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Abstract. Prediction of seasonal precipitation can provide
actionable information to guide management of various sec-
toral activities. For instance, it is often translated into hy-
drological forecasts for better water resources management.
However, many studies assume homogeneity in precipita-
tion across an entire study region, which may prove ineffec-
tive for operational and local-level decisions, particularly for
locations with high spatial variability. This study proposes
advancing local-level seasonal precipitation predictions by
first conditioning on regional-level predictions, as defined
through objective cluster analysis, for western Ethiopia. To
our knowledge, this is the first study predicting seasonal pre-
cipitation at high resolution in this region, where lives and
livelihoods are vulnerable to precipitation variability given
the high reliance on rain-fed agriculture and limited water
resources infrastructure. The combination of objective clus-
ter analysis, spatially high-resolution prediction of seasonal
precipitation, and a modeling structure spanning statistical
and dynamical approaches makes clear advances in predic-
tion skill and resolution, as compared with previous stud-
ies. The statistical model improves versus the non-clustered
case or dynamical models for a number of specific clusters
in northwestern Ethiopia, with clusters having regional av-
erage correlation and ranked probability skill score (RPSS)
values of up to 0.5 and 33 %, respectively. The general skill
(after bias correction) of the two best-performing dynamical
models over the entire study region is superior to that of the
statistical models, although the dynamical models issue pre-
dictions at a lower resolution and the raw predictions require
bias correction to guarantee comparable skills.

1 Primer on prediction models and cluster analysis

Seasonal precipitation prediction can provide potentially ac-
tionable information to guide management of various sec-
toral activities. For instance, precipitation prediction is often
translated into a hydrological forecast, which can be used to
optimize reservoir operations, provide early flood or drought
warning, inform waterway navigation, etc. As a primary in-
put to soil moisture, precipitation prediction is also essen-
tial to agricultural management – farmers can take advan-
tage of anticipated preferable climatic conditions or avoid
unnecessary costs under expected undesirable conditions.
Two types of models are commonly used for seasonal pre-
cipitation prediction: statistical and dynamical. Dynamical
models, such as general circulation models (GCMs), include
complex physical climate processes, while statistical models
are purely data driven, relating observations and hydrocli-
mate variables directly.

While both modeling approaches have produced skillful
seasonal predictions for a variety of applications (e.g., Bar-
rett, 1993; Hammer et al., 2000; Shukla et al., 2016), each
has noteworthy drawbacks. Dynamical models often require
a great amount of time to build and parameterize, whereas
statistical models require considerably fewer resources (e.g.,
Mutai et al., 1998; Gissila et al., 2004; Block and Ra-
jagopalan, 2007; Diro et al., 2008, 2011b; Block and God-
dard, 2012). Dynamical models also suffer from their high
sensitivity to initial uncertain conditions, particularly given
a long lead time. Consequently, a number of simulations
are typically produced, each with unique initial conditions,
to provide a range of possible outcomes (e.g., Roeckner et
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al., 1996; Anderson et al., 2007). Furthermore, the outputs
from dynamical models often require additional bias correc-
tion, typically using statistical methods, to better match ob-
servations (e.g., Ines and Hansen, 2006; Block et al., 2009;
Teutschbein and Seibert, 2012). Statistical models, on the
other hand, are highly dependent on substantial high-quality
historical data to capture hydroclimatic patterns and signals,
particularly extreme conditions, which is often not available.
Additionally, statistical models are often linear by construc-
tion and may not well capture non-linear complex interac-
tions and feedbacks. The physical nature of dynamical mod-
els, however, allows for prediction under non-stationary con-
ditions and also when insufficient historical data are avail-
able, whereas statistical models, by construction, typically
rely on stationary relationships (Schepen et al., 2012).

The spatial extent selected for statistical seasonal predic-
tion is critical. It is not uncommon to simply assume homo-
geneity in precipitation across an entire study region; how-
ever, this limits addressing potential spatial variability. While
this may be suitable for very broad regional planning, it is
often ineffectual for operational and local-level decisions,
particularly for locations with high spatial variability. This
prompts the need for delineation of subregional-scale ho-
mogeneous regions, often defined through cluster analysis.
Defining these homogeneous regions, however, is a non-
trivial process. There are a variety of methods to delineate
homogeneous regions, including comparing annual cycles
(e.g., unimodal and bimodal distributions in precipitation)
between stations (or grid cells), comparing station correla-
tions with regional averages, applying empirical orthogonal
functions (EOFs), various clustering techniques, and other
methods of increasing complexity (e.g., Parthasarathy et al.,
1993; Mason, 1998; Landman and Mason, 1999; Gissila et
al., 2004; Diro et al., 2008, 2011b; Singh et al., 2012). In ad-
dition, delineation of the subregion size is also important to
consider. Smaller-sized homogeneous subregions do not nec-
essarily lead to improved predictions, as the noise at overly
small scales can dominate any real signals representing spa-
tial coherency of precipitation. For additional discussion re-
garding defining homogeneous subregions and cluster analy-
sis, the reader is referred to Zhang et al. (2016) and Badr et
al. (2015).

2 Application to western Ethiopia and objectives of the
study

Precipitation in western Ethiopia peaks in the summer with
approximately 70 % of annual total precipitation falling dur-
ing the main raining season – also known as the Kiremt sea-
son, spanning from June to September (JJAS). On average,
the seasonal total precipitation in the study region is approxi-
mately 760 mm; however, in the northwest, precipitation can
exceed 1200 mm (Fig. 1a). Along with the high spatial vari-
ability in this mountainous region, the temporal variability is

also remarkable with spatial-average seasonal total precipi-
tation ranging from 650 mm in dry years up to 900 mm in
wet years (Fig. 1b). These highly variable spatial and tempo-
ral precipitation patterns have made skillful seasonal predic-
tions challenging, particularly at local scales (e.g., Gissila et
al., 2004; Block and Rajagopalan, 2007).

The climate mechanisms affecting JJAS precipitation pat-
terns in western Ethiopia are quite complex. Sea surface tem-
peratures (SSTs) in the equatorial Pacific Ocean representing
the well-known El Niño–Southern Oscillation (ENSO) phe-
nomenon are considered a primary indicator of JJAS precipi-
tation variability, with El Niño/La Niña often associated with
deficit/excess of JJAS precipitation across the study region
(e.g., NMSA, 1996; Camberlin, 1997; Bekele, 1997; Segele
and Lamb, 2005; Diro et al., 2011a; Elagib and Elhag, 2011).
Additionally, there is evidence of direct moisture transport
from the Gulf of Guinea (equatorial Atlantic Ocean), the In-
dian Ocean, and the Mediterranean Sea, affecting Ethiopia’s
summertime precipitation (Viste and Sorteberg, 2013a, b).
These moisture fluxes are often related to pressure patterns
across the continent. For instance, the St. Helena High over
the southern Atlantic Ocean or a high pressure over the Gulf
of Guinea, coupled with a simultaneous low pressure over
the Indian Ocean or a monsoon trough over the Arabian
Peninsula, all bring intensified westerlies and southwester-
lies that transport moist air across the Congo Basin to the
western Ethiopian highlands (Segele et al., 2009; Williams
et al., 2011). Similarly, the southwest Asian monsoon in
the Indian Ocean, which has a strong positive relationship
with concurrent JJAS precipitation in western Ethiopia, is
associated with the Mascarene High over the southern In-
dian Ocean and a low pressure system near Bombay. During
this monsoon season, the southeast trade winds in the South-
ern Hemisphere are channeled by the east African highlands
while crossing the Equator and become a southwest mon-
soon flow. They are further diverted by the Turkana Channel,
enhancing convergence with the westerlies/southwesterlies
above the western Ethiopian highlands and bringing mois-
ture to the region (Kinuthia, 1992; Nicholson, 1996, 2014;
Camberlin, 1997; Slingo et al., 2005; Segele et al., 2009).
In addition, the effect of other hydroclimate variables, such
as Indian Ocean SST, local and regional atmospheric pres-
sure systems (e.g., Azores High) also have notable influence
on Ethiopia’s precipitation variability (e.g., Kassahun, 1987;
Tadesse, 1994; NMSA, 1996; Shanko and Camberlin, 1998;
Goddard and Graham, 1999; Latif et al., 1999; Black et al.,
2003; Segele and Lamb, 2005). Consequently, these large-
scale climate variables may serve as potential predictors in
statistical seasonal precipitation prediction models.

