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Abstract. The study presents a statistically based seasonal
precipitation forecast model, which automatically identifies
suitable predictors from globally gridded sea surface temper-
ature (SST) and climate variables by means of an extensive
data-mining procedure and explicitly avoids the utilization
of typical large-scale climate indices. This leads to an en-
hanced flexibility of the model and enables its automatic cal-
ibration for any target area without any prior assumption con-
cerning adequate predictor variables. Potential predictor vari-
ables are derived by means of a cell-wise correlation analysis
of precipitation anomalies with gridded global climate vari-
ables under consideration of varying lead times. Significantly
correlated grid cells are subsequently aggregated to predictor
regions by means of a variability-based cluster analysis. Fi-
nally, for every month and lead time, an individual random-
forest-based forecast model is constructed, by means of the
preliminary generated predictor variables. Monthly predic-
tions are aggregated to running 3-month periods in order to
generate a seasonal precipitation forecast.

The model is applied and evaluated for selected target re-
gions in central and south Asia. Particularly for winter and
spring in westerly-dominated central Asia, correlation coef-
ficients between forecasted and observed precipitation reach
values up to 0.48, although the variability of precipitation
rates is strongly underestimated. Likewise, for the monsoonal
precipitation amounts in the south Asian target area, correla-
tions of up to 0.5 were detected. The skill of the model for
the dry winter season over south Asia is found to be low.

A sensitivity analysis with well-known climate indices,
such as the El Niño– Southern Oscillation (ENSO), the North
Atlantic Oscillation (NAO) and the East Atlantic (EA) pat-
tern, reveals the major large-scale controlling mechanisms of

the seasonal precipitation climate for each target area. For the
central Asian target areas, both ENSO and NAO are identi-
fied as important controlling factors for precipitation totals
during moist winter and spring seasons. Drought conditions
are found to be triggered by a cold ENSO phase in combi-
nation with a positive state of NAO in northern central Asia,
and by cold ENSO conditions in combination with a nega-
tive NAO phase in southern central Asia. For the monsoonal
summer precipitation amounts over southern Asia, the model
suggests a distinct negative response to El Niño events.

1 Introduction

Seasonal precipitation prediction is a crucial task in the
field of applied climatology, particularly due to the manifold
ecological, economic and social consequences of abnormal
weather conditions, such as droughts and flood events. Espe-
cially in regions characterized by a large interannual precip-
itation variability, a seasonal forecast of hydroclimatological
variables is required by governmental and nongovernmen-
tal stakeholders in order to develop and implement adequate
adaption strategies, e.g., for water resource management and
flood protection (Chiew et al., 2003).

In general, precipitation is a result of complex and interact-
ing atmospheric phenomena at different spatial and temporal
scales and is highly variable in space and time. Thus, its pre-
cise prediction more than several days ahead is illusive. How-
ever, regional climate conditions are actively influenced by
large-scale atmospheric patterns, which are (1) occasionally
persistent and (2) influenced by boundary conditions, such
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as sea surface temperatures, land cover and soil moisture and
by external factors, e.g., variations of the solar radiation and
volcanic eruptions (Palmer and Anderson, 1994; Smith et al.,
2012). The fact that the boundary conditions are often char-
acterized by a low-frequency variability leads to a degree of
predictability of medium-range climate conditions in many
regions of the world.

Operational seasonal forecasts are usually based on
dynamical atmosphere ocean general circulation models
(AOGCMs). These process-based models enable the predic-
tion of large-scale climate conditions at various temporal
scales (Saha et al., 2014; Smith et al., 2012). Based on the
fundamental fluid dynamic equations these models are de-
signed to simulate large-scale characteristics of the climate
system in a physically consistent manner. With regard to ex-
ponentially increasing computing demands, the equations are
numerically solved on a coarse regular grid. Small-scale pro-
cesses, such as convective precipitation or the turbulent trans-
port of energy and motion are only indirectly considered by
means of empirically based parameterizations (Smith et al.,
2012). In order to utilize AOGCMs for seasonal climate fore-
casts, the models are forced with real-time initial and bound-
ary conditions. Especially tropical sea surface temperatures,
but also snow-covered areas and soil moisture have been
identified as important influencing factors for the global cir-
culation (Brands et al., 2012; Douville and Chauvin, 2000;
van den Hurk et al., 2010; Orsolini et al., 2013). Best results
of process-based seasonal climate forecasts are usually found
in the tropics, where large-scale wind fields and associated
moisture fluxes are highly influenced by sea surface temper-
ature variations. The skill for the temperate climate zones
is mostly lower (Kumar et al., 2013). In general, dynamical
climate models are prone to biases due to uncertainties in
the initial conditions and are particularly reliable when large
model ensembles are available (Eden et al., 2015; Suárez-
Moreno and Rodríguez-Fonseca, 2015). Due to their high
computing requirements, dynamical seasonal forecasts are
reserved to a few research centers and are not suitable for ap-
plication in hydrometeorological and environmental offices,
particularly in developing and transition countries.

As an efficient alternative, statistical forecast models are
widely applied in order to derive suitable input data for cli-
mate impact investigations. Based on the assumption that
seasonal climate anomalies are triggered by variations of
nearby or remote atmospheric, oceanic or terrestrial condi-
tions, these models attempt to find robust statistical rela-
tionships between observed climate anomalies and the state
of adequate predictor variables during the previous months.
Since near-surface temperature and precipitation are the most
decisive variables for the hydrological budget and exhibit
the strongest impact on climate sensitive environments, these
variables are frequently used as predictants.

Particularly, the state of the El Niño–Southern Oscillation
(ENSO) is known to influence the large-scale precipitation
patterns almost everywhere on the globe (Dai and Wigley,

2000; Mason and Goddard, 2001; Stone et al., 1996). The
precipitation variability in the tropical regions is directly
determined by the ENSO due to its impact on the tropi-
cal Walker circulation. During El Niño events, positive sea
surface temperature (SST) anomalies occur over the eastern
tropical Pacific as a result of weakened easterly trade winds.
A common consequence is the occurrence of drought periods
in southeast Asia, especially over Indonesia, and the simulta-
neous presence of long-lasting precipitation events over the
arid regions of the western slopes of the South American An-
des (Julian and Chervin, 1978; Wang, 2002). However, sev-
eral studies demonstrated a statistically significant correla-
tion of El Niño indices (usually derived from SST observa-
tions in the El Niño core regions or from associated pressure
gradients between Darwin and Tahiti) with seasonal precipi-
tation time series in other parts of the tropics and also in tem-
perate climate zones. For example, various studies detected a
robust statistical relationship between Australian monsoonal
precipitation and the ENSO state during previous months
(Cai et al., 2011; Ummenhofer et al., 2009). A significant
influence of El Niño events was also found for monsoonal
precipitation amounts in eastern and southern Africa (Lieb-
mann et al., 2014; Ratnam et al., 2014) and the Sahel region
(Parhi et al., 2015). For the south Asian monsoon a nega-
tive response to El Niño events has been frequently perceived
(Krishnaswamy et al., 2014; Lau and Wu, 2001; Surendran
et al., 2015). For the semiarid regions of central Asia and
for the Mediterranean region a positive relationship of win-
ter and spring precipitation to El Niño events during previ-
ous autumn was found, e.g., by Barlow et al. (2002), Hoell
et al. (2013), Roghani et al. (2015), and Syed et al. (2006).
Moreover, Fraedrich (1994) and Wu and Lin (2012) detected
a statistically significant influence on extratropical circula-
tion anomalies such as the position of large-scale Rossby
waves and the associated North Atlantic Oscillation (NAO).
This subsequently leads to a certain impact of El Niño events
on the European winter climate, although correlations are in
general less robust compared with tropical regions. Other
tropical SST modes frequently used in seasonal forecasts
include the Indian Ocean dipole (IOD), the Atlantic Multi-
decadal Oscillation (AMO) and the Pacific Decadal Oscilla-
tion (PDA), which have a significant predictive skill for their
adjacent coastal regions (Eden et al., 2015).

