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Abstract. The recent development of the non-invasive

cosmic-ray soil moisture sensing technique fills the gap be-

tween point-scale soil moisture measurements and regional-

scale soil moisture measurements by remote sensing. A

cosmic-ray probe measures soil moisture for a footprint with

a diameter of ∼ 600 m (at sea level) and with an effective

measurement depth between 12 and 76 cm, depending on

the soil humidity. In this study, it was tested whether neu-

tron counts also allow correcting for a systematic error in

the model forcings. A lack of water management data of-

ten causes systematic input errors to land surface models.

Here, the assimilation procedure was tested for an irrigated

corn field (Heihe Watershed Allied Telemetry Experimen-

tal Research – HiWATER, 2012) where no irrigation data

were available as model input although for the area a sig-

nificant amount of water was irrigated. In the study, the mea-

sured cosmic-ray neutron counts and Moderate-Resolution

Imaging Spectroradiometer (MODIS) land surface tempera-

ture (LST) products were jointly assimilated into the Com-

munity Land Model (CLM) with the local ensemble trans-

form Kalman filter. Different data assimilation scenarios

were evaluated, with assimilation of LST and/or cosmic-ray

neutron counts, and possibly parameter estimation of leaf

area index (LAI). The results show that the direct assimila-

tion of cosmic-ray neutron counts can improve the soil mois-

ture and evapotranspiration (ET) estimation significantly,

correcting for lack of information on irrigation amounts. The

joint assimilation of neutron counts and LST could improve

further the ET estimation, but the information content of neu-

tron counts exceeded the one of LST. Additional improve-

ment was achieved by calibrating LAI, which after calibra-

tion was also closer to independent field measurements. It

was concluded that assimilation of neutron counts was use-

ful for ET and soil moisture estimation even if the model has

a systematic bias like neglecting irrigation. However, also the

assimilation of LST helped to correct the systematic model

bias introduced by neglecting irrigation and LST could be

used to update soil moisture with state augmentation.

1 Introduction

Soil moisture plays a key role for crop and plant growth,

water resources management and land surface–atmosphere

interaction. Therefore accurate soil moisture retrieval is im-

portant. Point-scale measurements can be obtained by meth-

ods like time domain reflectometry (TDR) (Robinson et al.,

2003) and larger-scale, coarse soil moisture information from

remote sensing sensors (Entekhabi et al., 2010; Kerr et al.,

2010). Wireless sensor networks (WSNs) allow character-

ization of soil moisture at the catchment scale with many

local connected sensors at separated locations (Bogena et

al., 2010). TDR only measures the point-scale soil moisture,

and the maintenance of WSN is expensive. Recently, neu-

tron count intensity measured by aboveground cosmic-ray

probes was proposed as an alternative information source
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on soil moisture. Neutron count intensity is measured non-

invasively at an intermediate scale between the point-scale

and the coarse remote sensing scale (Zreda et al., 2008). A

network of cosmic-ray sensors (CRSs) has been set up over

North America (Zreda et al., 2012).

Cosmic rays are composed of primary protons mainly. The

fast neutrons generated by high-energy neutrons colliding

with nuclei lead to “evaporation” of fast neutrons, and the

generated and moderated neutrons in the ground can diffuse

back into the air, where their intensity can be measured by the

cosmic-ray soil moisture probe. Soil moisture affects the rate

of moderation of fast neutrons and controls the neutron con-

centration and the emission of neutrons into the air. Dry soils

have low moderating power and are highly emissive; wet

soils have high moderating power and are less emissive. The

neutrons are mainly moderated by the hydrogen atoms con-

tained in the soil water and emitted to the atmosphere, where

the neutrons mix instantaneously at a scale of hundreds of

meters. The measurement area of a cosmic-ray soil moisture

probe represents a circle with a diameter of ∼ 600 m at sea

level (Desilets and Zreda, 2013), and the measurement depth

decreases nonlinearly from ∼ 76 (dry soils) to ∼ 12 cm (sat-

urated soils) (Zreda et al., 2008). The measured cosmic-ray

neutron counts show an inverse correlation with soil moisture

content. The cosmic-ray neutron intensity could be reduced

to 60 % of surface cosmic-ray neutron intensity by increasing

the soil moisture from 0 to 40 % (Zreda et al., 2008). The soil

moisture estimation on the basis of cosmic-ray-probe-based

neutron counts over a horizontal footprint of hectometers has

received considerable attention in the scientific literature in

recent years (Desilets et al., 2010; Zreda et al., 2008, 2012).

Hydrogen atoms are present as water in the soil, lattice

soil water, belowground biomass, atmospheric water vapor,

snow water, aboveground biomass, intercepted water by veg-

etation and water on the ground. These additional hydrogen

sources contribute to the measured neutron intensity. The role

of these additional hydrogen sources should be included in

the analysis of the cosmic-ray measurements in order to iso-

late the main contribution from soil moisture. Formulations

for handling water vapor (Rosolem et al., 2013), for lattice

water and organic carbon (Franz et al., 2013) and for a litter

layer present on the soil surface (Bogena et al., 2013) have

been developed.

The positive impact of soil moisture data assimilation has

been shown in several studies. Importantly, surface soil mois-

ture could be used to obtain better characterization of the root

zone soil moisture (Barrett and Renzullo, 2009; Crow et al.,

2008; Das et al., 2008; Draper et al., 2011; Li et al., 2010).