Ethiopia is vulnerable to fluctuations in precipitation given
its reliance on rain-fed agriculture and limited water re-
sources infrastructure. The majority of agriculture and in-
frastructure are in western Ethiopia, where water resources
are relatively rich compared to other parts of the country
(Awulachew et al., 2007). Operational precipitation predic-
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Figure 1. Spatial and temporal variability of June–September seasonal total precipitation in western Ethiopia: (a) spatial pattern of temporal-
average and (b) spatial-average time series.

tions in Ethiopia have been issued by its National Meteoro-
logical Agency (NMA) since 1987 using an analog method-
ology (i.e., locating a similar climate condition in the past
– an analog – to predict future conditions); however, this
approach has produced only marginally skillful outcomes
(Korecha and Sorteberg, 2013). For NMA’s prediction, the
country is divided into eight homogeneous regions for which
NMA produces independent predictions. Similarly, others
have also addressed seasonal prediction in Ethiopia contin-
gent on both temporal and spatial precipitation patterns. Gis-
sila et al. (2004) divide Ethiopia into four regions condi-
tioned on the seasonal cycle and interannual variability co-
herence prior to prediction, while Diro et al. (2009) apply a
similar approach but with dynamic cluster boundaries, allow-
ing for different delineations for each rainy season. Segele et
al. (2015) consider statistical precipitation predictions across
Ethiopia as a whole, as well as for northeastern Ethiopia and
at two Ethiopian cities. Block and Rajagopalan (2007) pre-
dict the average summertime (JJAS) precipitation over the
upper Blue Nile Basin – a region they claim is homogenous at
interannual timescales. Korecha and Barnston (2007) select
an all-Ethiopia average precipitation index to characterize
predictability broadly, with minimal attention to operational-
level predictions. All of these studies focus on predicting re-
gional average precipitation based on subjective clustering
methods applying a limited number of stations or coarsely
gridded data; no local predictions at a finer spatial scale are
explored.

This study moves forward by exploring local-level sea-
sonal precipitation prediction through the use of regional-
level predictions, based on previous cluster analyses over
western Ethiopia (Zhang et al., 2016). The advantages of
defining homogeneous regions for seasonal prediction at op-
erational (small) scales will be demonstrated by comparing
approaches with and without undertaking a cluster analy-

sis a priori. The combination of objective cluster analysis,
spatially high-resolution prediction of seasonal precipitation,
and a modeling structure spanning statistical and dynamical
approaches makes clear advances compared to previous stud-
ies.

3 Modeling high-resolution seasonal prediction

To evaluate high-resolution seasonal precipitation with ver-
sus without cluster analysis a priori, statistical models are
developed and further compared with bias-corrected dynam-
ical model predictions. Four scenarios are evaluated based
on two criteria: (1) clustered vs. non-clustered and (2) direct
vs. indirect. In the clustered case, predictions are produced
for each homogeneous region (cluster) given a unique set of
predictors. In the non-clustered case, the entire study region
is considered as one cluster, and thus only one set of predic-
tors is utilized for predictions. For the direct case, precipi-
tation is predicted directly at the local level (grid scale); for
the indirect case, the average precipitation within each ho-
mogeneous region is predicted first (as an intermediary) and
then regressed to local-level (grid-scale) predictions. Com-
binations of the two criteria form four scenarios – clustered
direct (C-D), non-clustered direct (NC-D), clustered indirect
(C-I), and non-clustered indirect (NC-I) predictions.

3.1 Cluster analysis

Using a k-means clustering technique, western Ethiopia –
the major agricultural region of the country – is divided into
eight homogeneous regions (Fig. 2), conditioned on the in-
terannual variability of total precipitation in JJAS, the same
variable that is to be predicted. Precipitation is based on a
0.1◦× 0.1◦ gridded precipitation dataset from NMA (Dinku
et al., 2014), consisting of 7320 grid cells across 1983–2011
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Figure 2. Regionalization map of eight homogeneous regions
marked by different colors, with country boundaries and river pro-
files. The figure is based on Zhang et al. (2016).

(29 years). This product has been verified against station data
and has been deemed representative of observed precipita-
tion in western Ethiopia (Dinku et al., 2014). Given the high-
resolution gridded dataset, k-means clustering is performed
for a range of predefined numbers of clusters; the optimal
number of clusters is identified by various evaluation metrics
based on the within-cluster sum of square errors (WSS), in-
cluding an elbow method with difference in WSS, gap statis-
tics with difference in difference, and qualitative analysis on
post-visualization of clusters. During the clustering process,
each grid cell is assigned and reassigned to clusters until the
WSS is minimized. This does not require any subjective de-
lineation or manual delineation of boundaries between clus-
tered stations or grid cells; instead, an automated and ob-
jective delineation is performed. The mean time series of
each cluster illustrates high intracorrelation within the cluster
and low intercorrelation between any two clusters, indicating
strong coherency of the clustering results. For a detailed anal-
ysis including a complete correlation table and unique pat-
terns for each cluster-level time series associated with large
climate variables, readers are referred to Zhang et al. (2016).

3.2 Statistical modeling approach

Many studies have investigated statistical models for sea-
sonal climate prediction. These studies vary by preclassifi-
cation of predictor or predictand regime, predictor selection
process, and statistical methods. For example, Hertig and Ja-
cobeit (2011) investigate SST regimes as potential predictors
for subsequent precipitation and temperature in the Mediter-
ranean region. Through techniques including multiple appli-
cations of principal component analysis (PCA), 17 stationary
SST regimes were identified. Gerlitz et al. (2016) apply a k-
means cluster analysis to grid cells identified with significant

correlations in the predictor field in order to facilitate predic-
tor selection. Suárez-Moreno and Rodríguez-Fonseca (2015)
investigate stationarity based on a long time series using a
21-year moving correlation window. The statistical predic-
tion models are then applied to each stationary period, re-
spectively, and the entire period for comparison. Despite di-
verse methods in seasonal prediction, multiple linear regres-
sion (MLR) is favored by many as a statistical modeling ap-
proach given its well-developed theory, simple model struc-
ture, efficient processing, and often skillful outcomes (e.g.,
Omondi et al., 2013; Camberlin and Philippon, 2002; Diro et
al., 2008). As mentioned, only a few studies have focused on
seasonal precipitation prediction in Ethiopia (Gissila et al.,
2004; Block and Rajagopalan, 2007; Korecha and Barnston,
2007; Diro et al., 2008, 2011b; Segele et al., 2015), and al-
most all of them include the applications of MLR. This study
also applies MLR to predict seasonal precipitation, yet differ-
entiates from other studies by applying predictions to prede-
fined homogeneous regions and further translating to local-
level predictions.