Numerous studies additionally used customized SST in-
dices as predictor variables for seasonal precipitation fore-
casts. For example, Schepen et al. (2011) give a compre-
hensive overview of oceanic and atmospheric climate in-
dices with predictive potential for seasonal rainfall amounts
in Australia. They illustrate that oceanic indices from the Pa-
cific region comprise a high forecast skill, particularly for au-
tumn and winter precipitation totals. Hartmann et al. (2016)
tested the predictive skill of mean SSTs from various ocean
basins surrounding the Asian continent for the precipitation
variability in the arid Tarim Basin in northwestern China.
Hertig and Jacobeit (2010) investigated the predictive skill
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of EOF-derived SST patterns of the northern Atlantic in or-
der to forecast winter precipitation amounts in the Mediter-
ranean. Seibert et al. (2016) recently demonstrated that cus-
tomized SST indices from the Indian and southern Atlantic
oceans improve the quality of statistical seasonal forecasts
for the Limpopo Basin in southern Africa. Suárez-Moreno
and Rodríguez-Fonseca (2015) showed that particularly for
coastal regions, adjacent sea surface temperatures can signif-
icantly improve the seasonal forecast of precipitation.

Fewer studies utilized large-scale atmospheric pressure
modes for seasonal climate predictions. Wu et al. (2009)
reported that the winter state of the NAO (defined as the
pressure gradient between the Iceland low-pressure and the
Azores high-pressure cell) influences the SST pattern of the
northern Atlantic during the spring season and affects the in-
tensity of the subsequent east Asian summer monsoon via
cross Eurasian teleconnections. Hasson et al. (2014) found a
statistically significant influence of the NAO on winter pre-
cipitation amounts in the Indus Basin. Likewise, Hartmann
et al. (2016) tested the predictive skill of pressure patterns
over Europe and Asia (such as the NAO or the Siberian high
index) on precipitation anomalies in the Tarim Basin.

Local land cover characteristics are also frequently ap-
plied in statistical seasonal forecast models. For example,
Cohen and Entekhabi (1999) and Cohen and Barlow (2005)
showed that the snow cover over Eurasia during autumn and
spring alters the large-scale atmospheric circulation over the
Northern Hemisphere with wide implications on precipita-
tion patterns during subsequent months. Brands et al. (2012)
reported a statistically significant relationship between late
autumn snow cover over Eurasia and winter precipitation
over Europe. Tian and Fan (2015) argued that the state of
the NAO and the associated precipitation patterns over Eu-
rope are influenced by both Atlantic SSTs and snow cover
rates over Eurasia. Some studies indicate a negative response
of the south Asian monsoon to higher snow cover rates over
Eurasia, most likely due to a delayed surface heating of the
Asian continent (Wu and Qian, 2003; Zhang et al., 2004).
Recently, some studies also included local soil moisture or
previous rainfall in statistical forecasting models in order to
capture water recycling due to autochthonous weather con-
ditions and persistent circulation characteristics (Eden et al.,
2015; van den Hurk et al., 2010).

As shown, most statistical forecast applications utilize ei-
ther well-known climate indices or expert-knowledge-based
customized indices from SSTs or land cover characteristics.
Customized indices are frequently included, since typical cli-
mate indices do not cover regional-scale anomalies of SST
or pressure patterns which might be important predictor vari-
ables for seasonal climate forecasts in certain regions. How-
ever, these customized indices are usually calibrated with re-
gard to specific target areas and thus are not transferable to
any other regions. Hence, state-of-the-art seasonal climate
forecast models are either based on a fixed number of cli-
mate indices (and thus might not consider important predic-

tor variables) or are highly site specific and barely transfer-
able to other regions. Recently, some advances towards an
automatic predictor selection were made by Suárez-Moreno
and Rodríguez-Fonseca (2015), who used gridded SST fields
as potential predictors in order to automatically identify SST
patterns, which are relevant for the seasonal precipitation
forecast in selected target areas.

With the aim of developing an operational seasonal fore-
cast model, which is easily transferable to any region in the
world, we present a generic data-mining approach which au-
tomatically selects potential predictors from gridded SST ob-
servations and large-scale atmospheric circulation patterns
derived from reanalysis data. Subsequently, the approach
generates robust statistical relationships with posterior pre-
cipitation anomalies for user-selected target regions. The sta-
tistical package R (R Development Core Team, 2008) as well
as the scripting environment of the free and open-source GIS
system SAGA (Conrad et al., 2015) are utilized. The precipi-
tation forecast model is based on a cell-wise correlation anal-
ysis of various gridded variables with regional precipitation
estimates, which identifies grid cells with potential predictive
skill for a specific target area with different time lags. Grid
cells, which significantly correlate with precipitation anoma-
lies during subsequent months, are aggregated to predictor
regions by means of an automatic cluster analysis for ev-
ery variable and time lag. Thus, for every target area, spe-
cific predictor variables are automatically derived. The clus-
ter regions are afterwards utilized as potential predictors in a
nonparametric and nonlinear random-forest-based modeling
approach. Based on 4-fold split sample test, the model per-
formance for the selected target area is evaluated before an
operational forecast is generated based on real-time predic-
tor fields.

In the following section, we provide a detailed overview
about the utilized data sets and the main model components,
including predictor selection, model calibration and evalu-
ation. Subsequently, we provide some applications of the
model for selected target areas in central and south Asia. In
order to make the individual modeling steps more compre-
hensible, we already provide some major interim results for
one target area in northern central Asia (Fig. 5) when ex-
plaining the methods in the next section.

2 Methods and data

2.1 Modeling structure

The major objective of the presented model is to derive suit-
able predictor variables from global oceanic and atmospheric
fields and to develop robust statistical relationships which
enable a seasonal precipitation forecast for user-selectable
target regions. The underlying data sets as well as the ma-
jor model components are summarized in Fig. 1. In order
to analyze the precipitation variability in selected target ar-
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Figure 1. Flow chart representing the major components of the sea-
sonal forecast model.

eas, the model is based on the CRU TS 2.0 precipitation
data set, which provides monthly precipitation estimates for
the 20th century on a global grid with a resolution of 0.5◦

(lat× long) (Harris et al., 2014; New et al., 1999). The data
set is based on a dense network of observations for the period
from 1961 to 1990, which were used for the regionalization
of monthly mean precipitation amounts, and a compilation
of station records with longer available time series, which
were used for the calculation of anomalies and were sub-
sequently spatially interpolated based on inverse distances.
New et al. (1999) showed that this approach is suitable for
the resolution of 0.5◦ since it combines a climatic baseline,
which is highly influenced by the underlying topography
with simple interpolated anomalies, which are mainly driven
by large-scale weather conditions. Areal mean monthly pre-
cipitation sums for the selected target region are extracted
from the CRU data set. Due to a temporally varying num-
ber of stations used for the interpolation of gridded precipi-
tation estimates, the data may incorporate inhomogeneities in
some regions. Thus, a standardized normal homogeneity test
(SNHT) for absolute annual values (Wijngaard et al., 2003)
is conducted, which identifies abrupt changes of the annual
precipitation sums. The results serve as background informa-
tion for the interpretation of the model results.