It has also shown that the assimilation of soil moisture ob-

servations can be used to correct rainfall errors (Crow et al.,

2011; Yang et al., 2009). Often a systematic bias between

measured and modeled soil moisture content can be found;

soil moisture estimation can be significantly improved using

joint state and bias estimation (De Lannoy et al., 2007; Ku-

mar et al., 2012; Reichle, 2008). Also studies on data assim-

ilation of remotely sensed land surface temperature products

show a positive impact on the estimation of soil moisture,

latent heat flux and sensible heat flux (Ghent et al., 2010;

Xu et al., 2011). Also in these studies it was found that bias,

in these cases soil temperature bias, of land surface models

can be removed with land surface temperature assimilation

(Bosilovich et al., 2007; Reichle et al., 2010). Other stud-

ies have updated both land surface model states and param-

eters with soil moisture and land surface temperature data

(Bateni and Entekhabi, 2012; Han et al., 2014a; Montzka et

al., 2013; Pauwels et al., 2009). The assimilation of measured

cosmic-ray neutron counts in a land surface model was suc-

cessfully tested, but these studies focused on state updating

alone (Rosolem et al., 2014; Shuttleworth et al., 2013). In this

paper we focus on the assimilation of measured cosmic-ray

neutron counts for improving soil moisture content charac-

terization at the field scale. This paper focuses on the case

of model input being biased. Land surface models still are

affected by limited knowledge on water resources manage-

ment, and for regions in China (and elsewhere) typically no

information on irrigation amounts is available as irrigation

is mainly by the flooding system. We analyze whether mea-

sured neutron counts are able to correct for such biases. This

case is not only relevant for neglecting irrigation in China,

but also for other water resources management issues (e.g.,

groundwater pumping) which are neglected in the simula-

tions. Neglecting irrigation in land surface models results in

a large bias in the simulated soil moisture content because of

a lack of water input. The bias in soil moisture content also

results in a too-small latent heat flux and too-high sensible

heat flux. We hypothesize that data assimilation also can play

an important role for removing such biases in data-deficient

areas. One possible strategy in data assimilation studies for

handling this type of bias, which is not followed in this pa-

per, is to calibrate the simulation model (e.g., land surface

model) prior to data assimilation to remove biases (Kumar et

al., 2012) and use the corrected simulation model in the con-

text of sequential data assimilation. A different strategy was

followed in this paper, and no a priori bias correction was

carried out because this type of problem (neglecting water re-

sources management) does not allow for such an a priori bias

correction. The bias can be attributed to the model structure,

model parameters, atmospheric forcing or observation data,

and the bias-aware assimilation requires the assumption that

the bias comes from a particular source. If the source of bias

is not attributed to the right source, model predictions cannot

be improved (Dee, 2005). Therefore bias-blind assimilation

was used for safety, and the bias estimation was not handled

explicitly. Instead, we investigated whether neutron counts

measured by cosmic-ray probe were able to correct for the

bias. The aim is to improve the soil moisture profile estima-

tion in a crop land with seed corn as the main crop type.

In CLM, land surface fluxes are calculated based on the

Monin–Obukhov similarity theory. The sensible heat flux is

formulated as a function of temperature and leaf area index
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(LAI), and the latent heat flux is formulated as a function of

the temperature and leaf stomatal resistances. The leaf stom-

atal resistance is calculated from the Ball–Berry conductance

model (Collatz et al., 1991). The updates of soil temperature

and vegetation temperature are derived based on the solar ra-

diation absorbed by top soil (or vegetation), longwave radia-

tion absorbed by soil (or vegetation), sensible heat flux from

soil (or vegetation) and latent heat flux from soil (or vege-

tation). Measured land surface temperature is composed of

the ground temperature and vegetation temperature. There-

fore a difference between measured and calculated land sur-

face temperature can be adjusted by changing land surface

fluxes. As land surface fluxes are sensitive to soil moisture

content, land surface temperature is sensitive to soil moisture

content.

Therefore, the land surface temperature (LST) prod-

ucts measured by the Moderate-Resolution Imaging Spec-

troradiometer (MODIS) Terra (MOD11A1) and Aqua

(MYD11A1) are also assimilated jointly to improve the soil

temperature profile estimation because the evapotranspira-

tion (ET) is sensitive to the soil temperature. Two Terra LST

products can be obtained per day at 10:30/22:30 and two

Aqua LST products can be obtained per day at 01:30/13:30.

Soil moisture, land surface temperature and LAI influence

the estimation of latent and sensible heat fluxes (Ghilain et

al., 2012; Jarlan et al., 2008; Schwinger et al., 2010; van

den Hurk, 2003; Yang et al., 1999), and therefore this study

also focused on the calibration of LAI with the help of

the assimilation of land surface temperature. However, there

are large discrepancies between the remotely retrieved LAI

and measured values, and the MODIS LAI product under-

estimates in situ measured LAI by 44 % on average (http:

//landval.gsfc.nasa.gov/), and therefore the LAI is also cal-

ibrated by data assimilation. In summary, the novel aspects

of this work are the following: (1) investigating whether data

assimilation is able to correct for missing water resources

management data without a priori bias correction; (2) joint

assimilation of cosmic-ray neutron counts, LST and updating

of LAI; and (3) application of this framework to real-world

data in an irrigated area where detailed verification data were

available.

2 Materials and methods

2.1 Study area and measurement

The Heihe River basin is the second-largest inland river

basin of China; it is located at 97.1–102.0◦ E and 37.7–

42.7◦ N and covers an area of approximately 143 000 km2

(Li et al., 2013). In 2012, a multi-scale observation experi-

ment of evapotranspiration with a well-equipped superstation

(Daman superstation) to measure the atmospheric forcings

and soil moisture at 2, 4, 10, 20, 40, 80, 120 and 160 cm depth

(Xu et al., 2013) was carried out from June to September in

Figure 1. Map of the cosmic-ray probe and SoilNet nodes in the

footprint of the CRS probe positioned at the Heihe River catchment.

the framework of the Heihe Watershed Allied Telemetry Ex-

perimental Research (HiWATER) (Li et al., 2013). SoilNet

wireless network nodes (Bogena et al., 2010) were deployed

to measure soil moisture content and soil temperature at four

layers (4, 10, 20 and 40 cm). One cosmic-ray soil moisture

probe (CRS-1000B) was installed (Han et al., 2014b) with 23

SoilNet nodes (Jin et al., 2013, 2014) in the footprint (Fig. 1).