Season-ahead (March–May) or month-ahead (May) large-
scale climate variables that are physically relevant in poten-
tially modulating moisture transport to the basin (or cluster)
are selected as potential predictors. Four climate variables
are selected here for further evaluation based on outcomes of
the aforementioned prediction studies: SST, sea-level pres-
sure (SLP), geopotential height (GH) at 500 mb, and surface
air temperature (SAT). All climate variables are from the
National Centers for Environmental Prediction and National
Center for Atmospheric Research (NCEP/NCAR) reanalysis
dataset (Kalnay et al., 1996) at a 2.5◦× 2.5◦ grid scale.

Those potential predictors are first transformed through
PCA (Jolliffe, 2002). PCA is a common approach in climate
modeling to reduce the dimensionality of predictors and re-
move multi-collinearity, while simultaneously extracting the
most dominant signals from the potential predictors, typi-
cally reflected in the first few principal components (PCs).
Since PCA is independent of the predictand, retaining the
first few PCs as predictors, in lieu of the original variables,
also helps to reduce artificial prediction skill.

Subsequently, a certain number of PCs are used as the di-
rect inputs into a MLR model, otherwise known as the prin-
cipal component regression (PCR). PCR is performed in a
“drop-one-year” cross-validation mode to reduce overfitting
effects and therefore avoid overestimation of prediction skill.
This requires reconstructing the principal components for the
dropped year and then multiplying the coefficient estimates
with each reconstructed PC, respectively, in order to obtain
the final predicted value for the dropped year (e.g., Block and
Rajagopalan, 2009; Wilks, 2011). A detailed methodology is
provided below.

To avoid overfitting, the entire process including predictor
selection and statistical modeling is processed using cross-
validation. To start, drop-one-year precipitation observations
for JJAS averaged across the region and each cluster are spa-

Hydrol. Earth Syst. Sci., 22, 143–157, 2018 www.hydrol-earth-syst-sci.net/22/143/2018/



Y. Zhang et al.: Seasonal precipitation prediction at local scale with cluster analysis a priori 147

Figure 3. Flow chart of data processing for predictors into the statistical model. Numbers framed by dashed lines correspond to the procedures
listed in the context. Note: pre. – precipitation, t-s – time series, avg. – average.

 

Figure 4. Justifiable climate regions globally for selecting predictors. (a) SLP and GH at 500 mb with regions including EP, ES, LO, AH,
SH, MH, and AM. For SAT, only LO is included. (b) SST with regions including EP, NI, SI, and AT. Note: EP – equatorial Pacific region,
ES – Tahiti island for ENSO measurement, LO – local region, AH – Azores High, SH – St. Helena High, MH – Mascarene High, AM –
southwest Asian monsoon, NI – North Indian Ocean, SI – South Indian Ocean, AT – equatorial/South Atlantic Ocean.

tially correlated independently with each global climate vari-
able. As a result, there are total of 1044 global correlation
maps given the 29-year time series, eight clusters plus one
non-cluster, and four climate variables. Hence, a program to
automatically select highly correlated and justifiable regions
as predictors is developed. The following steps describe the
subsequent statistical modeling process (Fig. 3):

1. Grid cells within each justifiable region (e.g., equato-
rial Pacific; Fig. 4) with correlation above the 99 % sig-
nificance level are identified (Fig. 5). For regions con-
taining grid cells with both positive and negative corre-
lations, the number of the identified grid cells in each
sign is counted. If a greater number of grid cells is asso-
ciated with significant positive correlation, for example,
only grid cells with positive correlations are kept for the
following steps, and vice versa.

2. The top 10 % of the identified grid cells with the highest
correlation in each region are then selected in order to
boost the potential model skill.

3. For each region, data of the selected grid cells within
the region are spatially averaged (defined as “prepredic-
tors”).

4. Prepredictors are standardized, combined, and trans-
formed through PCA for each cluster or non-cluster and
each dropped-year analysis separately.

5a. The top PCs from the PCA with a total of 95% variance
explained are used as predictors in PCR. For the direct
case, PCR is used to directly predict the grid-level pre-
cipitation; for the indirect case, PCR is used to predict
the intermediate cluster-level precipitation.

5b. For the indirect case only, cluster-level predictions are
regressed to the grid level. Note that the downscaling of
cluster-level predictions to grid-level predictions is also
cross-validated to avoid overfitting.

For the four scenarios, the model structures are quite simi-
lar but have subtle differences which could lead to evidently
different outcomes (Table 1). Under the NC-D (Eq. 1a, b)
and C-D scenarios (Eq. 2a, b), the time series of JJAS sea-
sonal total precipitation in each grid cell (i.e., at local level)
is used as the direct predictand (Yi,t ); however, the NC-D and
C-D scenarios differ, as the former uses the same predictors
(Xt ) across all the grid cells, while the latter uses different
predictors according to the cluster to which the grid cell is
assigned (Xj,t ). In the indirect case, the cluster-level time
series of JJAS seasonal total precipitation (the time series av-
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Figure 5. Correlation map between mean JJAS seasonal precipitation time series in Cluster 5 and global SST under cross-validation, with
correlations lower than the 99 % significance level masked out (one-tail test).

Figure 6. (a) Bias correction of North American Multi-Model Ensemble (NMME) predictions using probability mapping; (b) precipitation
time series from NMME (colored lines) before and after correction, compared to observations (black line). Examples are shown for randomly
selected six grid cells.
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Table 1. Equations of linear regression panel models under four scenarios.

Non-clustered Clustered

Direct Yi,t = α̃i + β̃iXt + εi,t (1a) Yiεj,t = α̃i + β̃iXj,t + εi,t (2a)

Ỹi,t = α̃i + β̃iXt (1b) Ỹiεj,t = α̃i + β̃iXj,t (2b)

Indirect Ym,t = α̃+ β̃Xt + εt (3a) Yj,t = α̃j + β̃jXj,t + εj,t (4a)

Ỹm,t = α̃+ β̃Xt (3b) Ỹj,t = α̃j + β̃jXj,t (4b)

Yi,t = η̃i + γ̃i Ỹm,t + νi,t (3c) Yi∈j,t = η̃i + γ̃i Ỹj,t + νi,t (4c)

Ỹi,t = η̃i + γ̃i Ỹm,t (3d) Ỹi∈j,t = η̃i + γ̃i Ỹj,t (4d)

Y – predictand of JJAS seasonal total precipitation; X – predictors of top PCs; ε, ν – error terms; Ỹ –
predicted values of JJAS seasonal total precipitation; α̃, β̃, η̃, γ̃ – estimated coefficients; i – grid-cell index; t
– time (year) index; j – cluster index; i ∈ j – grid cell i that belongs to cluster j ; m – mean over entire study
region that is equivalently the only cluster.

eraged over all grid cells that belong to a given cluster, Ym,t
or Yj,t ) is first predicted (Eqs. 3a, b and 4a, b). The predicted
intermediate product (Ỹm,t or Ỹj,t ) is then used as the only
regressor in the second step to estimate the grid-level pre-
cipitation (Ỹi,t or Ỹiεj,t for every j ; Eqs. 3c, d and 4c, d).
Again, for the C-I scenario, predictors in the first step are
unique for each of the eight clusters and grid cells within
that cluster (Xj,t ), while predictors are identical for all grid
cells (Xt ) under the NC-I scenario. A 95 % confidence in-
terval of the cross-validated predictions is also constructed
conditioned on model errors.Q-Q plots are evaluated to ver-
ify normally distributed residuals (results not included).

