Articles | Volume 21, issue 6
https://doi.org/10.5194/hess-21-3167-2017
https://doi.org/10.5194/hess-21-3167-2017
Research article
 | 
29 Jun 2017
Research article |  | 29 Jun 2017

Landscape-scale water balance monitoring with an iGrav superconducting gravimeter in a field enclosure

Andreas Güntner, Marvin Reich, Michal Mikolaj, Benjamin Creutzfeldt, Stephan Schroeder, and Hartmut Wziontek

Related authors

Technical Note: GRACE-compatible filtering of water storage data sets via spatial autocorrelation analysis
Ehsan Sharifi, Julian Haas, Eva Börgens, Henryk Dobslaw, and Andreas Güntner
EGUsphere, https://doi.org/10.5194/egusphere-2025-1514,https://doi.org/10.5194/egusphere-2025-1514, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
The benefits and trade-offs of multi-variable calibration of the WaterGAP global hydrological model (WGHM) in the Ganges and Brahmaputra basins
Howlader Mohammad Mehedi Hasan, Petra Döll, Seyed-Mohammad Hosseini-Moghari, Fabrice Papa, and Andreas Güntner
Hydrol. Earth Syst. Sci., 29, 567–596, https://doi.org/10.5194/hess-29-567-2025,https://doi.org/10.5194/hess-29-567-2025, 2025
Short summary
Interannual variations of terrestrial water storage in the East African Rift region
Eva Boergens, Andreas Güntner, Mike Sips, Christian Schwatke, and Henryk Dobslaw
Hydrol. Earth Syst. Sci., 28, 4733–4754, https://doi.org/10.5194/hess-28-4733-2024,https://doi.org/10.5194/hess-28-4733-2024, 2024
Short summary
Depth extrapolation of field-scale soil moisture time series derived with cosmic-ray neutron sensing (CRNS) using the soil moisture analytical relationship (SMAR) model
Daniel Rasche, Theresa Blume, and Andreas Güntner
SOIL, 10, 655–677, https://doi.org/10.5194/soil-10-655-2024,https://doi.org/10.5194/soil-10-655-2024, 2024
Short summary
Leveraging multi-variable observations to reduce and quantify the output uncertainty of a global hydrological model: evaluation of three ensemble-based approaches for the Mississippi River basin
Petra Döll, Howlader Mohammad Mehedi Hasan, Kerstin Schulze, Helena Gerdener, Lara Börger, Somayeh Shadkam, Sebastian Ackermann, Seyed-Mohammad Hosseini-Moghari, Hannes Müller Schmied, Andreas Güntner, and Jürgen Kusche
Hydrol. Earth Syst. Sci., 28, 2259–2295, https://doi.org/10.5194/hess-28-2259-2024,https://doi.org/10.5194/hess-28-2259-2024, 2024
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Instruments and observation techniques
Technical note: A new laboratory approach to extract soil water for stable isotope analysis from large soil samples
Jiri Kocum, Jan Haidl, Ondrej Gebousky, Kristyna Falatkova, Vaclav Sipek, Martin Sanda, Natalie Orlowski, and Lukas Vlcek
Hydrol. Earth Syst. Sci., 29, 2863–2880, https://doi.org/10.5194/hess-29-2863-2025,https://doi.org/10.5194/hess-29-2863-2025, 2025
Short summary
Technical note: High-frequency, multi-elemental stream water monitoring – experiences, feedbacks and suggestions from 7 years of running three French field laboratories (Riverlabs)
Nicolai Brekenfeld, Solenn Cotel, Mikael Faucheux, Colin Fourtet, Yannick Hamon, Patrice Petitjean, Arnaud Blanchouin, Celine Bouillis, Marie-Claire Pierret, Hocine Henine, Anne-Catherine Pierson-Wickmann, Sophie Guillon, Paul Floury, and Ophelie Fovet
Hydrol. Earth Syst. Sci., 29, 2615–2631, https://doi.org/10.5194/hess-29-2615-2025,https://doi.org/10.5194/hess-29-2615-2025, 2025
Short summary
Hydrological controls on temporal contributions of three nested forested subcatchments to the export of dissolved organic carbon
Katharina Blaurock, Burkhard Beudert, and Luisa Hopp
Hydrol. Earth Syst. Sci., 29, 2377–2391, https://doi.org/10.5194/hess-29-2377-2025,https://doi.org/10.5194/hess-29-2377-2025, 2025
Short summary
Changes in the flowing drainage network and stream chemistry during rainfall events for two pre-Alpine catchments
Izabela Bujak-Ozga, Jana von Freyberg, Margaret Zimmer, Andrea Rinaldo, Paolo Benettin, and Ilja van Meerveld
Hydrol. Earth Syst. Sci., 29, 2339–2359, https://doi.org/10.5194/hess-29-2339-2025,https://doi.org/10.5194/hess-29-2339-2025, 2025
Short summary
Constructing a geography of heavy-tailed flood distributions: insights from common streamflow dynamics
Hsing-Jui Wang, Ralf Merz, and Stefano Basso
Hydrol. Earth Syst. Sci., 29, 1525–1548, https://doi.org/10.5194/hess-29-1525-2025,https://doi.org/10.5194/hess-29-1525-2025, 2025
Short summary

Cited articles

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – Guidelines for computing crop water requirements, FAO Irrigation and drainage paper 56, Food and Agriculture Organization of the United Nations, Rome, 1998.
Baldocchi, D., Hicks, B., and Meyers, T.: Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods, Ecology, 69, 1331–1340, 1988.
Banka, D. and Crossley, D.: Noise levels of superconducting gravimeters at seismic frequencies, Geophys. J. Int., 139, 87–97, https://doi.org/10.1046/j.1365-246X.1999.00913.x, 1999.
Bayerisches Landesamt für Umwelt: http://www.hnd.bayern.de/pegel/donau_bis_passau/chamerau-15202300/statistik?days=1, last access: 27 June 2017.
Beven, K.: Towards an alternative blueprint for a physically based digitally simulated hydrologic response modelling system, Hydrol. Process., 16, 189–206, https://doi.org/10.1002/hyp.343, 2002.
Download
Short summary
Monitoring water storage changes beyond the point scale is a challenge. Here, we show that an integrative and non-invasive way is by observing variations of gravity that are induced by water mass changes. A high-precision superconducting gravimeter is successfully operated in the field and allows for direct and continuous monitoring of the water balance and of its components, such as actual evapotranspiration.
Share