The main crop type within the footprint of the cosmic-ray

probe is seed corn. The irrigation is applied through chan-

nels using the flooding irrigation method. Exact amounts of

applied irrigation are therefore not available.

The measured cosmic-ray neutron count data were pro-

cessed to remove the outliers according to the sensor volt-

age (≤ 11.8 Volt) and relative humidity (≥ 80 %) (Zreda

et al., 2012). The surface fluxes were measured us-

ing the eddy covariance technique, and data were pro-

cessed using EdiRe (http://www.geos.ed.ac.uk/abs/research/

micromet/EdiRe) software, in which the anemometer coor-

dinate rotation, signal lag removal, frequency response cor-

rection, density corrections and signal de-spiking were done

for the raw data. The energy balance closure was not consid-

ered in this study. The LAI was measured by the LAI-2000

scanner during the field experiment; there are 17 samples col-

lected on 14 days over 3 months.

2.2 Land surface model and data

The CLM was used to simulate the spatiotemporal distribu-

tion of soil moisture, soil temperature, land surface temper-

ature, vegetation temperature, sensible heat flux, latent heat

flux and soil heat flux of the study area. The coupled water

and energy balance are modeled in CLM, and the land sur-

face heterogeneity is represented by patched plant functional

types and soil texture (Oleson et al., 2013).
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The soil properties used in CLM were from the soil

database of China with 1 km spatial resolution (Shangguan

et al., 2013). The MODIS 500 m resolution plant functional

type product (MCD12Q1) (Sun et al., 2008), which was

resampled by nearest-neighbor interpolation to 1 km res-

olution, and the MODIS LAI product (MCD15A3) with

1 km spatial resolution (Han et al., 2012) were used as in-

put. Due to a lack of measurement data, two atmospheric

forcing data sets were used: the Global Land Data Assim-

ilation System reanalysis data (Rodell et al., 2004) was

interpolated using the National Centers for Environmen-

tal Prediction (NCEP) bilinear interpolation library iplib

in spatial and temporal dimensions and used in the CLM

for the spin-up period (http://www.nco.ncep.noaa.gov/pmb/

docs/libs/iplib/ncep_iplib.shtml). For the 3-month data as-

similation period, hourly forcing data (incident longwave ra-

diation, incident solar radiation, precipitation, air pressure,

specific humidity, air temperature and wind speed) from the

Daman superstation of HiWATER were available and used.

2.3 Cosmic-ray forward model

In this study, the newly developed COsmic-ray Soil Mois-

ture Interaction Code (COSMIC) model (Shuttleworth et al.,

2013) was used as the cosmic-ray forward model to simu-

late the cosmic-ray neutron count rate using the soil mois-

ture profile as input. The effective measurement depth of the

cosmic-ray soil moisture probe ranges from 12 cm (wet soils)

to 76 cm (dry soils) (Zreda et al., 2008), within which 86 % of

the aboveground measured neutrons originate. COSMIC also

calculates the effective sensor depth based on the cosmic-ray

neutron intensity and the soil moisture profile values (Franz

et al., 2012; Shuttleworth et al., 2013).

COSMIC makes several assumptions to calculate the num-

ber of fast neutrons reaching the cosmic-ray soil moisture

probe (NCOSMOS) at a near-surface measurement location.

The soil layer with a depth of 3 m for the complete soil

profile was discretized into 300 layers for the integration of

Eq. (2) in COSMIC. The number of fast neutrons reaching

the cosmic-ray probe NCOSMOS is formulated as (Shuttle-

worth et al., 2013)

NCOSMOS =N

∞∫
0

{A(z)[αρs(z)+ ρw(z)] (1)

exp

(
−

[
ms(z)

L1

+
mw(z)

L2

])}
dz,

A(z)=

(
2

π

) π/2∫
0

exp

(
−1

cos(θ)

[
ms(z)

L3

+
mw(z)

L4

])
dθ, (2)

α = 0.405− 0.102ρs, (3)

L3 =−31.76+ 99.38ρs, (4)

where N is the high-energy neutron flux; z denotes the soil

layer depth (m); ρs the dry soil bulk density (g cm−3); ρw

the total water density, including the lattice water (g cm−3);

and α denotes the ratio of fast-neutron creation factor.

L1 is the high-energy soil attenuation length with value

of 162.0 g cm−2 and L2 the high-energy water attenuation

length of 129.1 g cm−2. In Eq. (2) θ is the angle between the

vertical below the detector and the line between the detector

and each point in the plane; ms(z) and mw(z) are the inte-

grated mass per unit area of dry soil and water (g cm−2), re-

spectively.L3 denotes the fast-neutron soil attenuation length

(g cm−2), and L4 stands for the fast-neutron water attenua-

tion length with a value of 3.16 g cm−2.

The cosmic-ray neutron intensity reaching the land surface

is influenced by air pressure, atmospheric water vapor con-

tent and incoming neutron flux. In order to isolate the contri-

bution of soil moisture content to the measured neutron den-

sity, it is important to take these effects into account, and the

calibrated neutron count intensity can be derived as follows

NCorr =NObs fP fwv fi, (5)

where NCorr represents corrected neutron counts and NObs

the measured neutron counts. fP is the correction factor for

air pressure, fwv the correction factor for atmospheric water

vapor and fi the correction factor for incoming neutron flux.

The correction factor for air pressure fP can be calculated

as (Zreda et al., 2012)

fP = exp(
P −P0

L
), (6)

where P (mbar) is the local air pressure, P0 (mbar) the av-

erage air pressure during the measurement period and L

(g cm−2) is the mass attenuation length for high-energy neu-

trons; the default value of 128 g cm−2 was used in this study

(Zreda et al., 2012).