3.3 Dynamical modeling approach

The North American Multi-Model Ensemble (NMME; Kirt-
man et al., 2014) is an experimental multi-model system con-
sisting of coupled dynamical models from various modeling
centers in North America. To our knowledge, it is also the
most extensive multi-model seasonal prediction archive. The
NMME provides gridded climate predictions that cover re-
gions globally and with different lead times. The hindcasts
of monthly mean precipitation are easily accessible through
the International Research Institute for Climate and Soci-
ety (IRI) website (http://iridl.ldeo.columbia.edu/SOURCES/
.Models/.NMME/) and can be easily aggregated to seasonal
totals for comparison with the statistical model results in this
study. Therefore, NMME JJAS seasonal precipitation pre-
dictions (1◦× 1◦ grid cells) are extracted from model en-
sembles that cover the same time period (1983–2011), ge-
ographic region (western Ethiopia), and with the same lead
time (predictions made on 1 June). A subset of 10 NMME
models meet these criteria and are retained for further eval-
uation: (1) COLA-RSMAS-CCSM3, (2) COLA-RSMAS-
CCSM4, (3) GFDL-CM2p1, (4) GFDL-CM2p1-are04,
(5) GFDL-CM2p5-FLOR-A06, (6) GFDL-CM2p5-FLOR-
B01, (7) IRI-ECHAM-AnomalyCoupled, (8) IRI-ECHAM-
DirectCoupled, (9) NASA-GMAO, and (10) NCEP-CFSv2.

The names are kept the same as on the International Research
Institute for Climate and Society (IRI) data repository web-
site.

The NMME predictions for each of the 10 models are bias
corrected by applying probability mapping (e.g., Block et al.,
2009; Teutschbein and Seibert, 2012; Chen et al., 2013) un-
der cross-validation, subject to the observational dataset from
NMA (Fig. 6). This is performed on a grid-cell-by-grid-cell
basis on standardized data (the NMME dataset is reshaped
to 0.1◦× 0.1◦ grid cells to match the observational NMA
dataset grid-cell size). The basic steps include the following:

1. Fit gamma distributions to drop-one-year time series
from each observed and NMME grid cell; for NMME,
this is performed on an individual model basis using all
ensemble members available. (Goodness-of-fit tests in-
dicate gamma distributions are appropriate; results not
shown.)

2. Translate gamma distributions into cumulative distribu-
tion functions (CDFs).

3. For any given dynamical model prediction at the grid-
cell level, a corrected prediction value is attained by
mapping from the modeled CDF to the observed CDF
and applying the inverse gamma distribution. This is
repeated for all grid cells, all NMME models, and all
dropped years.

After correction, the gamma CDFs of predictions and ob-
servations approximately match (Fig. 6a). Additionally, each
ensemble still retains its variability over time, though the
overall ensemble mean is shifted to closely match observa-
tion (Fig. 6b).

3.4 Performance metrics

Pearson correlations are used to measure the standardized
covariance between observations and predictions. Ranked
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Figure 7. Cluster-level predictions and observations under the C-I and NC-I scenarios, with drop-one-year cross-validation. The 95 % enve-
lope shows the 95 % confidence interval constructed using model errors.

probability skill scores (RPSSs; Wilks, 2011) are also eval-
uated to determine categorical skill based on probabilistic
predictions. Here, the data are split into three equal terciles
representing below-normal, near-normal, and above-normal
conditions. A perfect prediction yields an RPSS of 100 %,
and a prediction with less skill than climatology (long-term
averages) yields an RPSS of less than zero. Median RPSS
values from all 29 years are reported.

4 Results

4.1 Statistical model predictions

Correlations between cluster-level model predictions and ob-
servations range from −0.16 to 0.51, with Cluster 5 having
the highest correlation and Cluster 6 the lowest (Table 2). In
approximately one-fifth of the 29 years, the observation falls
outside the prediction envelope (Fig. 7), indicating model
overfitting and an inability of the predictors to capture pre-
cipitation variability. For RPSS, three out of eight clusters
indicate superior prediction skill over climatology (Table 2).
Improvement in terms of RPSS over the non-cluster scenario
is evident for Clusters 1, 3, and 7. Although Cluster 5, in agri-

culturally rich central-northwestern Ethiopia (Fig. 2), shows
a slightly deteriorated RPSS relative to the non-cluster sce-
nario, it still performs outstandingly with the highest cor-
relation and a positive RPSS value of 0.51 and 10 %, re-
spectively. Clusters 2, 4, 6, and 8 show deteriorated RPSS
compared to the non-cluster scenario, although those clusters
are mainly regions outside Ethiopia and southern Ethiopia
(Fig. 2) where water resources and agricultural activities are
considerably less (Fig. 1).

At the grid scale, depending on the case (direct or indi-
rect), and for different clusters, correlations between predic-
tions and observations can favor the clustered case or the
non-clustered case (Fig. 8). In general, the indirect model
provides a smoother pattern of correlations, with grid cells
showing a negative correlation in the direct case now im-
proved to near or above zero (Fig. 8). For example, Cluster 5
under the indirect case illustrates a more consistent positive
correlation within the cluster. Some parts of the study region
reach a correlation over 0.6, such as central-northwestern
Ethiopia (Cluster 5), which is consistent with the region of
high cluster-level prediction skill. The percentage of grid
cells with correlations passing the 95 % significance test is
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Figure 8. Pearson correlations between grid-level observations and predictions under the four scenarios, with the clustering boundary delin-
eated roughly in black.

Table 2. Correlation coefficients (“Corr.”) and RPSS for (drop-one-year cross-validated) predictions at cluster level compared to observations
under the C-I and NC-I scenarios.

Cluster C1 C2 C3 C4 C5 C6 C7 C8 Non-cluster

Corr. 0.137 −0.027 0.171 0.184 0.514 −0.157 0.353 −0.108 0.297
RPSS (%) 22.88 −26.14 33.32 12.74 10.02 −43.61 20.92 −26.40 13.25

the highest for the NC-D case (Table 3); however, some loca-
tions demonstrate the lowest skills among all four scenarios.

