Articles | Volume 19, issue 1
https://doi.org/10.5194/hess-19-615-2015
https://doi.org/10.5194/hess-19-615-2015
Research article
 | 
30 Jan 2015
Research article |  | 30 Jan 2015

Correction of systematic model forcing bias of CLM using assimilation of cosmic-ray Neutrons and land surface temperature: a study in the Heihe Catchment, China

X. Han, H.-J. H. Franssen, R. Rosolem, R. Jin, X. Li, and H. Vereecken

Related authors

Evaluation and uncertainty analysis of regional-scale CLM4.5 net carbon flux estimates
Hanna Post, Harrie-Jan Hendricks Franssen, Xujun Han, Roland Baatz, Carsten Montzka, Marius Schmidt, and Harry Vereecken
Biogeosciences, 15, 187–208, https://doi.org/10.5194/bg-15-187-2018,https://doi.org/10.5194/bg-15-187-2018, 2018
Short summary
SMOS brightness temperature assimilation into the Community Land Model
Dominik Rains, Xujun Han, Hans Lievens, Carsten Montzka, and Niko E. C. Verhoest
Hydrol. Earth Syst. Sci., 21, 5929–5951, https://doi.org/10.5194/hess-21-5929-2017,https://doi.org/10.5194/hess-21-5929-2017, 2017
Short summary
State and parameter estimation of two land surface models using the ensemble Kalman filter and the particle filter
Hongjuan Zhang, Harrie-Jan Hendricks Franssen, Xujun Han, Jasper A. Vrugt, and Harry Vereecken
Hydrol. Earth Syst. Sci., 21, 4927–4958, https://doi.org/10.5194/hess-21-4927-2017,https://doi.org/10.5194/hess-21-4927-2017, 2017
Short summary
Evaluation of a cosmic-ray neutron sensor network for improved land surface model prediction
Roland Baatz, Harrie-Jan Hendricks Franssen, Xujun Han, Tim Hoar, Heye Reemt Bogena, and Harry Vereecken
Hydrol. Earth Syst. Sci., 21, 2509–2530, https://doi.org/10.5194/hess-21-2509-2017,https://doi.org/10.5194/hess-21-2509-2017, 2017
Short summary
DasPy 1.0 – the Open Source Multivariate Land Data Assimilation Framework in combination with the Community Land Model 4.5
X. Han, X. Li, G. He, P. Kumbhar, C. Montzka, S. Kollet, T. Miyoshi, R. Rosolem, Y. Zhang, H. Vereecken, and H.-J. H. Franssen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-8-7395-2015,https://doi.org/10.5194/gmdd-8-7395-2015, 2015
Revised manuscript not accepted
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Implementation of global soil databases in the Noah-MP model and the effects on simulated mean and extreme soil hydrothermal changes
Kazeem Abiodun Ishola, Gerald Mills, Ankur Prabhat Sati, Benjamin Obe, Matthias Demuzere, Deepak Upreti, Gourav Misra, Paul Lewis, Daire Walsh, Tim McCarthy, and Rowan Fealy
Hydrol. Earth Syst. Sci., 29, 2551–2582, https://doi.org/10.5194/hess-29-2551-2025,https://doi.org/10.5194/hess-29-2551-2025, 2025
Short summary
Skilful probabilistic predictions of UK flood risk months ahead using a large-sample machine learning model trained on multimodel ensemble climate forecasts
Simon Moulds, Louise Slater, Louise Arnal, and Andrew W. Wood
Hydrol. Earth Syst. Sci., 29, 2393–2406, https://doi.org/10.5194/hess-29-2393-2025,https://doi.org/10.5194/hess-29-2393-2025, 2025
Short summary
Towards a robust hydrologic data assimilation system for hurricane-induced river flow forecasting
Peyman Abbaszadeh, Fatemeh Gholizadeh, Keyhan Gavahi, and Hamid Moradkhani
Hydrol. Earth Syst. Sci., 29, 2407–2427, https://doi.org/10.5194/hess-29-2407-2025,https://doi.org/10.5194/hess-29-2407-2025, 2025
Short summary
Enhanced evaluation of hourly and daily extreme precipitation in Norway from convection-permitting models at regional and local scales
Kun Xie, Lu Li, Hua Chen, Stephanie Mayer, Andreas Dobler, Chong-Yu Xu, and Ozan Mert Göktürk
Hydrol. Earth Syst. Sci., 29, 2133–2152, https://doi.org/10.5194/hess-29-2133-2025,https://doi.org/10.5194/hess-29-2133-2025, 2025
Short summary
Deep-learning-based sub-seasonal precipitation and streamflow ensemble forecasting over the source region of the Yangtze River
Ningpeng Dong, Haoran Hao, Mingxiang Yang, Jianhui Wei, Shiqin Xu, and Harald Kunstmann
Hydrol. Earth Syst. Sci., 29, 2023–2042, https://doi.org/10.5194/hess-29-2023-2025,https://doi.org/10.5194/hess-29-2023-2025, 2025
Short summary

Cited articles

Anderson, M. C., Norman, J. M., Kustas, W. P., Li, F., Prueger, J. H., and Mecikalski, J. R.: Effects of Vegetation Clumping on Two–Source Model Estimates of Surface Energy Fluxes from an Agricultural Landscape during SMACEX, J. Hydrometeorol., 6, 892–909, 2005.
Barrett, D. J. and Renzullo, L. J.: On the Efficacy of Combining Thermal and Microwave Satellite Data as Observational Constraints for Root-Zone Soil Moisture Estimation C-7972-2009, J. Hydrometeorol., 10, 1109–1127, 2009.
Bateni, S. M. and Entekhabi, D.: Surface heat flux estimation with the ensemble Kalman smoother: Joint estimation of state and parameters, Water Resour. Res., 48, W08521, https://doi.org/10.1029/2011wr011542, 2012.
Bogena, H. R., Herbst, M., Huisman, J. A., Rosenbaum, U., Weuthen, A., and Vereecken, H.: Potential of Wireless Sensor Networks for Measuring Soil Water Content Variability, Vadose Zone J., 9, 1002–1013, 2010.
Bogena, H. R., Huisman, J. A., Baatz, R., Hendricks Franssen, H. J., and Vereecken, H.: Accuracy of the cosmic-ray soil water content probe in humid forest ecosystems: The worst case scenario, Water Resour. Res.., 49, 5778–5791, 2013.
Download
Short summary
This paper presents the joint assimilation of cosmic-ray neutron counts and land surface temperature with parameter estimation of leaf area index at an irrigated corn field. The results show that the data assimilation can reduce the systematic input errors due to the lack of irrigation data. The estimations of soil moisture, evapotranspiration and leaf area index can be improved in the joint assimilation framework.
Share