The correction factor fwv for atmospheric water vapor is

calculated as (Rosolem et al., 2013)

fwv = 1+ 0.0054(ρv0− ρ
ref
v0 ), (7)

where ρv0 (k gm−3) is the absolute humidity at the measure-

ment time and ρref
v0 (kg m−3) is the average absolute humidity

during the measurement period.

Fluctuations in the incoming neutron flux should be re-

moved because the cosmic-ray probe is designed to measure

the neutron flux based on the incoming background neutron

flux. The correcting factor fi for the incoming neutron flux

is calculated as

fi =
Nm

Navg

, (8)
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where Nm is the measured incoming neutron flux and Navg

is the average incoming neutron flux during the measure-

ment period. The measured data at the Jungfraujoch station

in Switzerland at 3560 m (http://cosray.unibe.ch/) were used

to calculate Nm and Navg. The temporal (secular or diurnal)

variations caused by the sunspot cycle could be removed af-

ter this correction (Zreda et al., 2012).

In this study, the soil moisture for the CRS footprint scale

was calculated from the arithmetic mean of the 23 Soil-

Net soil moisture observations. The calibration of the high-

energy neutron intensity parameter N in Eq. (1) was done

using the measured cosmic-ray neutron counts rate and aver-

aged soil moisture content at the CRS footprint scale. Be-

cause lattice water was unknown for this site, a value of

3 % was assumed in this study (Franz et al., 2012). Hourly

soil moisture measurements for a period of 2.5 months were

used for COSMIC calibration. Inside the cosmic-ray probe

footprint, the amount of applied irrigation was spatially vari-

able due to the different management practice of each farmer.

The gradient search algorithm L-BFGS-B (Zhu et al., 1997)

was used to minimize the root mean square error (RMSE) of

the differences between simulated cosmic-ray neutron counts

(using measured soil moisture by SoilNet as input to COS-

MIC) and the measured neutron countsNCorr. The optimized

parameter value of N was 615.96 counts h−1 in this case.

The simulated soil moisture content for 10 CLM soil lay-

ers (3.8 m depth) was used as input to COSMIC in order to

simulate the corresponding neutron count intensity and com-

pare it with the measured neutron count intensity. It should

be mentioned that it is unlikely that anything beyond 1 m

depth will substantially impact the results because the effec-

tive measurement depth of the cosmic-ray probe is between

12 and 76 cm. The COSMIC model assumes a more detailed

soil profile. COSMIC interpolates the soil moisture informa-

tion from the 10 CLM soil layers to information for 300 soil

layers of 1 cm depth. The contribution of each soil layer to

the measured neutron flux will change temporally depend-

ing on the soil moisture condition. Therefore the effective

measurement depth of the cosmic ray probe will also change

temporally. COSMIC calculates the vertically weighted soil

moisture content based on the vertical distribution of soil

moisture content.

2.4 Two-source formulation – TSF

The land surface temperature products of MODIS are com-

posed of a ground temperature and vegetation temperature

component, which are however unknown. CLM models the

ground temperature and vegetation temperature separately,

but it does not model the composed land surface temperature

as seen by MODIS. The corresponding land surface temper-

ature of CLM should therefore be modeled for data assimila-

tion purposes. The two-source formulation (Kustas and An-

derson, 2009) was used in this study to calculate the land sur-

face temperature from the MODIS view angle using ground

temperature and vegetation temperature simulated by CLM:

Ts = [Fc(8)T
4

c + (1−Fc(8)T
4

g )]
1/4, (9)

where TS (K) is the composed surface temperature as seen

by the MODIS sensor, Fc(8) is the fraction vegetation cover

observed from the sensor view angle 8 (radians), Tc (K) is

the vegetation temperature and Tg (K) is the ground temper-

ature (Kustas and Anderson, 2009):

Fc(8)= 1− exp

(
−0.5�(8)LAI

cos8

)
, (10)

where �(8) is a clumping index to represent the nonran-

dom leaf area distributions of farmland or other heteroge-

neous land surfaces (Anderson et al., 2005); it is defined as

�(8)=
0.49�max

0.49+ (�max− 0.49)exp(kθ3.34)
, (11)

�max = 0.49+ 0.51(sin8)0.05, (12)

k =−{0.3+ [0.833(sin8)0.1]14
}. (13)

2.5 Assimilation approach

The local ensemble transform Kalman filter (LETKF) was

used as the assimilation algorithm, which is one of the

square-root variants of the ensemble Kalman filter (Evensen,

2003; Hunt et al., 2007; Miyoshi and Yamane, 2007). The

model uncertainties are represented using the ensemble sim-

ulation of model states, and LETKF derives the background

error covariance using the model state ensemble members.

LETKF uses the non-perturbed observations to update all the

ensemble members of model states at each assimilation step.

In this study, xb1, . . .,x
b
N denote the model state ensemble

members; xb is the ensemble mean of xb1, ..,x
b
N ;N is the en-

semble size; yb1, . . .,y
b
N denote the mapped model state en-

semble members; yb is the ensemble mean of yb1, . . .,y
b
N ; and

H is the observation operator (COSMIC for soil moisture or

the two-source function for land surface temperature). The

analysis step of LETKF can be summarized as follows.

Prepare the model state vector Xb:

Xb
= [xb1− xb, . . .,xbN − xb] (14)

where xb is composed of one vertically weighted soil mois-

ture content and soil moisture content for 10 CLM layers,

resulting in a state dimension equal to 11 if only the neu-

tron count observation was assimilated; and xb is composed

of surface temperature, ground temperature, vegetation tem-

perature and soil temperature for 15 CLM layers if only the

land surface temperature observations were assimilated with-

out soil moisture update, giving a state dimension of 18. The
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water and energy balance are coupled, and in CLM the en-

ergy balance is firstly solved; then the derived surface fluxes

are used for updating soil moisture content. The cross cor-

relation between the soil temperature and soil moisture can

be calculated using the ensemble prediction in LETKF, and

this makes the updating of soil moisture by assimilating land

surface temperature possible. We also used the land surface

temperature to update the soil moisture profile; in this case

the soil moisture vector was augmented to the LETKF state

vector of land surface temperature assimilation, resulting in

a state dimension of 28.