Similar findings are evident by evaluating the RPSS, ex-
cept for Cluster 8; instead of improving with increased RPSS
in the indirect case, the grid-scale predictions deteriorate
given poor cluster-level prediction (for the C-I case). How-
ever, the percentage of grid cells with positive RPSS values
overall for the C-I case is still the second highest after the
NC-I case (Table 3), indicating the indirect cases are superior
in terms of the number of grid cells with improved skill com-
pared to using climatology, particularly for grid cells associ-
ated with skillful intermediate cluster-level predictions. The
predictions are most skillful for the same region of central-
northwestern Ethiopia (Cluster 5; Fig. 9) with 87 % of its
grid cells showing positive RPSS and a spatial-average RPSS
value of 15 % under the C-I scenario (Table 4).

4.2 Dynamical model predictions

The RPSS values based on the prediction ensembles of each
dynamical model improve remarkably after bias correction.
The median RPSS values over all the grid cells are now
close to zero (Fig. 10) with two models, NASA-GMAO and
NCEP-CFSv2, showing the highest RPSS value (−2.3 and
−1.1 %, respectively; Table 3). These two dynamical mod-
els also exhibit generally higher grid-level correlations over
the study region (averaging 0.24 for both models; Table 3
and Fig. 11), as compared with other NMME models. The
two best-performing dynamical models after bias correction
show advantage over statistical models, as assessed by corre-
lation and RPSS metrics; however, all other dynamical mod-
els are inferior to the statistical models under the NC-D and
C-I scenarios, particularly given the percent of grid cells with
significant correlation and positive RPSS metrics (Table 3).
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Figure 9. Grid-level RPSS (%) under the four scenarios using climate variables as predictors, with the clustering boundary delineated roughly
in black.

Table 3. Grid-level Pearson correlation and RPSS statistics.

Statistical model Grid-level correlations Grid-level RPSS

Mean SD Significant corr. % Mean (%) SD (%) Positive RPSS %

NC-D 0.128 0.258 19.3 % −5.21 27.0 42.8 %
NC-I 0.063 0.186 3.13 % −2.26 14.6 43.9 %
C-D 0.055 0.230 10.6 % −14.0 31.0 33.9 %
C-I 0.080 0.205 12.3 % −9.93 29.3 43.7 %

Dynamical model

(1) −0.105 0.209 0.51 % −31.4 25.4 5.70 %
(2) 0.133 0.171 6.26 % −14.2 24.6 27.0 %
(3) 0.086 0.130 2.08 % −14.9 25.2 26.2 %
(4) 0.027 0.156 0.38 % −14.4 19.3 22.6 %
(5) 0.067 0.170 1.64 % −9.66 17.0 28.4 %
(6) 0.139 0.165 6.53 % −5.66 16.7 38.1 %
(7) 0.102 0.130 1.67 % −8.64 17.6 31.7 %
(8) 0.009 0.185 0.90 % −10.3 14.8 26.7 %
(9) 0.244 0.149 23.1 % −2.33 21.8 46.0 %
(10) 0.244 0.149 21.2 % −1.09 16.8 48.9 %

Within a certain cluster, statistical models may perform
better than all dynamical models. For example, for Cluster 5,
all statistical models show higher average RPSS values than
those of all dynamical models (Table 4). The percentage of

grid cells with significant correlation reaches 61 % for the
statistical model under the NC-D scenario, compared to the
highest value of 47 % among all the dynamical models. Sim-
ilarly, the percentage with positive RPSS achieves 87 % un-
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Table 4. Grid-level Pearson correlation and RPSS statistics for grid cells within Cluster 5.

Statistical model Grid-level correlations Grid-level RPSS

Mean SD Significant corr. % Mean (%) SD (%) Positive RPSS %

NC-D 0.378 0.211 60.7 % 19.1 22.9 80.3 %
NC-I 0.265 0.111 12.8 % 8.33 14.8 70.3 %
C-D 0.229 0.244 30.5 % 6.91 24.1 62.3 %
C-I 0.346 0.167 55.4 % 14.5 13.1 87.0 %

Dynamical model

(9) 0.353 0.110 46.8 % 8.21 18.2 65.7 %
(10) 0.248 0.130 18.4 % 3.92 16.2 59.5 %

 

Figure 10. Box plots of grid-level RPSS (%) for 10 dynamical mod-
els from NMME (a) before and (b) after bias correction, labeled
with the same number as listed in the context. Note that for each box
plot, the line inside the box is the median, the box edges represent
the 25th and 75th percentiles, and the whiskers extend to the most
extreme data points not considered outliers (outliers not shown).

der the C-I scenario as opposed to 66 % for dynamical mod-
els. Note that the dynamical models also produce raw predic-
tions in a lower spatial resolution (1◦× 1◦) than the statistical
models (0.1◦× 0.1◦) and require bias correction to guarantee
comparable skills.

5 Conclusions and discussion

This study demonstrates the potential for applying season-
ahead large-scale climate information to predict high-
resolution precipitation using a statistical modeling ap-
proach. Skillful and credible predictions are produced for
some regions in western Ethiopia, particularly under a clus-
tered indirect statistical approach. At the regional scale, the
approach shows promise for northwestern Ethiopia (Clus-

ters 1, 3, 5, and 7), particularly compared to current NMA
operational forecasts, which are only moderately more skill-
ful than climatology (Korecha and Sorteberg, 2013). The re-
gional average RPSS in this study under the clustered case
ranges from 10 to 33 % for northwestern Ethiopia, as op-
posed to values under 6 % for NMA operational forecast
(Korecha and Sorteberg, 2013). The approach adopted here
also advances on previous studies (Gissila et al., 2004; Block
and Rajagopalan, 2007; Korecha and Barnston, 2007; Diro
et al., 2011b; Segele et al., 2015) by first applying an ob-
jective cluster analysis and then conditionally constructing
high-resolution predictions. A unique set of predictors is ap-
plied to each cluster, which contributes to superior prediction
performance at cluster levels in northwestern Ethiopia, as
compared with predictions from the non-clustered approach.
Grid-level prediction under the clustered indirect case also
reduces the effect of overfitting relative to the direct case and
improves negative RPSS values to near or above zero; that
said, the non-clustered direct case also illustrates higher cor-
relation and RPSS values on average.

A total of 2 out of 10 NMME dynamical models, NASA-
GMAO and NCEP-CFSv2, demonstrate overall superior per-
formance to the statistical models; however, for certain re-
gions such as Cluster 5, the performance of statistical models
under the clustered indirect and non-clustered direct cases is
still superior. It is also worth noting that the statistical model
predictions are at a 100 times finer spatial resolution than
the dynamical models, providing additional advantages at the
local scale, when skillful. Nevertheless, improvements in dy-
namical models continue and their application to seasonal
precipitation prediction is likely to grow (e.g., Palmer et al.,
2004; Saha et al., 2006; Lim et al., 2009).