Since monthly time series of precipitation are usually pos-
itively skewed, which might not compromise the assump-
tions of the subsequent correlation analysis, the actual val-

ues are converted into the standardized precipitation index
(SPI) (Guttman, 1998; McKee et al., 1993) for every single
month of the year. Therefore, the precipitation distribution
for each month is fitted to a gamma distribution with suit-
able shape and scale parameters. The exceedance probability
of observed precipitation amounts is then converted into z
values of the normal distribution. The SPI values, which are
normally distributed by definition, are subsequently cell-wise
correlated with gridded global SST and climate data with
lead times ranging from 1 to 6 months. For every variable
and lead time, grid cells which significantly correlate with the
mean monthly SPI time series are identified. These grid cells
are subsequently aggregated to predictor regions with sim-
ilar variability by means of a hill-climbing-based k-means
cluster analysis. For every large-scale variable and time lag,
the areal mean anomalies of those cluster regions are con-
sidered as potential predictor variables for a random-forest-
based precipitation forecast model. All data sets (predictants
and predictor variables) are automatically processed for the
period from 1948 to 2014. In order to find robust predictor
variables for monthly precipitation amounts and to exclude
incidental correlations, the data set is randomly partitioned
into two subsets. One is utilized for the cell-wise correlation
analysis, the second one is employed for the subsequent cal-
ibration of a random-forest-based forecast model. Since pre-
cipitation usually shows a rather random temporal variability
at a monthly timescale, results of the monthly precipitation
forecast are, in general, unreliable. Thus, modeling results
are aggregated to running 3-month precipitation totals.

2.2 Predictor selection

As briefly reviewed in the introductory section, seasonal pre-
cipitation anomalies in many regions of the world can be
statistically forecasted by means of large-scale atmospheric
and oceanic indices or under consideration of customized pa-
rameters. With the aim of automatically deriving adequate
predictor variables for monthly precipitation anomalies from
large-scale atmospheric and oceanic conditions, an exten-
sive correlation and data-mining procedure is conducted by
the presented seasonal forecast model. A brief summary of
global gridded variables which are used for the identification
of potential predictor variables is given in Table 1.

In order to reveal the influence of nearby or remote
SST anomalies on precipitation characteristics, we make use
of the NOAA Extended Global Sea Surface Temperature
ERSST V3b (Smith et al., 2008; Smith and Reynolds, 2003),
which is available at a resolution of 2◦× 2◦ for the period
from 1854 onwards. The data set is based on in situ sea sur-
face temperature observations only, which are regionalized
by means of statistical methods, considering both, low- and
high-frequency oceanic modes. With the aim of avoiding sta-
tistical artefacts resulting from the variability of the sea ice
extent in polar oceans, we restricted the analysis of SST pat-
terns to the geographical region between 65◦ N and 65◦ S.
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Further, we utilize variables representing the state of the
large-scale atmospheric circulation from the NCAR-NCEP
reanalysis (Kalnay et al., 1996). The reanalysis, which is
published by the National Center for Environmental Predic-
tion (NCEP) and the National Center for Atmospheric Re-
search (NCAR), is a near-real-time gridded data set which
combines atmospheric observations with climate modeling
results by means of an assimilation system for the period
from 1948 onwards. As potential atmospheric predictors, we
used monthly aggregated values of sea level pressure (SLP),
the 500 hPa geopotential height (GPH500) as well as the
geopotential thickness between the 500 and 200 hPa pressure
level (GPH500-200). In order to investigate the land surface
characteristics and their subsequent effects, we additionally
utilize monthly aggregated global grids of near-surface tem-
perature (TEMP), antecedent precipitation amounts (PREC)
and snow water equivalent (SWE) from the NCAR-NCEP
reanalysis as potential predictor variables. While the intrin-
sic pressure-related variables are provided at a spatial res-
olution of 2.5◦× 2.5◦ (lat× long), the diagnostic land sur-
face variables are available at a resolution of approximately
1.875◦× 1.904◦. All predictor fields are cell-wise normal-
ized for every month, respectively. Since the utilized large-
scale predictor variables are updated regularly and freely
downloadable, they are suitable for the development of an
operational seasonal precipitation forecast system.

We assume that typical atmospheric and oceanic indices
are determined by large-scale pressure patterns or SST
modes and thus are inherently included in those global grid-
ded data sets. Likewise, additional predictor variables which
might be specific for a particular target region (e.g., SSTs at
adjacent coasts, regional snow cover rates or enhanced wa-
ter availability due to high precipitation amounts during pre-
vious months) are expected to be covered by the predictor
fields and will be identified as relevant predictors by means
of the following correlation and data-mining procedure.

Primarily, based on the first random sample, a Pearson cor-
relation analysis of the monthly SPI values is conducted for
each gridded large-scale variable and each grid cell. The cor-
relation analysis is separately executed for every month of
the year and for lead times of 1 to 6 months. Thus, the identi-
fication of relevant predictor variables and regions is specific
for every month and lead time. Particularly for temperature-
related predictor variables, the time series might include sta-
tistically significant trends, due to anthropogenic greenhouse
gas emissions, which frequently exceed the magnitude of
natural variability. However, there is evidence that seasonal
precipitation anomalies in specific target regions are in fact
highly influenced by SST anomalies of nearby or remote
oceans, but do not show a distinct response to global warm-
ing during recent decades (Hoerling et al., 2010). Thus, the
time series of potential predictor grid cells are detrended
prior the correlation analysis. For every variable, each grid
cell which correlates significantly (α= 0.1) with the SPI time
series is subsequently labeled as potentially predictive for the

monthly precipitation forecast. This comparably low level of
statistical significance is deliberately chosen in order to de-
tect second-order correlations and conditional statistical re-
lationships. Overall, the correlation analysis generates a data
set of 504 correlation grids, each of them for a specific pre-
dictor variable, month of the year and time lag. As an exam-
ple, Fig. 2 (Figs. S1 and S2 in the Supplement) shows the
results of the correlation analysis for the standardized pre-
cipitation values of northern central Asia with global gridded
SSTs for March and September with a lag time of 2 months.

During March (representing the wet season in northern
central Asia) monthly precipitation shows a clear positive re-
sponse to January SST variations in the El Niño core region
(a result which has been frequently reported for central Asia)
and to SST anomalies in the Arabian Sea and the Bay of Ben-
gal. Further, a positive correlation with SST anomalies in the
North Atlantic has been detected. During September (rep-
resenting rather dry climate conditions) a positive response
to SST variations in the Indian Ocean is evident; however,
the spatial distribution of potential predictive SST regions
is rather scattered, indicating less robust statistical relation-
ships.

In a subsequent step each of the correlation grids (which
usually contain a large number of potentially predictive grid
cells) is aggregated to a distinct number of correlation re-
gions, by means of a SAGA-GIS-based hill-climbing k-
means cluster analysis (Hartigan and Wong, 1979). For every
specific month, time lag and predictor variable, the complete
normalized time series of all potentially predictive grid cells
is considered. The iterative and unsupervised classification
technique firstly randomly allocates every grid cell to one
of k clusters. The error sum of squares is calculated as the
sum of Euclidian distances of all associated grid cells from
the cluster centroid and displays the quality of the cluster es-
timation. Every grid cell is subsequently reallocated to the
nearest cluster, and cluster centroids and error terms are re-
calculated. This procedure is iteratively conducted until the
error sum of squares converges to its minimum value. Ba-
sically, the clustering algorithm minimizes the error sum of
squares within the cluster groups and maximizes the error
sum of squares among them. This leads to definition of re-
gions with similar temporal variability during the calibration
period and thus identifies important large-scale patterns of
the considered predictor variable with high predictive poten-
tial for the seasonal precipitation forecast.