Construct the mapped model state vector Y b after trans-

formation of observation operator:

ybi =H(x
b
i ), (15)

Y b =
[
yb1− yb, . . .,ybN − yb

]
. (16)

The following analysis is looped for each model grid cell

to calculate the update of model state ensemble members.

Calculate analysis error covariance matrix Pa :

Pa = [(N − 1)I+Y bTR−1Y b], (17)

where I is the identity matrix.

The perturbations in ensemble space are calculated as

Wa
= [(N − 1)Pa]1/2. (18)

Calculate the analysis mean wa in ensemble space and add

to each column ofW a to get the analysis ensemble in ensem-

ble space:

wa
= PaY bTR−1(yo− yb). (19)

Calculate the new analysis:

Xa
=Xb

[wa
+Wa

] + xb, (20)

where R is the observation error covariance matrix, yo is the

observation vector and Xa contains the updated model en-

semble members.

The LETKF method can also be extended to do parameter

estimation using a state augmentation approach (Bateni and

Entekhabi, 2012; Li and Ren, 2011; Moradkhani et al., 2005;

Nie et al., 2011). Alternative strategies for parameter estima-

tion are a dual approach (Moradkhani et al., 2005) with sep-

arate updating of states and parameters. Vrugt et al. (2005)

also proposed a dual approach with parameter updating in an

outer optimization loop using a Markov chain Monte Carlo

method, and state updating in an inner loop. The a priori cal-

ibration of model parameters is also an option (Kumar et al.,

2012). With the augmentation approach, the state vector of

LETKF can be augmented by the parameter vector includ-

ing soil properties (sand fraction, clay fraction and organic

matter density) and vegetation parameters (LAI, etc.). In a

preliminary sensitivity study it was found that for this site

simulation results were more sensitive to the LAI than to

soil properties. Soil texture is also quite well known for this

site from measurements. Therefore in this study, only the

LAI was in some of the simulation scenarios calibrated. In

the different scenarios of land surface temperature assimila-

tion, the LETKF state vector was also augmented to include

LAI as a calibration target. As a consequence, the augmented

state vector contains surface temperature, ground tempera-

ture, vegetation temperature, 15 layers of soil temperature

and LAI, making up a state dimension equal to 19 for the

scenarios of land surface temperature assimilation without

soil moisture update; for the scenarios of land surface tem-

perature with soil moisture update, the state dimension is 29.

The 10 layers of soil moisture and 15 layers of soil tempera-

ture are the standard CLM layout for both soil moisture and

soil temperature. The hydrology calculations are done over

the top 10 layers, and the bottom 5 layers are specified as

bedrock. The lower 5 layers are hydrologically inactive lay-

ers. Temperature calculations are done over all layers (Ole-

son et al., 2013).

3 Experiment setup

First the 50 ensemble members of CLM with perturbed soil

properties and atmospheric forcing data were driven from 1

January to 31 May 2012 to do the CLM spin-up; second an

additional assimilation period of cosmic-ray neutron counts

was done from 1 June to 30 August 2012 to reduce the spin-

up error. The final CLM states on 30 August 2012 were used

as the initial states for 1 June 2012 for the data assimilation

scenarios. Perturbed soil properties were generated by adding

a spatially uniform perturbation sampled from a uniform dis-

tribution between−10 and 10 % to the values extracted from

the Soil Database of China for Land Surface Modeling (1 km

spatial resolution). The LAI was perturbed with multiplica-

tive uniform distributed random noise in the range of [0.8–

1.2]. The perturbations added to the model forcings show

correlations in space and time. The spatial correlation was

induced by a fast Fourier transform, and the temporal correla-

tion by a first-order auto-regressive model (Han et al., 2013;

Kumar et al., 2009; Reichle et al., 2010). The statistics on the

perturbation of the forcing data are summarized in Table 1.

The values of standard deviations and temporal correlations

in Table 1 were chosen based on previous catchment-scale

and regional-scale data assimilation studies (De Lannoy et

al., 2012; Kumar et al., 2012; Reichle et al., 2010).

The cosmic-ray neutron intensity was assimilated every

3 days at 12:00 Z from 1 June 2012 onwards. We found that

the differences between daily assimilation and 3-day assim-

ilation were small; therefore only the results of the 3-day

assimilation are shown. The measured neutron count inten-

sity showed large temporal fluctuations in time, and these
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Table 1. Summary of perturbation parameters for atmospheric forcing data.

Time Spatial

Standard correlation correlation Cross

Variables Noise deviation scale Scale correlation

Precipitation Multiplicative 0.5 24 h 5 km [ 1.0,-0.8, 0.5, 0.0,

Shortwave radiation Multiplicative 0.3 24 h 5 km -0.8, 1.0,-0.5, 0.4,

Longwave radiation Additive 20 W m−2 24 h 5 km 0.5, -0.5, 1.0, 0.4,

Air temperature Additive 1 K 24 h 5 km 0.0, 0.4, 0.4, 1.0]

Figure 2. Measured and temporally smoothed CRS neutron counts.

fluctuations did not correspond to the temporal variations

of soil moisture. Therefore the measured neutron count in-

tensity was smoothed with the Savitzky–Golay filter using a

moving average window of size 31 h and a polynomial of or-

der 4 (Savitzky and Golay, 1964). The originally measured

neutron counts and smoothed neutron counts are plotted in

Fig. 2. The assimilation frequency of MODIS LST prod-

ucts of MOD11A1 and MYD11A1 was up to 4 times (max-

imum) per day depending on the data availability. There are

230 observation data (including cosmic-ray probe neutron

counts, MODIS LST, MOD11A1 and MYD11A1 LST) in

the whole assimilation window. The variance of the instan-

taneous measured neutron intensity is equal to the measured

neutron count intensity (Zreda et al., 2012) and smaller for

temporal averaging for daily or sub-daily applications. The

instantaneous neutron intensity was assimilated in this study.

