Articles | Volume 19, issue 1
Hydrol. Earth Syst. Sci., 19, 409–425, 2015
Hydrol. Earth Syst. Sci., 19, 409–425, 2015

Research article 21 Jan 2015

Research article | 21 Jan 2015

Using measured soil water contents to estimate evapotranspiration and root water uptake profiles – a comparative study

M. Guderle and A. Hildebrandt

Related authors

Spatially varying relevance of hydrometeorological hazards for vegetation productivity extremes
Josephin Kroll, Jasper M. C. Denissen, Mirco Migliavacca, Wantong Li, Anke Hildebrandt, and Rene Orth
Biogeosciences Discuss.,,, 2021
Preprint under review for BG
Short summary
High-resolution drought simulations and comparison to soil moisture observations in Germany
Friedrich Boeing, Oldrich Rakovech, Rohini Kumar, Luis Samaniego, Martin Schrön, Anke Hildebrandt, Corinna Rebmann, Stephan Thober, Sebastian Müller, Steffen Zacharias, Heye Bogena, Katrin Schneider, Ralf Kiese, and Andreas Marx
Hydrol. Earth Syst. Sci. Discuss.,,, 2021
Preprint under review for HESS
Short summary
Predicting the impact of spatial heterogeneity on microbial redox dynamics and nutrient cycling in the subsurface
Swamini Khurana, Falk Heße, Anke Hildebrandt, and Martin Thullner
Biogeosciences Discuss.,,, 2021
Revised manuscript under review for BG
Short summary
Neighbourhood and stand structure affect stemflow generation in a heterogeneous deciduous temperate forest
Johanna C. Metzger, Jens Schumacher, Markus Lange, and Anke Hildebrandt
Hydrol. Earth Syst. Sci., 23, 4433–4452,,, 2019
Short summary
Modeling macropore seepage fluxes from soil water content time series by inversion of a dual permeability model
Nicolas Dalla Valle, Karin Potthast, Stefanie Meyer, Beate Michalzik, Anke Hildebrandt, and Thomas Wutzler
Hydrol. Earth Syst. Sci. Discuss.,,, 2017
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Ecohydrology | Techniques and Approaches: Instruments and observation techniques
Ecohydrological travel times derived from in situ stable water isotope measurements in trees during a semi-controlled pot experiment
David Mennekes, Michael Rinderer, Stefan Seeger, and Natalie Orlowski
Hydrol. Earth Syst. Sci., 25, 4513–4530,,, 2021
Short summary
Insights into the isotopic mismatch between bulk soil water and Salix matsudana Koidz trunk water from root water stable isotope measurements
Ying Zhao and Li Wang
Hydrol. Earth Syst. Sci., 25, 3975–3989,,, 2021
Short summary
The role of dew and radiation fog inputs in the local water cycling of a temperate grassland during dry spells in central Europe
Yafei Li, Franziska Aemisegger, Andreas Riedl, Nina Buchmann, and Werner Eugster
Hydrol. Earth Syst. Sci., 25, 2617–2648,,, 2021
Short summary
Co-evolution of xylem water and soil water stable isotopic composition in a northern mixed forest biome
Jenna R. Snelgrove, James M. Buttle, Matthew J. Kohn, and Dörthe Tetzlaff
Hydrol. Earth Syst. Sci., 25, 2169–2186,,, 2021
Short summary
Vapor plumes in a tropical wet forest: spotting the invisible evaporation
César Dionisio Jiménez-Rodríguez, Miriam Coenders-Gerrits, Bart Schilperoort, Adriana del Pilar González-Angarita, and Hubert Savenije
Hydrol. Earth Syst. Sci., 25, 619–635,,, 2021
Short summary

Cited articles

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration: Guidelines for computing crop requirements, FAO Irrigation and Drainage Paper No. 56, FAO, Rome, Italy, 1998.
Arnold, S., Attinger, S., Frank, K., and Hildebrandt, A.: Uncertainty in parameterisation and model structure affect simulation results in coupled ecohydrological models, Hydrol. Earth Syst. Sci., 13, 1789–1807,, 2009.
Asbjornsen, H., Goldsmith, G. R., Alvarado-Barrientos, M. S., Rebel, K., Van Osch, F. P., Rietkerk, M., Chen, J., Gotsch, S., Tobón, C., Geissert, D. R., Gómez-Tagle, A., Vache, K., and Dawson, T. E.: Ecohydrological advances and applications in plant-water relations research: a review, J. Plant Ecol., 4, 3–22,, 2011.
Bechmann, M., Schneider, C., Carminati, A., Vetterlein, D., Attinger, S., and Hildebrandt, A.: Effect of parameter choice in root water uptake models – the arrangement of root hydraulic properties within the root architecture affects dynamics and efficiency of root water uptake, Hydrol. Earth Syst. Sci., 18, 4189–4206,, 2014.
Breña Naranjo, J. A., Weiler, M., and Stahl, K.: Sensitivity of a data-driven soil water balance model to estimate summer evapotranspiration along a forest chronosequence, Hydrol. Earth Syst. Sci., 15, 3461–3473,, 2011.
Short summary
This paper is the result of a numerical study to test the application of water balance methods for estimating evapotranspiration and water extraction profiles based on measured soil water content data. The advantage of the tested methods is that they do not rely on a priori information of any root distribution parameters. Our research shows the potential of water balance methods for derivation of water extraction profiles, but their application may be challenging in realistic conditions.