Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Preprints
https://doi.org/10.5194/hess-2018-548
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-2018-548
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

  20 Nov 2018

20 Nov 2018

Status
This preprint has been withdrawn by the authors.

Climate change and runoff contribution by hydrological zones of cryosphere catchment of Indus River, Pakistan

Kashif Jamal1,2, Shakil Ahmad4, Xin Li1,3, Muhammad Rizwan1,2, Hongyi Li1,2, and Jiaojiao Feng1,2 Kashif Jamal et al.
  • 1Key Laboratory of Remote Sensing and Geospatial Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
  • 2University of Chinese Academy of Sciences, Beijing, 100049, China
  • 3CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101, China
  • 4School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan

Abstract. Climate change has significant impacts on hydrology in high altitude snow and glacier covered mountainous regions. These regions are highly sensitive to changes in climate variables, such as temperature and precipitation and producing high runoffs. Runoff produced from different altitude ranges and their sensitivity to current and changing climate is also unknown. This study was carried out in high altitude mountainous cryosphere Hunza River Catchment (HRC) which is located in Hindukush and Karakoram ranges and is the major tributary of the Indus River Basin. Snowmelt-Runoff Model (SRM) was used to analyse the current and projected hydrological regimes and the sensitivity of Snow Cover Area (SCA) at different altitude levels under current and changing climate. Under the current condition (i.e., 2001–2010 except 2006), the results showed that about half of the mean annual streamflows at the outlet of the HRC is contributed by the altitude ranges of 4500–5500 m a.s.l. Climatic projections under the RCP8.5 and RCP4.5 scenarios were used for the climate change impact assessment. Compared to the baseline climate, the mean annual temperature would increase by 0.7 (0.6), 2.4 (1.3) and 4.6 (1.9) ℃, respectively during 2030s, 2060s and 2090s; and the mean annual precipitation would increase by 63.3 (33.6) mm during 2090s under the RCP8.5 (RCP4.5) projections. Moreover, two SCA scenarios were developed, i.e., the baseline unchanged SCA and the hypothetical change in SCA scenarios. In the first SCA scenario, the results showed that additional streamflows of 43 (34), 153 (83.4) and 304 (115.7) m3 s−1 under RCP8.5 (RCP4.5) will be added into baseline annual streamflows of 269 m3 s−1 during 2030s, 2060s and 2090s, respectively. In the second scenario, we found that 10 % and 15 % decrease in SCA would result in increases (or decrease) in streamflows approximately by 18 (2) % and 42 (7) % under the RCP8.5 (RCP4.5) scenario during 2060s and 2090s, respectively. Whereas altitude range 4500–5500 m a.s.l showed increasing trend during pre-monsoon (April–June) and monsoon (July–August) season under changed SCA scenario for both RCPs scenarios. Current and near future climate pattern is favourable for Indus River regarding high water flows. However, future water flow pattern is declining because of disappearance or decrease in snow and glaciers melt area which correspondingly means that mid/downstream water allocation will be effected or reduced at some extent. Proper adaptations or managements strategies should be executed for upcoming harsh conditions.

This preprint has been withdrawn.

Kashif Jamal et al.

Kashif Jamal et al.

Kashif Jamal et al.

Viewed

Total article views: 2,318 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,975 303 40 2,318 48 49
  • HTML: 1,975
  • PDF: 303
  • XML: 40
  • Total: 2,318
  • BibTeX: 48
  • EndNote: 49
Views and downloads (calculated since 20 Nov 2018)
Cumulative views and downloads (calculated since 20 Nov 2018)

Viewed (geographical distribution)

Total article views: 1,694 (including HTML, PDF, and XML) Thereof 1,662 with geography defined and 32 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 28 Sep 2020
Publications Copernicus
Download
Withdrawal notice

This preprint has been withdrawn.

Short summary
This research article address understanding and prediction of projected changes in runoff of cryosphere catchment. The key focus of this research is to predict the runoff contribution and sensitivity at different altitude ranges (that was not studied before) in the response of projected climate and how the response change to the climate variables. This research clearly fulfill the gap found in previous researches using simple approach.
This research article address understanding and prediction of projected changes in runoff of...
Citation