Articles | Volume 20, issue 11
Hydrol. Earth Syst. Sci., 20, 4605–4623, 2016
https://doi.org/10.5194/hess-20-4605-2016

Special issue: Sub-seasonal to seasonal hydrological forecasting

Hydrol. Earth Syst. Sci., 20, 4605–4623, 2016
https://doi.org/10.5194/hess-20-4605-2016
Research article
17 Nov 2016
Research article | 17 Nov 2016

A statistically based seasonal precipitation forecast model with automatic predictor selection and its application to central and south Asia

Lars Gerlitz et al.

Related authors

Climate influences on flood probabilities across Europe
Eva Steirou, Lars Gerlitz, Heiko Apel, Xun Sun, and Bruno Merz
Hydrol. Earth Syst. Sci., 23, 1305–1322, https://doi.org/10.5194/hess-23-1305-2019,https://doi.org/10.5194/hess-23-1305-2019, 2019
Short summary
Statistical forecast of seasonal discharge in Central Asia using observational records: development of a generic linear modelling tool for operational water resource management
Heiko Apel, Zharkinay Abdykerimova, Marina Agalhanova, Azamat Baimaganbetov, Nadejda Gavrilenko, Lars Gerlitz, Olga Kalashnikova, Katy Unger-Shayesteh, Sergiy Vorogushyn, and Abror Gafurov
Hydrol. Earth Syst. Sci., 22, 2225–2254, https://doi.org/10.5194/hess-22-2225-2018,https://doi.org/10.5194/hess-22-2225-2018, 2018
Short summary
Quantifying the added value of convection-permitting climate simulations in complex terrain: a systematic evaluation of WRF over the Himalayas
Ramchandra Karki, Shabeh ul Hasson, Lars Gerlitz, Udo Schickhoff, Thomas Scholten, and Jürgen Böhner
Earth Syst. Dynam., 8, 507–528, https://doi.org/10.5194/esd-8-507-2017,https://doi.org/10.5194/esd-8-507-2017, 2017
Short summary
System for Automated Geoscientific Analyses (SAGA) v. 2.1.4
O. Conrad, B. Bechtel, M. Bock, H. Dietrich, E. Fischer, L. Gerlitz, J. Wehberg, V. Wichmann, and J. Böhner
Geosci. Model Dev., 8, 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015,https://doi.org/10.5194/gmd-8-1991-2015, 2015
Short summary
Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators
U. Schickhoff, M. Bobrowski, J. Böhner, B. Bürzle, R. P. Chaudhary, L. Gerlitz, H. Heyken, J. Lange, M. Müller, T. Scholten, N. Schwab, and R. Wedegärtner
Earth Syst. Dynam., 6, 245–265, https://doi.org/10.5194/esd-6-245-2015,https://doi.org/10.5194/esd-6-245-2015, 2015
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
A comparison of hydrological models with different level of complexity in Alpine regions in the context of climate change
Francesca Carletti, Adrien Michel, Francesca Casale, Alice Burri, Daniele Bocchiola, Mathias Bavay, and Michael Lehning
Hydrol. Earth Syst. Sci., 26, 3447–3475, https://doi.org/10.5194/hess-26-3447-2022,https://doi.org/10.5194/hess-26-3447-2022, 2022
Short summary
Modelling evaporation with local, regional and global BROOK90 frameworks: importance of parameterization and forcing
Ivan Vorobevskii, Thi Thanh Luong, Rico Kronenberg, Thomas Grünwald, and Christian Bernhofer
Hydrol. Earth Syst. Sci., 26, 3177–3239, https://doi.org/10.5194/hess-26-3177-2022,https://doi.org/10.5194/hess-26-3177-2022, 2022
Short summary
Hydrological concept formation inside long short-term memory (LSTM) networks
Thomas Lees, Steven Reece, Frederik Kratzert, Daniel Klotz, Martin Gauch, Jens De Bruijn, Reetik Kumar Sahu, Peter Greve, Louise Slater, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 26, 3079–3101, https://doi.org/10.5194/hess-26-3079-2022,https://doi.org/10.5194/hess-26-3079-2022, 2022
Short summary
A two-step merging strategy for incorporating multi-source precipitation products and gauge observations using machine learning classification and regression over China
Huajin Lei, Hongyu Zhao, and Tianqi Ao
Hydrol. Earth Syst. Sci., 26, 2969–2995, https://doi.org/10.5194/hess-26-2969-2022,https://doi.org/10.5194/hess-26-2969-2022, 2022
Short summary
Hydrometeorological evaluation of two nowcasting systems for Mediterranean heavy precipitation events with operational considerations
Alexane Lovat, Béatrice Vincendon, and Véronique Ducrocq
Hydrol. Earth Syst. Sci., 26, 2697–2714, https://doi.org/10.5194/hess-26-2697-2022,https://doi.org/10.5194/hess-26-2697-2022, 2022
Short summary

Cited articles

Ashok, K., Guan, Z., and Yamagata, T.: Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO, Geophys. Res. Lett., 28, 4499–4502, https://doi.org/10.1029/2001GL013294, 2001.
Barlow, M., Cullen, H., and Lyon, B.: Drought in Central and Southwest Asia: La Niña, the Warm Pool, and Indian Ocean Precipitation, J. Climate, 15, 697–700, https://doi.org/10.1175/1520-0442(2002)015<0697:DICASA>2.0.CO;2, 2002.
Barlow, M., Zaitchik, B., Paz, S., Black, E., Evans, J., and Hoell, A.: A Review of Drought in the Middle East and Southwest Asia, J. Climate, https://doi.org/10.1175/JCLI-D-13-00692.1, 2015.
Barlow, M. A. and Tippett, M. K.: Variability and Predictability of Central Asia River Flows: Antecedent Winter Precipitation and Large-Scale Teleconnections, J. Hydrometeorol., 9, 1334–1349, https://doi.org/10.1175/2008JHM976.1, 2008.
Bastos, A., Janssens, I. A., Gouveia, C. M., Trigo, R. M., Ciais, P., Chevallier, F., Peñuelas, J., Rödenbeck, C., Piao, S., Friedlingstein, P., and Running, S. W.: European land CO2 sink influenced by NAO and East-Atlantic Pattern coupling, Nat. Commun., 7, 10315, https://doi.org/10.1038/ncomms10315, 2016.
Download
Short summary
Most statistically based seasonal precipitation forecast models utilize a small set of well-known climate indices as potential predictor variables. However, for many target regions, these indices do not lead to sufficient results and customized predictors are required for an accurate prediction. This study presents a statistically based routine, which automatically identifies suitable predictors from globally gridded SST and climate variables by means of an extensive data mining procedure.