Articles | Volume 21, issue 6
https://doi.org/10.5194/hess-21-3145-2017
https://doi.org/10.5194/hess-21-3145-2017
Research article
 | 
29 Jun 2017
Research article |  | 29 Jun 2017

Modeling the water budget of the Upper Blue Nile basin using the JGrass-NewAge model system and satellite data

Wuletawu Abera, Giuseppe Formetta, Luca Brocca, and Riccardo Rigon

Related authors

The design, deployment, and testing of kriging models in GEOframe with SIK-0.9.8
Marialaura Bancheri, Francesco Serafin, Michele Bottazzi, Wuletawu Abera, Giuseppe Formetta, and Riccardo Rigon
Geosci. Model Dev., 11, 2189–2207, https://doi.org/10.5194/gmd-11-2189-2018,https://doi.org/10.5194/gmd-11-2189-2018, 2018
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
Joint optimal operation of the South-to-North Water Diversion Project considering the evenness of water deficit
Bing-Yi Zhou, Guo-Hua Fang, Xin Li, Jian Zhou, and Hua-Yu Zhong
Hydrol. Earth Syst. Sci., 28, 817–832, https://doi.org/10.5194/hess-28-817-2024,https://doi.org/10.5194/hess-28-817-2024, 2024
Short summary
Employing the generalized Pareto distribution to analyze extreme rainfall events on consecutive rainy days in Thailand's Chi watershed: implications for flood management
Tossapol Phoophiwfa, Prapawan Chomphuwiset, Thanawan Prahadchai, Jeong-Soo Park, Arthit Apichottanakul, Watchara Theppang, and Piyapatr Busababodhin
Hydrol. Earth Syst. Sci., 28, 801–816, https://doi.org/10.5194/hess-28-801-2024,https://doi.org/10.5194/hess-28-801-2024, 2024
Short summary
How to account for irrigation withdrawals in a watershed model
Elisabeth Brochet, Youen Grusson, Sabine Sauvage, Ludovic Lhuissier, and Valérie Demarez
Hydrol. Earth Syst. Sci., 28, 49–64, https://doi.org/10.5194/hess-28-49-2024,https://doi.org/10.5194/hess-28-49-2024, 2024
Short summary
Inferring reservoir filling strategies under limited-data-availability conditions using hydrological modeling and Earth observations: the case of the Grand Ethiopian Renaissance Dam (GERD)
Awad M. Ali, Lieke A. Melsen, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 27, 4057–4086, https://doi.org/10.5194/hess-27-4057-2023,https://doi.org/10.5194/hess-27-4057-2023, 2023
Short summary
Process-based three-layer synergistic optimal allocation model for complex water resource systems considering reclaimed water
Jing Liu, Yue-Ping Xu, Wei Zhang, Shiwu Wang, and Siwei Chen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-160,https://doi.org/10.5194/hess-2023-160, 2023
Revised manuscript accepted for HESS
Short summary

Cited articles

Abera, W., Formetta, G., Brocca, L., and Rigon, R.: Complimentary material and data, https://doi.org/10.5281/zenodo.264004, 2017.
Abera, W., Antonello, A., Franceschi, S., Formetta, G., and Rigon, R.: The uDig Spatial Toolbox for hydro-geomorphic analysis, British Society for Geomorphology, London, UK, in: geomorphological techniques (online Edn.), edited by: Clarke, L. E. and Nield, J. M., 2014.
Abera, W., Brocca, L., and Rigon, R.: Comparative evaluation of different satellite rainfall estimation products and bias correction in the Upper Blue Nile (UBN) basin, Atmos. Res., 178, 471–483, 2016.
Abera, W., Formetta, G., Borga, M., and Rigon, R.: Estimating the water budget components and their variability in a pre-alpine basin with JGrass-NewAGE, Adv. Water Resour., 104, 37–54, 2017.
Abtew, W., Melesse, A. M., and Dessalegne, T.: Spatial, inter and intra-annual variability of the Upper Blue Nile Basin rainfall, Hydrol. Process., 23, 3075–3082, 2009.
Download
Short summary
This study documents a state-of-the-art estimation of the water budget (rainfall, evapotranspiration, discharge, and soil and groundwater storage) components for the Upper Blue Nile river. The budget uses various JGrass-NewAGE components, satellite data and all ground measurements available. The analysis shows that precipitation of the basin is 1360 ± 230 mm per year. Evapotranspiration accounts for 56 %, runoff is 33 %, and storage varies from minus 10 % to plus 17 % of the annual water budget.