The variance of MODIS LST was assumed to be 1 K (Wan

and Li, 2008).

The 4-day MODIS LAI product was aggregated and used

as the CLM LAI parameter. Because the LAI from MODIS

is usually lower than the true value (compared with the field-

measured LAI in the HiWATER experiment) and because the

surface flux and surface temperature are sensitive to the LAI,

two additional scenarios were investigated where LAI was

calibrated to study the impact of LAI estimation on surface

flux estimation within the data assimilation framework.

The following assimilation scenarios were compared:

1. CLM: open-loop simulation without assimilation.

2. Only_CRS: only the measured neutron counts were as-

similated.

3. Only_LST: only the MODIS LST products were assim-

ilated. The quality control flags of LST products were

used to select the data with good quality for assimila-

tion.

4. CRS_LST: the measured neutron counts and MODIS

LST products were assimilated jointly. In the above sce-

narios, the neutron count data were used to update the

soil moisture and the LST data were used to update

the ground temperature, vegetation temperature and soil

temperature.

5. LST_Feedback: we also evaluated the scenario of as-

similating the LST measurements to update the soil

moisture profile.

6. CRS_LST_Par_LAI: the LAI was included as variable

to be calibrated; otherwise the scenario was the same as

CRS_LST.

7. LST_Feedback_Par_LAI: the LAI was included as vari-

able to be calibrated; otherwise the scenario was the

same as LST_Feedback.

8. CRS_LST_True_LAI: the in situ measured LAI during

the HiWATER experiment was used in the model simu-

lation.
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Figure 3. Soil moisture at 10 cm (upper) and 20 cm (lower) depth as obtained from an open-loop run (CLM), local sensors (Obs) and different

simulation scenarios. For a description of the scenarios see Sect. 3 of the paper. The CRS neutron counts were assimilated on 1 June.

4 Results and discussion

In order to evaluate the assimilation results for the different

scenarios outlined in Sect. 3, the RMSE was used:

RMSE=

√√√√√ N∑
n=i

(estimated−measured)2

N
, (21)

where “estimated” is the ensemble mean without assimila-

tion or the ensemble mean after assimilation, and “measured”

is measured soil moisture content evaluated at the SoilNet

nodes (or latent heat flux, sensible heat flux or soil heat flux).

N is the number of time steps. For the soil moisture analy-

sis in this study, N is equal to 2184. The smaller the RMSE

value is, the closer assimilation results are to measured val-

ues, which is in general considered to be desirable.

The temporal evolution of soil moisture content at 10,

20, 50 and 80 cm depth for different scenarios is plotted

in Figs. 3 and 4. The RMSE values for different scenar-

ios are summarized in Table 2. Assimilating the land sur-

face temperature could improve the soil moisture profile

estimation in the scenario of LST_Feedback_Par_LAI; the

soil moisture results are better than the open-loop run at

all depths. With the assimilation of CRS neutron counts,

the soil moisture RMSE values at 10 and 20 cm depth

(scenarios CRS_LST_Par_LAI and CRS_LST_True_LAI)

Table 2. Root mean square error (RMSE) of soil moisture pro-

file of open-loop run (CLM), feedback assimilation of land surface

temperature including LAI calibration (LST_Feedback_Par_LAI),

bivariate assimilation of neutron counts and land surface temper-

ature including LAI calibration (CRS_LST_Par_LAI) and bivari-

ate assimilation of neutron counts and land surface temperature

(CRS_LST_True_LAI).

RMSE (m3 m−3)

Soil layer Open loop LST_Feedback CRS_LST CRS_LST

depth (CLM) _Par_LAI _Par_LAI _True_LAI

10 cm 0.202 0.137 0.085 0.086

20 cm 0.167 0.106 0.047 0.048

50 cm 0.193 0.112 0.112 0.119

80 cm 0.188 0.124 0.136 0.146

decreased significantly. The RMSE values for the scenar-

ios Only_CRS and CRS_LST (not shown) are similar to

CRS_LST_Par_LAI, which indicates that the main improve-

ment for the soil moisture profile characterization is achieved

by neutron count assimilation; and land surface tempera-

ture assimilation and LAI estimation play a minor role.

Without assimilation of cosmic-ray probe neutron counts,

the soil moisture simulation cannot be improved (scenario

Only_LST). However, the scenarios of LST_Feedback and

LST_Feedback_Par_LAI improve the soil moisture profile

Hydrol. Earth Syst. Sci., 19, 615–629, 2015 www.hydrol-earth-syst-sci.net/19/615/2015/



X. Han et al.: Correction of systematic model forcing bias of CLM 623

Figure 4. Same as Fig. 3 but for 50 cm (upper) and 80 cm (lower).

characterization, which shows that explicitly using LST to

update soil moisture content in the data assimilation rou-

tine gives better results than using LST only to update soil

moisture by the model equations. Results of LST_Feedback

and LST_Feedback_Par_LAI are similar; therefore only re-

sults for LST_Feedback_Par_LAI are shown in Figs. 3 and 4.

This implies that the improved soil moisture characterization

due to LAI calibration is low. The results for the cosmic-ray

probe neutron count assimilation proved that the cosmic-ray

probe sensor can be used to improve the soil moisture profile

estimation at the footprint scale.