Relatively poor prediction performance is evident in some
locations such as southwestern Ethiopia and regions out-
side Ethiopia, where the hydroclimatic processes that pro-
duce precipitation might be driven by local factors or other
regional climate patterns rather than large-scale climate vari-
ables identified in this study. A previous study (Zhang et al.,
2016) has shown that the influence of ENSO on JJAS precip-
itation in western Ethiopia decreases generally from north to
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Figure 11. Pearson correlations between grid-level observations and ensemble mean of bias-corrected predictions for 10 dynamical models
from NMME, labeled with the same number as listed in the context.

south, and is likely one of the reasons why skills are rela-
tively low in southwestern Ethiopia. Cluster 5 was also iden-
tified with the strongest connection to equatorial Pacific SST
(Zhang et al., 2016), which is consistent with the highest skill
found in this study. Other regions with low prediction skill
show relatively strong connections to SST in neighboring
oceanic regions. However, connections with those climate
patterns appear to be less robust than with ENSO, making
the predictions in their associated regions less skillful. This is
also consistent with the findings from other studies that even
though all three oceans (Indian, Atlantic, and Pacific) affect
the JJAS precipitation in western Ethiopia, the Pacific Ocean
still plays the greatest role (Segele et al., 2009; Omondi et
al., 2013).

The southwest Asian monsoon over the Indian Ocean may
also be critical in determining the precipitation, given that
the clusters with better prediction skills lie along the path-
way of the monsoon. Based on the global concurrent correla-
tion maps between JJAS precipitation and SLP for each clus-
ter, Clusters 5 and 7 – the two clusters with the best skills –
are the only ones that are strongly and negatively correlated
with SLP near Bombay, and in the meantime strongly and
positively correlated with the SLP at the eastern equatorial
Pacific Ocean. The former indicates that a strong southwest
Asian monsoon is associated with higher JJAS precipitation
amount, and vice versa. The latter indicates that a high sur-
face pressure over the eastern equatorial Pacific Ocean of-
ten accompanied by cold SST and a raining pattern – a La
Niña phenomenon – also brings higher JJAS precipitation
to western Ethiopia, and vice versa. Cluster 2 – one of the
worst predicted clusters – shows moderately strong negative
correlation with SLP near Bombay; however, it is also corre-
lated strongly and negatively with SLP in the southern Indian
Ocean (a high pressure system that drives the monsoon to-

ward the low pressure system near Bombay), indicating that
high JJAS precipitation in Cluster 2 is not necessarily asso-
ciated with a strong southwest Asian monsoon. Moreover,
its correlation with SLP over the equatorial Pacific Ocean is
nonsignificant. Considering, in general, El Niño suppresses
the monsoon and La Niña increases it (Kumar et al., 2006),
strong correlations with both ENSO and the monsoon in the
correct direction, such as for Clusters 5 and 7, indicate a dou-
ble insurance over their association with the southwest Asian
monsoon. Therefore, clusters which are more affected by the
southwest Asian monsoon over the Indian Ocean, particu-
larly coupled with the influence of ENSO, are likely to be
more promising in their prediction skills.

Additional prediction features also warrant future atten-
tion, including longer prediction lead times and evaluation of
other relevant characteristics (e.g., intraseasonal dry spells,
seasonal onset or cessation). As observational datasets con-
tinue to grow, data-driven cluster analyses and statistical
modeling approaches may be expected to improve. Careful
analysis of possible significant trends in the data is also war-
ranted; a region with a relatively high correlation may be se-
lected solely based on trends in predictors and observations.
For shorter time series, such as the data used in this study,
trend analysis may not be reliable; detrending can also reduce
evidence of large-scale decadal climate signals. Improving
predictive capabilities may not be a complete panacea, but it
can continue to be an important part of a decision maker’s
portfolio as they cope with hydroclimatic variability and its
inherent risks.

Data availability. The National Centers for Environmental Predic-
tion and National Center for Atmospheric Research (NCEP/NCAR)
reanalysis dataset can be accessed through the National Oceanic
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and Atmospheric Administration (NOAA) Earth System Research
Laboratory (ESRL) website (https://www.esrl.noaa.gov/psd/data/
reanalysis/).

The NMME hindcasts are available through the International Re-
search Institute for Climate and Society (IRI) website (http://iridl.
ldeo.columbia.edu/SOURCES/.Models/.NMME/).

The gridded precipitation dataset in western Ethiopia is available
upon request from NMA (http://www.ethiomet.gov.et/).

Competing interests. The authors declare that they have no conflict
of interest.

Special issue statement. This article is part of the special issue
“Sub-seasonal to seasonal hydrological forecasting”. It does not be-
long to a conference.

Acknowledgements. This study was supported by NASA project
NNX14AD30G and NSF PIRE project 1545874. We acknowledge
the National Meteorological Agency of Ethiopia for sharing data.
We also want to thank the reviewers for their suggestions in
improving this work.

Edited by: Quan J. Wang
Reviewed by: Yared Bayissa and Lars Gerlitz

References

Anderson, D., Stockdale, T., Balmaseda, M., Ferranti, L., Vitart, F.,
Molteni, F., Doblas-Reyes, F., Mogensen, K., and Vidard, A.: De-
velopment of the ECMWF seasonal forecast System 3, ECMWF
Technical Memoranda, 1–56, 2007.

Awulachew, S. B., Yilma, A. D., Loulseged, M., Loiskandl, W.,
Ayana, M., and Alamirew, T.: Water Resources and Irrigation De-
velopment in Ethiopia. Colombo, Sri Lanka: International Water
Management Institute, 78 pp., Working Paper 123, 2007.

Badr, H. S., Zaitchik, B. F., and Dezfuli, A. K.: A tool for hierarchi-
cal climate regionalization, Earth Sci. Inform., 8, 949–958, 2015.

Barrett, C. B.: The Development Of The Nile Hydrometeorological
Forecast System1, Wiley Online Library, 1993.

Bekele, F.: Ethiopian Use of ENSO Information in Its Seasonal
Forecasts, Internet Journal of African Studies, available at: https:
//www.bradford.ac.uk/research-old/ijas/ijasno2/bekele.html (last
access: 15 June 2016), 1997.

Black, E., Slingo, J., and Sperber, K. R.: An observational study of
the relationship between excessively strong short rains in coastal
East Africa and Indian Ocean SST, Mon. Weather Rev., 131, 74–
94, 2003.

Block, P. and Goddard, L.: Statistical and Dynamical Climate Pre-
dictions to Guide Water Resources in Ethiopia, J. Water Res. Pl.,
138, 287–298, 2012.

Block, P. J. and Rajagopalan, B.: Interannual Variability and En-
semble Forecast of Upper Blue Nile Basin Kiremt Season Pre-
cipitation, J. Hydrometeorol., 8, 327–343, 2007.

Block, P. and Rajagopalan, B.: Statistical–Dynamical Approach
for Streamflow Modeling at Malakal, Sudan, on the White Nile
River, J. Hydrol. Eng., 14, 185–196, 2009.

Block, P. J., Filho, F. A. S., Sun, L., and Kwon, H. H.: A Streamflow
Forecasting Framework Using Multiple Climate and Hydrologi-
cal Models, J. Am. Water Resour. As., 45, 828–843, 2009.

Camberlin, P.: Rainfall Anomalies in the Source Region of the Nile
and Their Connection with the Indian Summer Monsoon, J. Cli-
mate, 10, 1380–1392, 1997.

Camberlin, P. and Philippon, N.: The East African March–May
Rainy Season: Associated Atmospheric Dynamics and Pre-
dictability over the 1968–97 Period, J. Climate, 15, 1002–1019,
2002.

Chen, J., Brissette, F. P., Chaumont, D., and Braun, M.: Finding
appropriate bias correction methods in downscaling precipitation
for hydrologic impact studies over North America, Water Resour.
Res., 49, 4187–4205, 2013.

