Articles | Volume 21, issue 6
https://doi.org/10.5194/hess-21-3167-2017
https://doi.org/10.5194/hess-21-3167-2017
Research article
 | 
29 Jun 2017
Research article |  | 29 Jun 2017

Landscape-scale water balance monitoring with an iGrav superconducting gravimeter in a field enclosure

Andreas Güntner, Marvin Reich, Michal Mikolaj, Benjamin Creutzfeldt, Stephan Schroeder, and Hartmut Wziontek

Related authors

Interannual Variations of Terrestrial Water Storage in the East African Rift Region
Eva Boergens, Andreas Güntner, Mike Sips, Christian Schwatke, and Henryk Dobslaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-641,https://doi.org/10.5194/egusphere-2024-641, 2024
Short summary
Depth-extrapolation of field-scale soil moisture time series derived with cosmic-ray neutron sensing using the SMAR model
Daniel Rasche, Theresa Blume, and Andreas Güntner
EGUsphere, https://doi.org/10.5194/egusphere-2024-170,https://doi.org/10.5194/egusphere-2024-170, 2024
Short summary
The benefits and trade-offs of multi-variable calibration of WGHM in the Ganges and Brahmaputra basins
H. M. Mehedi Hasan, Petra Döll, Seyed-Mohammad Hosseini-Moghari, Fabrice Papa, and Andreas Güntner
EGUsphere, https://doi.org/10.5194/egusphere-2023-2324,https://doi.org/10.5194/egusphere-2023-2324, 2023
Short summary
A change in perspective: downhole cosmic-ray neutron sensing for the estimation of soil moisture
Daniel Rasche, Jannis Weimar, Martin Schrön, Markus Köhli, Markus Morgner, Andreas Güntner, and Theresa Blume
Hydrol. Earth Syst. Sci., 27, 3059–3082, https://doi.org/10.5194/hess-27-3059-2023,https://doi.org/10.5194/hess-27-3059-2023, 2023
Short summary
Three years of soil moisture observations by a dense cosmic-ray neutron sensing cluster at an agricultural research site in north-east Germany
Maik Heistermann, Till Francke, Lena Scheiffele, Katya Dimitrova Petrova, Christian Budach, Martin Schrön, Benjamin Trost, Daniel Rasche, Andreas Güntner, Veronika Döpper, Michael Förster, Markus Köhli, Lisa Angermann, Nikolaos Antonoglou, Manuela Zude-Sasse, and Sascha E. Oswald
Earth Syst. Sci. Data, 15, 3243–3262, https://doi.org/10.5194/essd-15-3243-2023,https://doi.org/10.5194/essd-15-3243-2023, 2023
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Instruments and observation techniques
Impacts of hydrofacies geometry designed from seismic refraction tomography on estimated hydrogeophysical variables
Nolwenn Lesparre, Sylvain Pasquet, and Philippe Ackerer
Hydrol. Earth Syst. Sci., 28, 873–897, https://doi.org/10.5194/hess-28-873-2024,https://doi.org/10.5194/hess-28-873-2024, 2024
Short summary
Seasonal dynamics and spatial patterns of soil moisture in a loess catchment
Shaozhen Liu, Ilja van Meerveld, Yali Zhao, Yunqiang Wang, and James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 205–216, https://doi.org/10.5194/hess-28-205-2024,https://doi.org/10.5194/hess-28-205-2024, 2024
Short summary
Effects of urbanization on the water cycle in the Shiyang River basin: based on a stable isotope method
Rui Li, Guofeng Zhu, Siyu Lu, Liyuan Sang, Gaojia Meng, Longhu Chen, Yinying Jiao, and Qinqin Wang
Hydrol. Earth Syst. Sci., 27, 4437–4452, https://doi.org/10.5194/hess-27-4437-2023,https://doi.org/10.5194/hess-27-4437-2023, 2023
Short summary
Isotopic variations in surface waters and groundwaters of an extremely arid basin and their responses to climate change
Yu Zhang, Hongbing Tan, Peixin Cong, Dongping Shi, Wenbo Rao, and Xiying Zhang
Hydrol. Earth Syst. Sci., 27, 4019–4038, https://doi.org/10.5194/hess-27-4019-2023,https://doi.org/10.5194/hess-27-4019-2023, 2023
Short summary
Seasonal variation and influence factors of river water isotopes in the East Asian monsoon region: a case study in the Xiangjiang River basin spanning 13 hydrological years
Xiong Xiao, Xinping Zhang, Zhuoyong Xiao, Zhiguo Rao, Xinguang He, and Cicheng Zhang
Hydrol. Earth Syst. Sci., 27, 3783–3802, https://doi.org/10.5194/hess-27-3783-2023,https://doi.org/10.5194/hess-27-3783-2023, 2023
Short summary

Cited articles

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – Guidelines for computing crop water requirements, FAO Irrigation and drainage paper 56, Food and Agriculture Organization of the United Nations, Rome, 1998.
Baldocchi, D., Hicks, B., and Meyers, T.: Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods, Ecology, 69, 1331–1340, 1988.
Banka, D. and Crossley, D.: Noise levels of superconducting gravimeters at seismic frequencies, Geophys. J. Int., 139, 87–97, https://doi.org/10.1046/j.1365-246X.1999.00913.x, 1999.
Bayerisches Landesamt für Umwelt: http://www.hnd.bayern.de/pegel/donau_bis_passau/chamerau-15202300/statistik?days=1, last access: 27 June 2017.
Beven, K.: Towards an alternative blueprint for a physically based digitally simulated hydrologic response modelling system, Hydrol. Process., 16, 189–206, https://doi.org/10.1002/hyp.343, 2002.
Download
Short summary
Monitoring water storage changes beyond the point scale is a challenge. Here, we show that an integrative and non-invasive way is by observing variations of gravity that are induced by water mass changes. A high-precision superconducting gravimeter is successfully operated in the field and allows for direct and continuous monitoring of the water balance and of its components, such as actual evapotranspiration.