Figure 5 depicts the scatterplots of measured ET versus

modeled ET for different scenarios, and the accumulated

ET for all scenarios are summarized in the lower-right cor-

ner of Fig. 5. The EC-measured ET is 384.7 mm for the

assimilation period, without energy balance closure correc-

tion. The true evapotranspiration is therefore likely larger,

but not much larger as the energy balance gap was limited

(3.7 %). The CLM-estimated ET, without data assimilation,

using only precipitation as input is 223.7 mm and is much

smaller than the measured value as applied irrigation is not

considered in the model. This open-loop simulated value

would imply water stress and a limitation of canopy transpi-

ration and soil evaporation due to low soil moisture content.

Assimilation of land surface temperature only (Only_LST)

hardly affected the estimated ET and was not able to correct

for the artificial water stress condition. However, if land sur-

face temperature was used to update soil moisture directly,

taking into account correlations between the two states in

the data assimilation routine, the ET estimates improved to

336.8 and 354.8 mm for the scenarios of LST_Feedback and

LST_Feedback_Par_LAI, respectively. The assimilation of

land surface temperature of MODIS with soil moisture up-

date results in significant improvements of ET.

The different neutron count assimilation scenarios also re-

sulted in significantly improved estimates of ET. Univari-

ate assimilation of cosmic-ray neutron data (Only_CRS) re-

sulted in 301.9 mm ET. This shows that the impact of neutron

count assimilation to correct evapotranspiration estimates is

slightly smaller than the impact of land surface temperature

with soil moisture update. Joint assimilation of land surface

temperature data and cosmic-ray neutron data (CRS_LST)

gave a slightly larger ET of 310.6 mm than Only_CRS. The

scenarios of CRS_LST_Par_LAI and CRS_LST_True_LAI

gave the best ET estimates (360.5 and 349.3 mm). This shows

that correcting the biased LAI estimates from MODIS by in

situ data or calibration helped to improve model estimates.

The RMSE values of latent heat flux, sensible heat

flux and soil heat flux for all scenarios are summarized

in Fig. 6. It is obvious that the RMSE values are very

large for both the latent heat flux (123.9 W m−2) and sen-

sible heat flux (80.5 W m−2) for the open-loop run and
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Figure 5. Evapotranspiration estimated according to different scenarios for the period June–August 2012. For a full description see Fig. 3.

all other scenarios where the soil moisture was not up-

dated. When the land surface temperature was assimi-

lated to update the soil moisture, the latent heat flux

RMSE decreased to 60.5 (LST_Feedback) and 62.5 W m−2

(LST_Feedback_Par_LAI). The scenario where soil mois-

ture and LAI are jointly updated (LST_Feedback_Par_LAI)

gave worse results than the scenario of LST_Feedback.

Again, the assimilation of neutron counts also resulted in a

strong RMSE reduction for the latent heat flux (76.5 W m−2

for Only_CRS). When in addition land surface temperature

was assimilated and LAI optimized, the RMSE value of la-

tent heat flux further decreased to 56.1 W m−2 (70.7 W m−2

without LAI optimization). When the field-measured LAI

was used instead in the assimilation (CRS_LST_True_LAI),

the RMSE was 61.0 W m−2. These results are in correspon-

dence with the ones discussed before for soil moisture char-

acterization. Evidently, the combined assimilation of cosmic-

ray probe neutron counts and land surface temperature, and

calibration of LAI (or use of field-measured LAI as model

input) shows the strongest improvement for the estimation of

land surface fluxes. The soil heat flux did not show a clear

improvement related to assimilation and showed only some

improvement when LAI was calibrated. For the scenario of

land surface temperature assimilation without soil moisture

update (Only_LST), estimates of latent and sensible heat flux

are not improved. It means that, under water stress condi-

tions, the improved characterization of land surface temper-

ature (and soil temperature) does not contribute to a better

estimation of land surface fluxes.

The updated LAI for the scenarios of

LST_Feedback_Par_LAI and CRS_LST_Par_LAI is

shown in Fig. 7. The MODIS LAI product was used as input

for CLM, and time series are plotted as blue line in Fig. 7

(Background). The LAI was also measured in the HiWATER

experiment, and the measured values are shown as a green

star (Observation). Ens_Mean represents the mean LAI of all

ensemble members (Ensembles). It is obvious that MODIS

underestimates the LAI compared with the observations.

With the assimilation of land surface temperature, the LAI

could be updated and be closer to the observations, but

there is still a significant discrepancy between the measured

LAI and the updated one. The LAI values for the scenario

with LAI calibration (CRS_LST_Par_LAI) are close to

the measured LAI values (CRS_LST_True_LAI), which
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Figure 6. RMSE values of latent heat flux, sensible heat flux and

soil heat flux for the period June–August 2012. For a description of

the scenarios see Sect. 3 of the paper.

is an encouraging result. The calibrated LAI shows some

unrealistic increases and decreases during the assimilation

period, which is inherent to the data assimilation approach.

A smoothed representation of the LAI might provide a more

realistic picture.

This study illustrates that, for an irrigated farmland, the

measured cosmic-ray probe neutron counts can be used to

improve the soil moisture profile estimation significantly.

Without irrigation data, CLM underestimated soil moisture

content. The cosmic-ray neutron count data assimilation can

Figure 7. LAI evolution for the period June–August 2012. Dis-

played are the measured LAI (Observation), default values (Back-

ground), mean of ensemble members (Ens_Mean) and ensemble

members (Ensembles) for the scenarios of LST_Feedback_Par_LAI

(upper) and CRS_LST_Par_LAI (lower).

be used as an alternative way to retrieve the soil moisture

content profile in CLM. The improved soil moisture simula-

tion was helpful for the characterization of the land surface

fluxes. The univariate assimilation of land surface tempera-

ture without soil moisture update is not helpful for the esti-

mation of land surface fluxes and even worsened the sensi-

ble heat flux characterization (Fig. 6). However, in a multi-

variate data assimilation framework where land surface tem-

perature was assimilated together with measured cosmic-ray

probe neutron counts, the land surface temperature assimila-

tion contributed significantly to an improved ET estimation.