Dinku, T., Hailemariam, K., Maidment, R., Tarnavsky, E., and Con-
nor, S.: Combined use of satellite estimates and rain gauge ob-
servations to generate high-quality historical rainfall time series
over Ethiopia, Int. J. Climatol., 34, 2489–2504, 2014.

Diro, G. T., Black, E., and Grimes, D. I. F.: Seasonal forecasting of
Ethiopian spring rains, Meteorol. Appl., 15, 73–83, 2008.

Diro, G. T., Grimes, D. I. F., Black, E., O’Neill, A., and Pardo-
Iguzquiza, E.: Evaluation of reanalysis rainfall estimates over
Ethiopia, Int. J. Climatol., 29, 67–78, 2009.

Diro, G. T., Grimes, D. I. F., and Black, E.: Teleconnections be-
tween Ethiopian summer rainfall and sea surface temperature:
part I – observation and modelling, Clim. Dynam., 37, 103–119,
2011a.

Diro, G. T., Grimes, D. I. F., and Black, E.: Teleconnections be-
tween Ethiopian summer rainfall and sea surface temperature:
part II. Seasonal forecasting, Clim. Dynam., 37, 121–131, 2011b.

Elagib, N. A. and Elhag, M. M.: Major climate indicators of ongo-
ing drought in Sudan, J. Hydrol., 409, 612–625, 2011.

Gerlitz, L., Vorogushyn, S., Apel, H., Gafurov, A., Unger-
Shayesteh, K., and Merz, B.: A statistically based seasonal pre-
cipitation forecast model with automatic predictor selection and
its application to central and south Asia, Hydrol. Earth Syst.
Sci., 20, 4605–4623, https://doi.org/10.5194/hess-20-4605-2016,
2016

Gissila, T., Black, E., Grimes, D. I. F., and Slingo, J. M.: Seasonal
forecasting of the Ethiopian summer rains, Int. J. Climatol., 24,
1345–1358, 2004.

Goddard, L. and Graham, N. E.: Importance of the Indian Ocean for
simulating rainfall anomalies over eastern and southern Africa, J.
Geophys. Res.-Atmos., 104, 19099–19116, 1999.

Hammer, G. L., Nicholls, N., and Mitchell, C.: Applications of Sea-
sonal Climate Forecasting In Agricultural and Natural Ecosys-
tems, Dordrecht, Kluwer Academic Publishers, 2000.

Hertig, E. and Jacobeit, J.: Predictability of Mediterranean climate
variables from oceanic variability. Part II: Statistical models for
monthly precipitation and temperature in the Mediterranean area,
Clim. Dynam., 36, 825–843, 2011.

Ines, A. V. M. and Hansen, J. W.: Bias correction of daily GCM
rainfall for crop simulation studies, Agr. Forest Meteorol., 138,
44–53, 2006.

Jolliffe, I. T.: Principal Component Analysis, 2nd ed., New York,
Springer-Verlag, 2002.

www.hydrol-earth-syst-sci.net/22/143/2018/ Hydrol. Earth Syst. Sci., 22, 143–157, 2018

https://www.esrl.noaa.gov/psd/data/reanalysis/
https://www.esrl.noaa.gov/psd/data/reanalysis/
http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/
http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/
http://www.ethiomet.gov.et/
https://www.bradford.ac.uk/research-old/ijas/ijasno2/bekele.html
https://www.bradford.ac.uk/research-old/ijas/ijasno2/bekele.html
https://doi.org/10.5194/hess-20-4605-2016


156 Y. Zhang et al.: Seasonal precipitation prediction at local scale with cluster analysis a priori

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D.,
Gandin, L., Iredell, M., Saha, S., White, G., and Woollen, J.: The
NCEP/NCAR 40-year reanalysis project, B. Am. Meteorol. Soc.,
77, 437–471, 1996.

Kassahun, B.: Weather systems over Ethiopia, Proc. First Tech.
Conf. on Meteorological Research in Eastern and Southern
Africa, Nairobi, Kenya, UCAR, 1987.

Kinuthia, J. H.: Horizontal and Vertical Structure of the Lake
Turkana Jet, J. Appl. Meteorol., 31, 1248–1274, 1992.

Kirtman, B. P., Min, D., Infanti, J. M., Kinter, J. L., Paolino, D.
A., Zhang, Q., Van Den Dool, H., Saha, S., Mendez, M. P.,
Becker, E., Peng, P., Tripp, P., Huang, J., Dewitt, D. G., Tippett,
M. K., Barnston, A. G., Li, S., Rosati, A., Schubert, S. D., Rie-
necker, M., Suarez, M., Li, Z. E., Marshak, J., Lim, Y.-K., Trib-
bia, J., Pegion, K., Merryfield, W. J., Denis, B., and Wood, E. F.:
The North American Multimodel Ensemble: Phase-1 Seasonal-
to-Interannual Prediction; Phase-2 toward Developing Intrasea-
sonal Prediction, B. Am. Meteorol. Soc., 95, 585–601, 2014.

Korecha, D. and Barnston, A. G.: Predictability of June–September
Rainfall in Ethiopia, Mon. Weather Rev., 135, 628–650, 2007.

Korecha, D. and Sorteberg, A.: Validation of operational seasonal
rainfall forecast in Ethiopia, Water Resour. Res., 49, 7681–7697,
2013.

Kumar, K. K., Rajagopalan, B., Hoerling, M., Bates, G., And Cane,
M.: Unraveling the Mystery of Indian Monsoon Failure During
El Niño, Science, 314, 115–119, 2006.

Landman, W. A. and Mason, S. J.: Operational long-lead predic-
tion of South African rainfall using canonical correlation analy-
sis, Int. J. Climatol., 19, 1073–1090, 1999.

Latif, M., Dommenget, D., Dima, M., and Grötzner, A.: The role
of Indian Ocean sea surface temperature in forcing east African
rainfall anomalies during December-January 1997/98, J. Cli-
mate, 12, 3497–3504, 1999.

Lim, E.-P., Hendon, H. H., Hudson, D., Wang, G., and Alves, O.:
Dynamical Forecast of Inter–El Niño Variations of Tropical SST
and Australian Spring Rainfall, Mon. Weather Rev., 137, 3796–
3810, 2009.

Mason, S.: Seasonal forecasting of South African rainfall using
a non?linear discriminant analysis model, Int. J. Climatol., 18,
147–164, 1998.

Mutai, C. C., Ward, M. N., and Colman, A. W.: Towards the
prediction of the East Africa short rains based on sea-surface
temperature–atmosphere coupling, Int. J. Climatol., 18, 975–
997, 1998.

Nicholson, S. E.: A review of climate dynamics and climate vari-
ability in Eastern Africa, in: The Limnology, Climatology and
Paleoclimatology of the East African Lakes, edited by: Johnson,
T. C. and Odada, E. O., Australia, Gordon and Breach, 25–56,
1996.

Nicholson, S. E.: The Predictability of Rainfall over the Greater
Horn of Africa. Part I: Prediction of Seasonal Rainfall, J. Hy-
drometeorol., 15, 1011–1027, 2014.

