Bazo, and Paul Block
Nat. Hazards Earth Syst. Sci., 21, 2215–2231, https://doi.org/10.5194/nhess-21-2215-2021,https://doi.org/10.5194/nhess-21-2215-2021, 2021
Short summary
Predicting social and health vulnerability to floods in Bangladesh
Donghoon Lee, Hassan Ahmadul, Jonathan Patz, and Paul Block
Nat. Hazards Earth Syst. Sci., 21, 1807–1823, https://doi.org/10.5194/nhess-21-1807-2021,https://doi.org/10.5194/nhess-21-1807-2021, 2021
Short summary
Regression-based season-ahead drought prediction for southern Peru conditioned on large-scale climate variables
Eric Mortensen, Shu Wu, Michael Notaro, Stephen Vavrus, Rob Montgomery, José De Piérola, Carlos Sánchez, and Paul Block
Hydrol. Earth Syst. Sci., 22, 287–303, https://doi.org/10.5194/hess-22-287-2018,https://doi.org/10.5194/hess-22-287-2018, 2018
Short summary
Evaluation of model-based seasonal streamflow and water allocation forecasts for the Elqui Valley, Chile
Justin Delorit, Edmundo Cristian Gonzalez Ortuya, and Paul Block
Hydrol. Earth Syst. Sci., 21, 4711–4725, https://doi.org/10.5194/hess-21-4711-2017,https://doi.org/10.5194/hess-21-4711-2017, 2017
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
The H2Ours game to explore water use, resources and sustainability: connecting issues in two landscapes in Indonesia
Lisa Tanika, Rika Ratna Sari, Arief Lukman Hakim, Meine van Noordwijk, Marielos Peña-Claros, Beria Leimona, Edi Purwanto, and Erika N. Speelman
Hydrol. Earth Syst. Sci., 28, 3807–3835, https://doi.org/10.5194/hess-28-3807-2024,https://doi.org/10.5194/hess-28-3807-2024, 2024
Short summary
Drainage assessment of irrigation districts: on the precision and accuracy of four parsimonious models
Pierre Laluet, Luis Olivera-Guerra, Víctor Altés, Vincent Rivalland, Alexis Jeantet, Julien Tournebize, Omar Cenobio-Cruz, Anaïs Barella-Ortiz, Pere Quintana-Seguí, Josep Maria Villar, and Olivier Merlin
Hydrol. Earth Syst. Sci., 28, 3695–3716, https://doi.org/10.5194/hess-28-3695-2024,https://doi.org/10.5194/hess-28-3695-2024, 2024
Short summary
Impact of reservoir evaporation on future water availability in north-eastern Brazil: a multi-scenario assessment
Gláuber Pontes Rodrigues, Arlena Brosinsky, Ítalo Sampaio Rodrigues, George Leite Mamede, and José Carlos de Araújo
Hydrol. Earth Syst. Sci., 28, 3243–3260, https://doi.org/10.5194/hess-28-3243-2024,https://doi.org/10.5194/hess-28-3243-2024, 2024
Short summary
How economically and environmentally viable are multiple dams in the upper Cauvery Basin, India? A hydro-economic analysis using a landscape-based hydrological model
Anjana Ekka, Yong Jiang, Saket Pande, and Pieter van der Zaag
Hydrol. Earth Syst. Sci., 28, 3219–3241, https://doi.org/10.5194/hess-28-3219-2024,https://doi.org/10.5194/hess-28-3219-2024, 2024
Short summary
Leveraging a novel hybrid ensemble and optimal interpolation approach for enhanced streamflow and flood prediction
Mohamad El Gharamti, Arezoo Rafieeinasab, and James L. McCreight
Hydrol. Earth Syst. Sci., 28, 3133–3159, https://doi.org/10.5194/hess-28-3133-2024,https://doi.org/10.5194/hess-28-3133-2024, 2024
Short summary

Cited articles

Anderson, D., Stockdale, T., Balmaseda, M., Ferranti, L., Vitart, F., Molteni, F., Doblas-Reyes, F., Mogensen, K., and Vidard, A.: Development of the ECMWF seasonal forecast System 3, ECMWF Technical Memoranda, 1–56, 2007.
Awulachew, S. B., Yilma, A. D., Loulseged, M., Loiskandl, W., Ayana, M., and Alamirew, T.: Water Resources and Irrigation Development in Ethiopia. Colombo, Sri Lanka: International Water Management Institute, 78 pp., Working Paper 123, 2007.
Badr, H. S., Zaitchik, B. F., and Dezfuli, A. K.: A tool for hierarchical climate regionalization, Earth Sci. Inform., 8, 949–958, 2015.
Barrett, C. B.: The Development Of The Nile Hydrometeorological Forecast System1, Wiley Online Library, 1993.
Bekele, F.: Ethiopian Use of ENSO Information in Its Seasonal Forecasts, Internet Journal of African Studies, available at: https://www.bradford.ac.uk/research-old/ijas/ijasno2/bekele.html (last access: 15 June 2016), 1997.
Download
Short summary
The study proposes advancing local-level seasonal rainfall predictions by first conditioning on regional-level predictions, as defined through cluster analysis. This statistical approach is applied to western Ethiopia, where lives and livelihoods are vulnerable to its high spatial–temporal rainfall variability, particularly given the high reliance on rain-fed agriculture. The statistical model improves in skills versus the non-clustered case or dynamical models for some critical regions.