The simulated canopy transpiration in CLM was in general

too low, even when the water stress condition was corrected

by assimilating neutron counts, which was related to small

values of the LAI. The additional estimation of LAI through

the land surface temperature assimilation resulted in an in-

crease of the LAI, yielding an increase of estimated ET.

In general, land surface models need to be calibrated be-

fore use in land data assimilation, especially if there is an

apparent large bias in the model simulation (Dee, 2005). The

simulation of soil moisture and surface fluxes was biased in

our study, mainly due to the lack of irrigation water as in-

put. This bias cannot be corrected a priori without exact ir-

rigation data, which are not available in the field. The data

assimilation was proven to be an efficient way to remove

the model bias in this case. We also calculated the equiv-

alent water depth to analyze the equivalent irrigated water

after each step of soil moisture update. For the scenarios of

CRS_LST_Par_LAI and CRS_LST_True_LAI, the equiva-
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lent irrigation in 3 months was 693.6 and 607.6 mm, respec-

tively. Because the irrigation method is flood irrigation, it is

not easy to evaluate the true irrigation applied in the field.

From the results we see, however, that the applied irriga-

tion (in the model) is much larger than actual ET (∼ 600 to

700 mm vs. ∼ 400 mm). This could indicate that the amount

of applied irrigation in the model is too large, but irrigation

by flooding is also inefficient and results in excess runoff

and infiltration to the groundwater, because it cannot be con-

trolled as well as sprinkler irrigation or drip irrigation. There-

fore, the calculated amount of irrigation could be realistic but

might also be too large if soil properties are erroneous in the

model.

The soil moisture content measured by the cosmic-ray

probe represents the depth between 12 cm (very humid) and

76 cm (extremely dry case) depending on the amount of soil

water (soil moisture content and lattice water). Therefore the

effective sensor depth of the cosmic-ray probe will change

over time. In order to model the variable sensor depth and

the relationship between the soil moisture content and neu-

tron counts, the new developed COSMIC model was used

as the observation operator in this study. Additionally the

influences of air pressure, atmospheric vapor pressure and

incoming neutron counts were removed from the originally

measured neutron counts. Because there is still some water in

the crop which also affects the cosmic-ray probe sensor, the

COSMIC observation operator could be improved to include

vegetation effects. Several default parameters proposed by

Shuttleworth et al. (2013) were used in the COSMIC model,

and these parameters probably need further calibration fol-

lowing the development of the COSMIC model.

The spatial distribution of soil moisture for the study area

was very heterogeneous due to the small farmland patches

and different irrigation periods for the different farmlands.

Therefore the soil moisture content inferred by SoilNet may

not represent the true soil moisture content of the cosmic-

ray probe footprint, which is a further limitation of this

study. Although the Cosmic-ray Soil Moisture Observing

System (COSMOS) has been designed as a continental-

scale network by installing 500 COSMOS probes across the

USA (Zreda et al., 2012), there are still some disadvan-

tages of COSMOS compared with remote sensing. COS-

MOS is also expensive for extensive deployment to measure

continental/regional-scale soil moisture.

5 Summary and conclusions

In this paper, we studied the univariate assimilation of

MODIS land surface temperature products, the univariate

assimilation of measured neutron counts by the cosmic-ray

probe, the bivariate assimilation of land surface temperature

and neutron count data, and the additional calibration of LAI

for an irrigated farmland at the Heihe Catchment in China,

where data on the amount of applied irrigation were lack-

ing. The most important objective of this study was to test

whether data assimilation is able to correct for the absence

of information on water resources management as model in-

put, a situation commonly encountered in large-scale land

surface modeling. For the specific case of lacking irrigation

data, no prior bias correction is possible. The bias-blind as-

similation without explicit bias estimation was used. We fo-

cused on the model bias introduced by the forcing data and

the LAI, and neglected the other sources of bias. When LAI

was calibrated, this was done at each data assimilation step of

land surface temperature. The data assimilation experiments

were carried out with the CLM, and the data assimilation al-

gorithm used was the LETKF. A likely further model bias,

besides missing information on irrigation, is the underestima-

tion of LAI by MODIS, which was used to force the model.

The results show that the direct assimilation of mea-

sured comic-ray neutron counts improves the estimation of

soil moisture significantly, whereas univariate assimilation of

land surface temperature without soil moisture update does

not improve soil moisture estimation. However, if the land

surface temperature was assimilated to update the soil mois-

ture profile directly with the help of the state augmentation

method, the evapotranspiration and soil moisture could be

improved significantly. This result suggests that the land sur-

face temperature remote sensing products are needed to cor-

rect the characterization of the soil moisture profile and the

evapotranspiration. The improved soil moisture estimation

after the assimilation of neutron counts resulted in a better ET

estimation during the irrigation season, correcting the too-

low ET of the open-loop simulation. The joint assimilation

of neutron counts and MODIS land surface temperature im-

proved the ET estimation further compared to neutron count

assimilation only. The best ET estimation was obtained for

the joint assimilation of cosmic-ray neutron counts, MODIS

land surface temperature including calibration of the LAI (or

if field-measured LAI was used as input). This shows that

bias due to neglected information on water resources man-

agement can be corrected by data assimilation if a combi-

nation of soil moisture and land surface temperature data is

available.

We can conclude that data assimilation of neutron counts

and land surface temperature is useful for ET and soil mois-

ture estimation of an irrigated farmland, even if irrigation

data are not available and excluded from model input. The

land surface temperature measurements are an alternative

data source to improve the soil moisture and land surface flux

estimation under water stress conditions. This shows the po-

tential of data assimilation to correct also a systematic model

bias. LAI optimization further improves simulation results,

which is also likely related to a systematic underestimation

of LAI by the MODIS remote sensing product. The results

of using the calibrated LAI are comparable to the results of

using field-measured LAI as model input.
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