NMSA: Climate and agroclimatic resources of Ethiopia, NMSA
Meteorological Research Report Series, Addis Ababa, National
Meteorological Services Agency of Ethiopia, Ethiopia, 1996.

Omondi, P., Ogallo, L. A., Anyah, R., Muthama, J. M., and Ininda,
J.: Linkages between global sea surface temperatures and decadal
rainfall variability over Eastern Africa region, Int. J. Climatol.,
33, 2082–2104, 2013.

Palmer, T. N., Alessandri, A., Andersen, U., Cantelaube, P., Davey,
M., Délécluse, P., Déqué, M., Díez, E., Doblas-Reyes, F. J., Fed-
dersen, H., Graham, R., Gualdi, S., Guérémy, J.-F., Hagedorn,
R., Hoshen, M., Keenlyside, N., Latif, M., Lazar, A., Maison-
nave, E., Marletto, V., Morse, A. P., Orfila, B., Rogel, P., Terres,
J. M., and Thomson, M. C.: Development of a European Multi-
Model Ensemble System for Seasonal to Inter-Annual Prediction
(DEMETER), B. Am. Meteorol. Soc., 85, 853–872, 2004.

Parthasarathy, B., Kumar, K. R., and Munot, A. A.: Homogeneous
Indian Monsoon rainfall: Variability and prediction, P. Indian
As.-Earth, 102, 121–155, 1993.

Roeckner, E., Oberhuber, J. M., Bacher, A., Christoph, M., and
Kirchner, I.: ENSO variability and atmospheric response in a
global coupled atmosphere-ocean GCM, Clim. Dynam., 12, 737–
754, 1996.

Saha, S., Nadiga, S., Thiaw, C., Wang, J., Wang, W., Zhang, Q.,
Van Den Dool, H. M., Pan, H. L., Moorthi, S., Behringer, D.,
Stokes, D., PeÑA, M., Lord, S., White, G., Ebisuzaki, W., Peng,
P., and Xie, P.: The NCEP Climate Forecast System, J. Climate,
19, 3483–3517, 2006.

Schepen, A., Wang, Q. J., and Robertson, D. E.: Combining
the strengths of statistical and dynamical modeling approaches
for forecasting Australian seasonal rainfall, J. Geophys. Res.-
Atmos., 117, D20107, https://doi.org/10.1029/2012JD018011,
2012.

Segele, Z. T. and Lamb, P. J.: Characterization and variability of
Kiremt rainy season over Ethiopia, Meteorol. Atmos. Phys., 89,
153–180, 2005.

Segele, Z. T., Lamb, P. J., and Leslie, L. M.: Seasonal-to-Interannual
Variability of Ethiopia/Horn of Africa Monsoon. Part I: Associ-
ations of Wavelet-Filtered Large-Scale Atmospheric Circulation
and Global Sea Surface Temperature, J. Climate, 22, 3396–3421,
2009.

Segele, Z. T., Richman, M. B., Leslie, L. M., and Lamb,
P. J.: Seasonal-to-Interannual Variability of Ethiopia/Horn
of Africa Monsoon. Part II: Statistical Multi-Model En-
semble Rainfall Predictions, J. Climate, 28, 3511–3536,
https://doi.org/10.1175/JCLI-D-14-00476.1, 2015.

Shanko, D. and Camberlin, P.: The effects of the Southwest Indian
Ocean tropical cyclones on Ethiopian drought, Int. J. Climatol.,
18, 1373–1388, 1998.

Shukla, S., Roberts, J., Hoell, A., Funk, C. C., Robertson, F., and
Kirtman, B.: Assessing North American multimodel ensemble
(NMME) seasonal forecast skill to assist in the early warn-
ing of anomalous hydrometeorological events over East Africa,
Clim. Dynam., 1–17, https://doi.org/10.1007/s00382-016-3296-
z, 2016.

Singh, A., Kulkarni, M. A., Mohanty, U. C., Kar, S. C., Robertson,
A. W., and Mishra, G.: Prediction of Indian summer monsoon
rainfall (ISMR) using canonical correlation analysis of global
circulation model products, Meteorol. Appl., 19, 179–188, 2012.

Slingo, J., Spencer, H., Hoskins, B., Berrisford, P., and Black, E.:
The meteorology of the Western Indian Ocean, and the influence
of the East African Highlands, Philos. T. R. Soc. A, 363, 25-42,
2005.

Suárez-Moreno, R. and Rodríguez-Fonseca, B.: S4CAST v2.0: sea
surface temperature based statistical seasonal forecast model,
Geosci. Model Dev., 8, 3639–3658, https://doi.org/10.5194/gmd-
8-3639-2015, 2015.

Hydrol. Earth Syst. Sci., 22, 143–157, 2018 www.hydrol-earth-syst-sci.net/22/143/2018/

https://doi.org/10.1029/2012JD018011
https://doi.org/10.1175/JCLI-D-14-00476.1
https://doi.org/10.1007/s00382-016-3296-z
https://doi.org/10.1007/s00382-016-3296-z
https://doi.org/10.5194/gmd-8-3639-2015
https://doi.org/10.5194/gmd-8-3639-2015


Y. Zhang et al.: Seasonal precipitation prediction at local scale with cluster analysis a priori 157

Tadesse, T.: The influence of the Arabian Sea storms/depressions
over the Ethiopian weather, Proc. Int. Conf. on Monsoon
Variability and Prediction, World Meteorological Organization,
Geneva, Switzerland, 1994.

Teutschbein, C. and Seibert, J.: Bias correction of regional climate
model simulations for hydrological climate-change impact stud-
ies: Review and evaluation of different methods, J. Hydrol., 456–
457, 12–29, 2012.

Viste, E. and Sorteberg, A.: The effect of moisture transport vari-
ability on Ethiopian summer precipitation, Int. J. Climatol., 33,
3106–3123, 2013a.

Viste, E. and Sorteberg, A.: Moisture transport into the Ethiopian
highlands, Int. J. Climatol., 33, 249–263, 2013b.

Wilks, D. S.: Statistical methods in the atmospheric sciences, 3rd
ed., Burlington, Elsevier Science, Academic press, 2011.

Williams, A. P., Funk, C., Michaelsen, J., Rauscher, S. A., Robert-
son, I., Wils, T. H. G., Koprowski, M., Eshetu, Z., and Loader,
N. J.: Recent summer precipitation trends in the Greater Horn of
Africa and the emerging role of Indian Ocean sea surface tem-
perature, Clim. Dynam., 39, 2307–2328, 2011.

Zhang, Y., Moges, S., and Block, P.: Optimal Cluster Analysis for
Objective Regionalization of Seasonal Precipitation in Regions
of High Spatial-Temporal Variability: Application to Western
Ethiopia, J. Climate, 29, 3697–3717, 2016.

www.hydrol-earth-syst-sci.net/22/143/2018/ Hydrol. Earth Syst. Sci., 22, 143–157, 2018


	Abstract
	Primer on prediction models and cluster analysis
	Application to western Ethiopia and objectives of the study
	Modeling high-resolution seasonal prediction
	Cluster analysis
	Statistical modeling approach
	Dynamical modeling approach
	Performance metrics

	Results
	Statistical model predictions
	Dynamical model predictions

	Conclusions and discussion
	Data availability
	Competing interests
	Special issue statement
	Acknowledgements
	References

