Articles | Volume 19, issue 2
https://doi.org/10.5194/hess-19-981-2015
https://doi.org/10.5194/hess-19-981-2015
Research article
 | 
23 Feb 2015
Research article |  | 23 Feb 2015

Nitrogen surface water retention in the Baltic Sea drainage basin

P. Stålnacke, A. Pengerud, A. Vassiljev, E. Smedberg, C.-M. Mörth, H. E. Hägg, C. Humborg, and H. E. Andersen

Related authors

Geochemical controls on the partitioning and hydrological transport of metals in a non-acidic river system
J. Thorslund, J. Jarsjö, T. Wällstedt, C. M. Mörth, M. Y. Lychagin, and S. R. Chalov
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-11-9715-2014,https://doi.org/10.5194/hessd-11-9715-2014, 2014
Preprint withdrawn

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Modelling approaches
Past and future climate change effects on the thermal regime and oxygen solubility of four peri-alpine lakes
Olivia Desgué-Itier, Laura Melo Vieira Soares, Orlane Anneville, Damien Bouffard, Vincent Chanudet, Pierre Alain Danis, Isabelle Domaizon, Jean Guillard, Théo Mazure, Najwa Sharaf, Frédéric Soulignac, Viet Tran-Khac, Brigitte Vinçon-Leite, and Jean-Philippe Jenny
Hydrol. Earth Syst. Sci., 27, 837–859, https://doi.org/10.5194/hess-27-837-2023,https://doi.org/10.5194/hess-27-837-2023, 2023
Short summary
Exploring tracer information in a small stream to improve parameter identifiability and enhance the process interpretation in transient storage models
Enrico Bonanno, Günter Blöschl, and Julian Klaus
Hydrol. Earth Syst. Sci., 26, 6003–6028, https://doi.org/10.5194/hess-26-6003-2022,https://doi.org/10.5194/hess-26-6003-2022, 2022
Short summary
How do inorganic nitrogen processing pathways change quantitatively at daily, seasonal, and multiannual scales in a large agricultural stream?
Jingshui Huang, Dietrich Borchardt, and Michael Rode
Hydrol. Earth Syst. Sci., 26, 5817–5833, https://doi.org/10.5194/hess-26-5817-2022,https://doi.org/10.5194/hess-26-5817-2022, 2022
Short summary
Inertia and seasonal climate prediction as sources of skill in lake temperature, discharge and ice-off forecasting tools
François Clayer, Leah Jackson-Blake, Daniel Mercado, Muhammed Shikhani, Andrew French, Tadhg Moore, James Sample, Magnus Norling, Maria-Dolores Frías, Sixto Herrera, Elvira de Eyto, Eleanor Jennings, Karsten Rinke, Leon van der Linden, and Rafael Marcé
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-312,https://doi.org/10.5194/hess-2022-312, 2022
Revised manuscript accepted for HESS
Short summary
Seasonal forecasting of lake water quality and algal bloom risk using a continuous Gaussian Bayesian network
Leah A. Jackson-Blake, François Clayer, Sigrid Haande, James E. Sample, and S. Jannicke Moe
Hydrol. Earth Syst. Sci., 26, 3103–3124, https://doi.org/10.5194/hess-26-3103-2022,https://doi.org/10.5194/hess-26-3103-2022, 2022
Short summary

Cited articles

Alexander, R. B., Smith, R. A., and Schwarz, G. E.: Effect of stream channel size on the delivery of nitrogen to the gulf of Mexico, Nature, 403, 758–761, 2000.
Behrendt, H. and Opitz, D.: Retention of nutrients in river systems: dependence on specific runoff and hydraulic load, Hydrobiologia, 410, 111–122, 2000.
Bergström, S. and Carlsson, B.: River runoff to the Baltic Sea – 1950–1990, Ambio, 23, 280–287, 1994.
Billen, G., Thieu, V., Garnier, J., and Silvestre, M.: Modelling the N cascade in regional watersheds: The case study of the Seine, Somme and Scheldt rivers, Agr. Ecosyst. Environ., 133, 234–246, 2009.
Grimvall, A. and Stålnacke, P.: Statistical methods for source apportionment of riverine loads of pollutants, Environmetrics, 7, 201–213, 1996.
Download
Short summary
In this study, we used the MESAW statistical model to estimate the surface water N retention. Such large-scale estimates are lacking for the Baltic Sea and there are only a few studies of this globally. Our results show that around 380 000t of N are annually retained in surface waters draining to the Baltic Sea. The total annual riverine load from the 117 basins to the Baltic Sea was estimated at 570 000t of N, yielding a total surface water N retention of around 40%.