As default, the number of clusters for every correlation
grid is set to 12, which has been found to adequately iden-
tify typical large-scale oceanic and atmospheric features (see,
for example, Fig. 2c and d). An excessive number of clus-
ters might result in a disjunction of predictor regions, which
reduces the predictive skill. On the contrary, an insufficient
number of clusters will lead to an aggregation of large re-
gions which might still be characterized by a large inhomo-
geneity and thus are not suitable for the derivation of poten-
tial predictor variables.
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Table 1. Globally gridded variables utilized as potential predictor variables by the statistical forecast model.

Acronym Variable name Unit Source Spatial resolution

SST Sea surface temperature ◦C ERSST V3b 2◦× 2◦

SLP Sea level pressure hPa NCAR reanalysis 2.5◦× 2.5◦

GPH500 Geopotential height at 500 hPa m NCAR reanalysis 2.5◦× 2.5◦

GPH500-200 Geopotential thickness between 500 and 200 hPa m NCAR reanalysis 2.5◦× 2.5◦

TEMP Near-surface temperature ◦C NCAR reanalysis 1.875◦× 1.904◦

PREC Previous precipitation mm NCAR reanalysis 1.875◦× 1.904◦

SWE Snow water equivalent mm NCAR reanalysis 1.875◦× 1.904◦

Figure 2. Correlation analysis results for precipitation anomalies of northern central Asia for March and September with a lead time of 2
months (a) and (b) show SST grid cells which are significantly correlated. (c) and (d) show the aggregation to predictor regions based on the
hill-climbing k-means cluster analysis. The diagrams (e and f) show the time series of z normalized mean SSTs during the selected months
for each of the cluster regions (same color) and the subsequent hydroclimatic variations in northern central Asia (expressed as red to blue
rectangles indicting SPI values between −2 and 2). The colored values on the right indicate the correlation of mean cluster SST anomalies
and the corresponding SPI values.

As shown in Fig. 2, the El Niño core regions in January
(orange, blue, yellow and black clusters in Fig. 2c) are iden-
tified as important regions for the forecast of monthly pre-
cipitation amounts in March for northern central Asia; for in-
stance, the prolonged 1999–2001 winter and spring drought
in central Asia is associated with negative anomalies of the
ENSO-related predictor variables. In general, dry periods
usually coincide with La Niña events, characterized by neg-
ative SST anomalies. The January SST of the Arabian Sea
and the Bay of Bengal is identified as an independent predic-

tor variable for the precipitation amounts in March. For the
precipitation variability in September, the majority of predic-
tive SST clusters is located in the Indian Ocean.

The areal mean time series for every cluster are even-
tually used as potential predictors in the seasonal forecast
model. For all seven gridded variables the cluster analysis
with k= 12 clusters is conducted resulting in an overall 84
potential predictors for every month and lead time.
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2.3 Forecast model calibration

For every month of the year and every lead time, one sep-
arate statistical forecast model is established based on the
potential predictor variables derived from the correlation and
cluster analysis. In order to avoid overfitting and to develop a
robust regression relationship, the model calibration is based
on the second random sample and thus is independent from
the predictor selection procedure. Some of the potential pre-
dictor variables are highly correlated due to their associa-
tion to the same phenomenon, e.g., ENSO is manifested in
various SST regions and significantly influences the large-
scale pressure and precipitation patterns in many regions of
the world. Additionally, the distribution of potential predictor
variables is unknown, e.g., precipitation or snow water equiv-
alent are most likely extremely skewed and not normally dis-
tributed. Thus, a reliable forecasting approach requires a non-
parametric statistical technique, without any assumption con-
cerning the distribution and statistical independence of pre-
dictor variables. We make use of a random-forest-based ap-
proach (Breiman, 2001), a widely utilized data-mining tech-
nique, which stands out due to its flexibility concerning the
characteristics of predictant and predictor variables and due
to its ability to detect nonlinear and conditional statistical
relationships. Basically, random forest models represent an
advancement of regression tree algorithms (Breiman et al.,
1984) which automatically classify large data sets by means
of adequate predictor variables in order to identify statistical
structures in the predictor space, which are highly associated
with a response variable (Gerlitz, 2014; Zorita et al., 1995).

Classification is conducted by means of an iterative proce-
dure. In every processing step, one predictor variable and one
split value are identified, which classify the learning sam-
ple into two subgroups, characterized by a maximal homo-
geneity (i.e., a minimum variance) of the predictant variable.
However, since the recursive regression tree approach tends
to considerably overfit the predictor–predictant relationships
and does not only classify important structures within the
feature space but also the inherent noise of the predictant
variable, the predictive skill of single-regression trees is fre-
quently insufficient. Therefore, random forest applications
consider an ensemble of various trees, which are based on
a subset of the complete data set, respectively. By means of
this bagging approach, a large number of trees is constructed.
Prediction values are eventually calculated as the mean of
predictions from all single trees. The bagging approach and
the ensemble composition of the final random forest model
avoid overfitting and additionally provide an internal error
and confidence estimation (Chen et al., 2012).

The specific forecast models for every month and lead time
are constructed based on random forests with 500 realiza-
tions. Regression trees are recursively constructed until the
final leaves include three observations or less. For the de-
termination of each splitting criterion, a randomly selected

bagging sample with two-thirds of the entire learning sample
is utilized.

For the predictant variable, the absolute amount of
monthly precipitation is used. This allows the subsequent ad-
ditive aggregation of the monthly forecast values to seasonal
precipitation amounts and the evaluation of the model at dif-
ferent temporal scales. Figure 3 shows an example of the re-
sults of the monthly precipitation forecast with varying lead
times for the northern central Asian target area for an inde-
pendent period from 1996 to 2010. The remaining time series
has been utilized for the predictor selection and the model
calibration.

Values are converted to the monthly standardized precip-
itation index based on observations from the entire model
calibration period. Obviously, the variability of precipita-
tion amounts is highly underestimated by the random-forest-
based precipitation forecast models, which is a typical fea-
ture of regression-based statistical models, particularly if the
predictant variable is characterized by a large, nonpredictable
noise. Furthermore, the correlation of forecasted and ob-
served precipitation is low with values distinctly below 0.2
for most months and lead times. The rather poor results at
the monthly scale certainly reflect the nonpredictable noise
of monthly precipitation amounts and thus can lead to the as-
sumption that modeling results should not be evaluated based
on discrete monthly values due to the high-frequency vari-
ability of precipitation events. This is confirmed by the ag-
gregation of observations and modeling results to 3-month
running totals, which leads to a significant increase of corre-
lation and variance. Figure 4 shows the entire SPI time series
for running 3-month total precipitation amounts and the cor-
responding model results. (In order to generate a statistically
independent forecast for the entire period, a 4-fold split sam-
ple test has been conducted; see Sect. 2.4 for details.) Al-
though the variability of precipitation amounts remains un-
derestimated, the smoothed model results better capture the
explicit features in terms of dry and moist periods of the ob-
servations. Taking into consideration the entire time series
of 3-monthly precipitation amounts, the correlation between
observed and forecasted values increases to r > 0.5 for a lag
time of 1 month. Correlations rapidly decrease with higher
lead times, however, even for a lead time of 6 months a cer-
tain skill is detected (r = 0.13).

