Articles | Volume 21, issue 6
https://doi.org/10.5194/hess-21-3167-2017
https://doi.org/10.5194/hess-21-3167-2017
Research article
 | 
29 Jun 2017
Research article |  | 29 Jun 2017

Landscape-scale water balance monitoring with an iGrav superconducting gravimeter in a field enclosure

Andreas Güntner, Marvin Reich, Michal Mikolaj, Benjamin Creutzfeldt, Stephan Schroeder, and Hartmut Wziontek

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (further review by Editor) (22 May 2017) by Uwe Ehret
AR by Andreas Güntner on behalf of the Authors (22 May 2017)  Author's response   Manuscript 
ED: Publish as is (25 May 2017) by Uwe Ehret
AR by Andreas Güntner on behalf of the Authors (31 May 2017)
Download
Short summary
Monitoring water storage changes beyond the point scale is a challenge. Here, we show that an integrative and non-invasive way is by observing variations of gravity that are induced by water mass changes. A high-precision superconducting gravimeter is successfully operated in the field and allows for direct and continuous monitoring of the water balance and of its components, such as actual evapotranspiration.