With this in mind, we define two composite forecast pe-
riods with a length of 3 months, respectively. The F [1 : 3]m

forecast model is defined as the sum of random forest model
results based on predictor variables from the month m with
lead times of 1, 2 and 3 months. The F [4 : 6]m forecast is
equally based on predictor variables from month m, but in-
volves the random forest models with lead times of 4, 5 and
6 months.

F [1 : 3]m
=

3∑
l=1

RF(m, l) (1)
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Figure 3. Results of the random-forest-based monthly precipitation forecast models (red) and observations (blue) for the northern central Asia
for the period from 1996 to 2010 (x axis). Values are displayed as monthly SPI values between −2 and 2. The numbers indicate the month
for which the forecast is conducted and the particular lead time (e.g., the panel indicating 1–2 shows the results for January precipitation
based on predictor variables from November). The shaded area indicates the range of prediction values of all single-tree models belonging
to the random forest forecast model.

Figure 4. Time series of observed (blue line) and forecasted (red line) running 3-month SPI values for the northern central Asia. The shaded
areas indicate the 3-month total of maximum and minimum forecasts of single trees of the random forest model. Black verticals indicate the
division of the time series into four independent evaluation samples.

F [1 : 3]m
=

6∑
l=4

RF(m, l),

where RF(m,l) is the specific random forest forecast model
based on predictor variables of the month m and precipita-
tion anomalies occurring after a lead time of l month. As
an example, the F [1 : 3]12 composite forecast including Jan-
uary, February and March is defined as the sum of three RF
model results, which are all based on predictor variables from

previous December. RF(m= 12, l= 1) utilizes predictor vari-
ables from December for the January forecast, RF(m= 12,
l= 2) indicates the December-based forecast for February,
RF(m= 12, l= 3) is the forecast for March.

2.4 Model evaluation

Since the skill of the automatic forecast model is likely to
vary depending on the target area and the associated precip-
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itation regimes during different seasons, an evaluation of the
automatic seasonal forecast model performance is necessary
in order to assess the reliability of the forecast and to inter-
pret the results. Based on a 4-fold split sample test the de-
terministic forecasts of 3-month running totals are automati-
cally evaluated. Therefore, the entire time series from 1948 to
2014 is split into four subperiods of equal length. The statis-
tical forecast model is then applied four times, always taking
one subperiod as an independent sample for the evaluation.
The remaining three subperiods are combined and split into
two parts of equal length, which are utilized for the predic-
tor selection and the model calibration, respectively. Eventu-
ally the independent predictions are compounded to one time
series, comprising forecast values for the entire period. We
abstained from the implementation of a full cross-validation
procedure due to the high computational demands of the pre-
dictor selection routine. For each of the running 3-month
periods, traditional performance indicators such as correla-
tion, bias and root mean square error (RMSE) are computed,
which enables the assessment of the model performance for
various seasons. In order to achieve a maximal comparabil-
ity of different target areas, bias and RMSE are specified as
the percentage of the long-term precipitation totals for each
3-month period, respectively.

Moreover, since stakeholders often require robust predic-
tions of anomalous periods, the ability of the forecast model
to forecast drought and moisture conditions is evaluated by
means of receiver operating characteristics (ROCs) for each
3-month period and areas under the curve (AUC) are pro-
vided. Therefore, the running 3-month precipitation totals
are converted to the associated standardized precipitation in-
dices, based on observations of the entire model calibration
period. The deterministic SPI forecast is then converted into
a probabilistic prediction by means of a simple residual-
based approach. Assuming that SPI residuals are normally
distributed for each 3-month period, respectively, we esti-
mate the standard deviation of residuals for each of the 3-
month periods, which is subsequently utilized to transform
the deterministic forecast into a normalized probability dis-
tribution. ROC curves are then constructed for SPI threshold
values of−0.5, representing moderate drought, and+0.5, in-
dicating wet conditions. For various probability thresholds,
positive hit rates (defined as the number of correctly iden-
tified droughts divided by the overall number of drought
events) are plotted against the false negative rate (defined as
the coefficient of the number of false alarms and the number
of non-drought conditions). ROC curves for moisture condi-
tions are equivalently constructed. Eventually, the area under
the curve is interpreted as a performance measure of the sea-
sonal forecast model. AUC values near 1 indicate a perfect
predictive skill considering the forecast of droughts or moist
periods, values of 0.5 or less indicate no predictive skill at
all.

3 Model application to central and south Asia

With regard to an increasing demand of climatological and
hydrological forecasts in this vulnerable region, we applied
the presented model to three target regions covering differ-
ent climatic settings in central and south Asia (see Fig. 4).
The northern central Asian target area covers Uzbekistan,
Kyrgyzstan and parts of Kazakhstan and comprises the ma-
jority of the Syr Darya catchment. The southern central
Asian target region covers wide parts of Iran, Afghanistan,
Turkmenistan, Tajikistan and Pakistan and encompasses the
Amu Darya river system. As presented by the mean 850 hPa
wind field of the NCAR reanalysis (Fig. 5), both regions are
mainly controlled by extratropical westerly circulation pat-
terns (with contributions from south during winter and from
high latitudes during summer) and receive a precipitation
maximum during the winter and spring seasons. Due to the
location in continental central Asia, both regions are charac-
terized by a high precipitation variability with monthly co-
efficients of variation up to 0.5. In the high elevations of the
central Asian mountain ranges, precipitation during the moist
season mainly falls as snow and is released during the warm
and dry summer season (Barlow and Tippett, 2008; Dixon
and Wilby, 2015; Schär et al., 2004). Thus, winter and spring
precipitation amounts in the mountainous areas provide a
vast share of the central Asian river flow during the vege-
tation period and form the basis for the irrigation-dependent
agriculture of the riparian countries, which are characterized
by semiarid to arid climate conditions throughout the year.

The northern Indian domain covers the entire Himalayan
range and the catchment of the Ganges River. During winter,
the region is under influence of westerly winds and receives a
certain amount of precipitation due to the passage of westerly
disturbances; however, the maximum of precipitation is as-
sociated with the Indian summer monsoon, which transports
moist air masses from the Arabian Sea and the Bay of Bengal
into the target area. Although, it is well documented that par-
ticularly for central Asia the number of stations utilized for
the generation of gridded precipitation data is highly variable
in time (Unger-Shayesteh et al., 2013), the standard normal
homogeneity test does not detect any statistically significant
shifts (a= 0.05; see red line in Fig. 5) of the areal mean an-
nual precipitation sums during the considered period in any
of the target areas.

The model application to the selected target regions with
different climatic characteristics enables the identification of
important predictor variables and the analysis of the model
performance for the varying pluviometric regimes of the
central and south Asian domain. In the following section,
we briefly introduce the large-scale atmospheric processes
which can lead to a spatial and seasonal differentiation of
precipitation amounts in this vast target domain and present
some influencing factors which have been frequently linked
to the interannual precipitation variability. Subsequently, we
discuss the modeling results with regard to major large-scale
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Figure 5. Location of selected target areas as well as the mean precipitation total (in millimeters) (CRU TS) and the mean 850 hpa wind field
(NCEP-NCAR) during DJF (left) and JJA (right). Diagrams show the mean monthly precipitation amount for every catchment in millimeters
(blue bars) as well as the coefficient of variation (red line) (middle panels) and the result of the standardized normal homogeneity test. The
red line indicates the 0.95 significance level (lower panel).

atmospheric forcing mechanisms and provide a sensitivity
analysis which uncovers important influencing factors on the
precipitation variability.

3.1 Pluviometric regimes and precipitation variability
over central and south Asia

In general, the climate of central and south Asia is influenced
by two major pluviometric regimes which are related to west-
erly and monsoonal circulation systems. During the boreal
cold season, the entire region is influenced by westerly cir-
culation patterns and precipitation is mainly associated with
midlatitude disturbances originating over the Atlantic Ocean
and the Mediterranean (Bohner, 2006; Bothe et al., 2011;
Gerlitz et al., 2015; Maussion et al., 2014). Since the track of
westerly disturbances is mainly determined by the position
of the 200 hPa westerly jet stream at the polar frontal zone,
a seasonal cycle of precipitation is distinctly defined. Par-
ticularly, the western parts of the Himalayas receive a con-
siderable amount of winter precipitation associated with the
uplift of westerly air masses, which reaches up to 60 % of
the annual precipitation total (Bohner, 2006; Gerlitz et al.,
2015; Wulf et al., 2010). During spring, the zone of west-
erly precipitation migrates towards north, reaches the Hindu
Kush region and the Pamir in March and continues to the
Tien Shan region in May. Mariotti (2007) showed that during
winter season, a northward current over the Arabian coun-
tries transports tropical air masses into central Asia, which
represents an important moisture source for the westerly air
masses. While the continental central Asian countries remain

under influence of extratropical westerly air masses through-
out the year, the tropical monsoon circulation is established
over south Asia during the summer season (Bohner, 2006;
Bookhagen and Burbank, 2006; Gerlitz et al., 2015). Due to a
declining strength of the monsoonal moisture fluxes towards
west, a clear gradient of precipitation totals from east to west
has been detected (Bohner, 2006; Wulf et al., 2010).

Investigations of the interannual variability of precipita-
tion rates over central and south Asia have frequently been
conducted. Most studies (Li and Yanai, 1996; Peings and
Douville, 2009; Prodhomme et al., 2014) showed evidence
that the intensity of the Indian summer monsoon is associated
with the magnitude of pressure gradients between the Indian
Ocean and the Asian continent, which has been linked to the
extent of the snow cover over the Asian mainland and the
SST of the Indian Ocean (Wu and Qian, 2003). Moreover,
many studies highlight the importance of the Southern Os-
cillation for the intensity of monsoonal precipitation. Studies
by Pokhrel et al. (2012) and Sigdel and Ikeda (2013) indi-
cated that El Niño events can lead to reduced moisture fluxes
into south Asia. Ashok et al. (2001) further identified the In-
dian Ocean dipole as an important predictor for the Indian
summer monsoon. Some studies illustrated that the correla-
tion of the Southern Oscillation index (SOI) and the Indian
summer monsoon precipitation is nonstationary and weak-
ened during recent decades (Kumar et al., 1999; Wang and
He, 2012). However, Yim et al. (2013) detected a recovery of
the negative ENSO–monsoon relationship during the 1990s.
Chang et al. (2001) suggested that the breakdown of robust
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relationships is due to changes in the North Atlantic climate.
Rajeevan et al. (2006) detected a statistically significant cor-
relation of western Europe winter temperatures and subse-
quent monsoonal precipitation amounts.

In contrast, for the variability of winter and spring precipi-
tation (associated with westerly weather patterns over central
and south Asia) a positive relationship with the ENSO has
been observed. Severe droughts have been linked to the El
Niño cold phase (La Niña) (Barlow et al., 2002, 2015; Hoell
et al., 2013). Roghani et al. (2015) and Shirvani and Land-
man (2015) found statistically significant correlations of the
SOI during summer and autumn with precipitation amounts
over Iran in subsequent winter. Likewise, a significant pos-
itive correlation of the ENSO state with winter precipita-
tion amounts over the southern Himalayan slopes has been
detected (Dimri, 2013; Yadav et al., 2010). Mariotti (2007)
showed that the moisture fluxes originating over the Ara-
bian Sea are enhanced during the ENSO warm phase due
to the strengthening of the southwesterly current over the
Arabian countries. Beside tropical SST modes, the impact of
northern Atlantic climatic conditions on the winter climate
of central Asia have been frequently investigated. Bothe et
al. (2011) demonstrated that drought and moist winter sea-
sons over central Asia are dominated by different wave pat-
terns over the Eurasian sector and particularly mention the
NAO and the East Atlantic pattern (EA) (which represent the
first two modes of SLP variability in the North Atlantic do-
main) as important covariates. Schiemann et al. (2008) re-
ported that an anomalous location or a decreasing strength
of the westerly jet stream result in drought conditions over
parts of central Asia due to modified tracks and intensities
of westerly disturbances. Dimri (2013) found that a distinct
southward shift of the westerly jet stream is associated with
wet winter conditions over the Himalayas. Syed et al. (2006,
2010) indicated that positive winter precipitation anomalies
over Afghanistan, Pakistan and Tajikistan are usually asso-
ciated with El Niño events combined with a positive state
of the NAO. Negative correlations between the NAO index
and observed precipitation anomalies were found for Kyr-
gyzstan and northern Uzbekistan. Investigations by Bastos et
al. (2016) indicated that both NAO and EA simultaneously
control the winter moisture fluxes into northern central Asia.
Maximum fluxes were found during negative NAO condi-
tions, coupled with a positive EA index. Yin et al. (2014) fur-
ther showed that the positive phase of the East Atlantic/West
Russia and the Polar/Eurasian patterns can lead to enhanced
moisture fluxes into central Asia.

Most recently, Hartmann et al. (2016) suggested that in
addition to well-known atmospheric modes, the sea surface
temperatures of the main moisture sources might influence
the precipitation climate of the Tarim Basin.

3.2 Modeling results

The seasonal precipitation model, including the automatic
predictor selection routine, has been applied to each of the
selected target regions and the results have been evaluated
with regard to different seasons and the accompanying pre-
cipitation regimes. Figure 6 shows the time series of observed
3-month running totals (blue bars) and the composite results
(red lines) for the F [1 : 3] forecast model. The evaluation re-
sults of the F [4 : 6] composite forecast model are presented
in Fig. S1 in the Supplement). In order to keep the annual
cycle, values are displayed at the center of each 3-month pe-
riod. The date of forecast generation is 1.5 months earlier
for F [1 : 3] and 4.5 months earlier for F [4 : 6]. The corre-
sponding SPI values for each of the running 3-month peri-
ods are presented and the 90 % confidence interval of the
residual-based probabilistic forecast is illustrated. Figure 7
summarizes the modeling results in terms of correlation, bias,
RMSE and AUC for moderate drought and moisture condi-
tions. The performance measures are provided for each of the
running 3-month periods, respectively.

For the north central Asian domain, drought and moisture
conditions during winter and spring, which are characterized
by maximum moisture fluxes into the target region, are well
captured by the statistical model. For example, the recent
moist spring seasons in 2005 and 2010 are adequately pre-
dicted by the F [1 : 3] forecast model. Also the spring drought
of 2008 and particularly the prolonged drought of 1999–2001
are accurately predicted by the forecast model, although the
severity of the extreme 1999–2001 drought is highly under-
estimated. Correlations between observed and modeled pre-
cipitation totals are high (r > 0.4) for winter and spring. AUC
values > 0.7 indicate that the model is capable of forecasting
moderate drought and moisture conditions in northern cen-
tral Asia during winter and spring. RMSE is in the order of
20 % of the precipitation mean. For the dry summer season,
the skill of the forecast model is distinctly lower with cor-
relation around 0.2 and AUC values in the order of 0.5 for
both moderate drought and moist seasons. RMSE values in
summer reach up to 40 % of the mean precipitation amounts.
The SPI time series for southern central Asia shows a similar
variability and is significantly correlated with the north cen-
tral Asian record, which indicates a common large-scale cli-
matic forcing of the central Asian target areas. For example,
the recent drought conditions during boreal cold seasons of
2007–2008 and 1999–2001 are evident in both the observa-
tional and the modeled time series. However, the variability
of precipitation rates in southern central Asia is highly under-
estimated by the statistical model. Correlations reach highest
values in late autumn (r > 0.4), but some 3-month composite
periods with correlation below 0.2 were detected through-
out the year. AUC values exceed 0.7 in autumn, winter and
spring; during the dry summer season, the evaluation results
are highly heterogeneous, with some AUC values in the order
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of 0.5, indicating a limited skill of the precipitation forecast
model.

For the monsoonal-influenced target domain, maximum
correlations were achieved during the summer season. Partic-
ularly for the late monsoon season, high correlations (r > 0.4)
and AUC values above 0.7 were detected for the F [1:3] fore-
cast, which indicates the ability of the model to predict mon-
soonal drought periods several months in advance. For exam-
ple, the negative precipitation anomaly during summer mon-
soon of 2009 (which was the second worst drought of the en-
tire period) is well captured by the forecast model; however,
the magnitude of extreme events is mostly underestimated.
For the winter and transition seasons, negative correlations,
high RMSE values of up to 60 % of the long-term mean and
AUC values below 0.5 indicate a poor performance of the sta-
tistical model. Overall, the statistical model adequately cap-
tures the variability of westerly precipitation amounts for the
central Asian target domains, particularly during moist win-
ter and spring seasons. For the northern Indian region, the
evaluation measures reach the highest values during sum-
mer season, when precipitation is associated with monsoonal
circulation modes. During winter and the transition seasons
associated with westerly weather patterns over northern In-
dia, the model fails to reproduce the interannual precipitation
variability.

The F [4 : 6] composite forecast model in general shows
a distinctly lower skill compared with F [1 : 3] (see Supple-
ment Figs. S1 and S2). Correlations remain positive for the
northern central Asian domain for the moist cold season;
however, values seldom exceed r = 0.2 in the F [4 : 6] model.
AUC values during moist seasons are in the order of 0.6 for
both central Asian domains, which indicates a low but still
positive skill of the F [4 : 6] forecast model. The skill of the
F [4 : 6] model for the monsoonal northern Indian target area
is in general low with negative correlations and AUC values
< 0.5 in most of the months.

3.3 Sensitivity analysis

In comparison to linear models with a small set of indepen-
dent predictor variables, the complex structure of the pre-
sented random-forest-based model does not directly reveal
physically interpretable input–output relationships. Particu-
larly, the fact that the predictor selection procedure gener-
ates a large sample of partially highly correlated predictor
variables, which basically comprise the same information
concerning the large-scale climatic variability, impedes a di-
rect interpretation of the predictor importance and variable
response. Frequently utilized random forest variable impor-
tance measures are based on the increase of the model error,
in case of a random modification of one particular variable
(permutation importance). If the predictor space is not statis-
tically independent, i.e., it includes highly correlated predic-
tor variables, every variable can easily be substituted, which

results in unrealistically low values of the random forest im-
portance measure (Gregorutti et al., 2016).

In order to overcome the blackbox character of the statis-
tical model, we conducted a sensitivity analysis for the se-
lected target areas under consideration of well-known atmo-
spheric indices. Therefore, individual random forest models
were forced with modified input data, containing only those
predictor variables, which are highly correlated with the con-
sidered indices. This facilitates the estimation of the frac-
tional response of the model to a considered predictor and
reveals the underlying influence of major atmospheric modes
on hydroclimatic variability of the target regions. The results
of the sensitivity analysis enable a comparison of the model
results with previous studies, which utilized traditional cli-
mate indices (see Sect. 3.1 for a brief summary) and thus
serve as a plausibility test of the presented approach.

With the aim of investigating the model response to a se-
lected climate index, the time series of potential predictor
variables, which are significantly correlated with the index
(α= 0.01) are maintained, while the others were set to zero.
All maintained predictor variables (which are associated with
the considered large-scale atmospheric mode) are modified
to an equal distance record of values ranging from −2 to 2
standard deviations, if the predictor is positively correlated
with the considered climate index (if the correlation is neg-
ative, modified values range from 2 to −2). The statistical
forecast model is then applied to the modified predictor data.
The results are converted to SPI values and indicate the re-
sponse of the model to increasing values of the considered
large-scale climate index. Figure 8 shows the results of the
sensitivity analysis for December, March, June and Septem-
ber, as representative of winter, spring, summer and autumn
seasons, respectively. Since the sensitivity procedure is only
valid for individual random forest models, we analyzed the
monthly forecast models with different lead times, in order
to estimate the influence of selected climate indices. A direct
sensitivity study for the F [1 : 3] composite forecast model is
not feasible, due to its complex aggregation of various ran-
dom forest models; however, the results can be regarded as
generally valid if the sensitivity is constant for varying lead
times.

However, due to the nonlinear nature of the statistical
model, the response fractions should not be perceived as in-
dependent or additive and should rather be interpreted as a
general sensitivity of the model.

As potentially important large-scale climate indices we
make use of the ENSO-3 index as well as the NAO and the
EA, which are frequently mentioned as important influencing
factors on the central and south Asian precipitation climate
(Barlow et al., 2002; Hoell et al., 2013; Khidher and Pilesjö,
2014; Syed et al., 2006).

The plotted predictor responses (Fig. 8) clearly indicate
that the state of the ENSO determines the precipitation vari-
ability in all target areas. For the winter and spring sea-
sons (represented by the forecast models for December and
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Figure 6. Observed running 3-month precipitation totals (blue bars) and modeling results (red line) of the F [1 : 3] model for selected target
regions. The upper panels show absolute precipitation totals for running 3-month periods, the lower panels show the corresponding SPI index
for each 3-month period, respectively. Shaded areas indicate the 90 % interval of the residual-based probabilistic forecast. Black verticals
indicate the division of the time series into four independent evaluation samples.

March) a positive response to predictors related to the ENSO-
3 index is evident for all target areas, indicating an inten-
sification of moisture fluxes and associated westerly distur-
bances over the entire domain during the ENSO warm phase
and a reversed effect during the cold phase of El Niño, which
is consistent with previous studies on the variability of cold
season precipitation totals in the vast target domain (Barlow
et al., 2002, 2015; Dimri, 2013; Mariotti, 2007; Syed et al.,
2006). The model response is strongest for the moist seasons,
which is late winter for the southern central Asia and spring
for the northern central Asian domain. This coincides with
a moderate to high model performance for the central Asian
target regions during the winter and spring seasons and em-
phasizes the relevance of ENSO for the winter and spring

moisture fluxes into central Asia. As indicated in Fig. 6, win-
ter and spring drought conditions frequently occur simultane-
ously in northern and southern central Asia, which indicates
a common large-scale forcing, most likely associated with an
ENSO cold phase. The positive response to increasing values
of the ENSO index remains constant for lead times ranging
from 0 to 3 months, indicating a high forecast potential for
the F [1 : 3] model in central Asia. Winter drought conditions
in the northern Indian domain are likewise associated with
La Niña events.

During summer, the response of the model results to vari-
ations of ENSO remains positive for northern central Asia;
however, the response magnitude is distinctly lower. Al-
though the model performance for the central Asian target
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Figure 7. Summary of evaluation measures of the F [1 : 3] forecast for selected target areas. In order to keep the annual cycle of precipitation
amounts, the specified month at the x axis indicates the middle of the forecast period.

regions is poor during summer season, the results of the sen-
sitivity study are mostly consistent with findings by Mariotti
(2007), who proposed seasonal independent enhanced south
easterly moisture fluxes into central Asia during the ENSO
warm phase.

For the monsoonal-influenced north Indian target area, a
distinct negative relationship between ENSO variations and
summer and autumn precipitation is evident in the sensitivity
results, which confirms a number of previous studies (Rajee-
van and Pai, 2007; Sigdel and Ikeda, 2013; Wu et al., 2009).
In autumn, a slight negative response has also been detected
for southern central Asia, indicating a monsoonal influence,
which is certainly prevalent in Pakistan.

In addition, the winter and spring precipitation forecast
models for northern and southern central Asia distinctly re-
spond to variations of predictor variables related to the NAO
and the EA pattern, which reveals the influence of pres-
sure anomalies in the temperate climate zones on the cen-
tral Asian precipitation variability. In December, the model
positively responds to increasing NAO and EA indices. Par-
ticularly for the south central Asian target area, the magni-
tude is in the order of the response to ENSO-related predictor
variables for lead times of 0 and 1 months (the zero forecast
is based on mean predictor variables from the same month
and has not been considered in the forecast procedure). For
larger lead times the response magnitude for NAO and EA
decreases, which indicates a lower forecast potential. The
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Figure 8. Results of sensitivity analysis for selected target regions, months and lead times (from 0 to 3 months). The x axis represents the
range of the considered large-scale index (from −2 to 2 standard deviations). The y axis indicates the model response to associated predictor
variables (ranging from SPI=−1 to SPI= 1).

positive response to the EA pattern is likewise evident in
March for the northern central Asian target area. However,
for the NAO, a strong negative response has been detected for
lead times up to 2 months. The response to NAO in southern
central Asia remains positive in March. Again, this is con-
firmed by previous studies of Syed et al. (2006) who found
a negative correlation between the state of the NAO and cold
season precipitation over the northern central Asian countries
and a reverse relationship for a band covering Iran, southern
Afghanistan and Pakistan. Thus, the combination of a neg-
ative NAO and EA phase with a warm phase of the ENSO
is likely to trigger drought conditions over southern central
Asia during the winter season. During spring and particularly
for the northern central Asian region, drought conditions are
associated with an El Niño cold phase in combination with
a negative state of the EA pattern and positive state of the
NAO. While the response to ENSO and EA is similar in both
central Asian target regions, the differentiated response to
NAO leads to a diverging precipitation signal in northern and
southern central Asia.

4 Summary and outlook

We presented a statistically based modeling framework,
which automatically identifies suitable predictors from glob-
ally gridded climate variables by means of an extensive data-
mining procedure and explicitly avoids the utilization of typ-
ical large-scale climate indices. This leads to an enhanced

flexibility of the model and enables its automatic calibration
for any target area without any prior assumption concern-
ing adequate predictor variables. Potential predictor variables
are derived by means of a cell-wise correlation analysis of
precipitation anomalies within a user-selectable target area
with global climate variables. The correlation analysis is con-
ducted for monthly values with lead times ranging from 1 to
6 months. For each potential predictor variable, month and
lead time, significantly correlated grid cells are aggregated
to predictor regions by means of a variability-based clus-
ter analysis. Finally, for every month and lead time, an in-
dividual random-forest-based forecast model is constructed,
by means of the preliminary generated predictor variables.
In order to reduce the risk of overfitting, predictor selection
and model calibration are based on independent samples.
Due to the large noise of observed precipitation amounts
at a monthly timescale, the random-forest-based forecasts
based on predictor variables of one specific month with lead
times of 1–3 months and 4–6 months are aggregated to run-
ning 3-month composite predictions. These are automatically
evaluated based on a 4-fold split sample test and modeling
performance measures are provided for each of the running
3-month predictions, which enables the assessment of the
model performance for different seasons of the year.

The model has been applied to selected target regions in
central and south Asia. While the central Asian catchments
are primarily under influence of westerly air masses through-
out the year, the target area in southern Asia receives mois-
ture fluxes from westerly winds during winter and is under
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the influence of the south Asian monsoon during the summer
season.

Particularly for the central Asian target domains, corre-
lations between observations and forecast results reach val-
ues r > 0.4, especially for the moist winter and spring sea-
sons. The capability of the model to predict moderate drought
events or anomalous moisture conditions is reflected by AUC
values > 0.7. Due to the fact that precipitation in the high
elevations mainly falls as snow and is released during dry
summer season, the irrigated agriculture of the downstream
countries is highly vulnerable to drought events during win-
ter and spring. Some studies indicate that the natural summer
discharge of the tributaries of the major central Asian rivers
can be accurately forecasted by means of winter precipitation
amounts or snow cover rates, which are usually available in
spring (Barlow and Tippett, 2008; Dixon and Wilby, 2015).
A modeling chain including statistical precipitation forecast-
ing and runoff prediction could extend the forecast range and
foster adequate adaption strategies.

For the northern Indian target area, the model performance
was found to be slightly lower, but particularly for the eco-
nomically important monsoonal precipitation amounts cor-
relation values reach 0.4 and higher, and AUC values exceed
0.7.

A sensitivity analysis of the complex statistical model us-
ing well-known climate indices shows that the model auto-
matically identifies relevant predictor variables, among oth-
ers, that are associated with typical climatic modes, such as
the ENSO, NAO and the EA pattern. Further, the sensitiv-
ity analysis enables the estimation of the model response
to specified climatic modes and thus reveals the major in-
fluencing factors for the observed precipitation variability.
The winter and spring precipitation amounts in the entire
target area were found to be highly influenced by the state
of the ENSO with positive precipitation anomalies during El
Niño events. Additionally for the central Asian catchments,
the states of the NAO and the EA pattern were identified as
important controlling factors. The sensitivity analysis of the
model suggests that drought events in northern central Asia
are frequently triggered by an ENSO cold phase in combina-
tion with a positive NAO and a negative EA state. Drought
in the southern central Asian domain is associated with an
El Niño cold phase in combination with negative NAO and
EA indices. Concerning the forecast of summer precipita-
tion amounts in the monsoonal northern Indian domain, the
model shows a distinct negative response to El Niño events.

In general, the statistical model is characterized by a large
underestimation of variance, but the forecast of a drought
risk appears feasible to a certain extent. The accurate predic-
tion of severe drought periods, however, remains difficult by
means of statistical techniques. Therefore, the atmospheric
and oceanic patterns, which trigger extreme drought or mois-
ture conditions and the interaction of potential influencing
factors, such as the state of the NAO, the EA pattern or the
ENSO, need to be further investigated. Additionally, since

climatic conditions in the selected target areas show a large
noise which is not predictable by means large-scale atmo-
spheric and oceanic predictor variables. The implementation
of a real probabilistic forecast model should be considered
for further model development.

The generation of a model ensemble based on randomly
selected predictor variables and a subsequent model averag-
ing approach, for example, based on Bayesian techniques as
proposed by Wang et al. (2012), appears promising in this
regard.

The Supplement related to this article is available online
at doi:10.5194/hess-20-4605-2016-supplement.
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