Articles | Volume 19, issue 9
Hydrol. Earth Syst. Sci., 19, 3727–3753, 2015
https://doi.org/10.5194/hess-19-3727-2015
Hydrol. Earth Syst. Sci., 19, 3727–3753, 2015
https://doi.org/10.5194/hess-19-3727-2015

Research article 01 Sep 2015

Research article | 01 Sep 2015

Stream temperature prediction in ungauged basins: review of recent approaches and description of a new physics-derived statistical model

A. Gallice et al.

Related authors

StreamFlow 1.0: an extension to the spatially distributed snow model Alpine3D for hydrological modelling and deterministic stream temperature prediction
Aurélien Gallice, Mathias Bavay, Tristan Brauchli, Francesco Comola, Michael Lehning, and Hendrik Huwald
Geosci. Model Dev., 9, 4491–4519, https://doi.org/10.5194/gmd-9-4491-2016,https://doi.org/10.5194/gmd-9-4491-2016, 2016
Short summary

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Modelling approaches
Synthesizing the impacts of baseflow contribution on concentration–discharge (CQ) relationships across Australia using a Bayesian hierarchical model
Danlu Guo, Camille Minaudo, Anna Lintern, Ulrike Bende-Michl, Shuci Liu, Kefeng Zhang, and Clément Duvert
Hydrol. Earth Syst. Sci., 26, 1–16, https://doi.org/10.5194/hess-26-1-2022,https://doi.org/10.5194/hess-26-1-2022, 2022
Short summary
Calibrating 1D hydrodynamic river models in the absence of cross-section geometry using satellite observations of water surface elevation and river width
Liguang Jiang, Silja Westphal Christensen, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 25, 6359–6379, https://doi.org/10.5194/hess-25-6359-2021,https://doi.org/10.5194/hess-25-6359-2021, 2021
Short summary
A global algorithm for identifying changing streamflow regimes: application to Canadian natural streams (1966–2010)
Masoud Zaerpour, Shadi Hatami, Javad Sadri, and Ali Nazemi
Hydrol. Earth Syst. Sci., 25, 5193–5217, https://doi.org/10.5194/hess-25-5193-2021,https://doi.org/10.5194/hess-25-5193-2021, 2021
Short summary
Streamflow drought: implication of drought definitions and its application for drought forecasting
Samuel J. Sutanto and Henny A. J. Van Lanen
Hydrol. Earth Syst. Sci., 25, 3991–4023, https://doi.org/10.5194/hess-25-3991-2021,https://doi.org/10.5194/hess-25-3991-2021, 2021
Short summary
Quantifying floodwater impacts on a lake water budget via volume-dependent transient stable isotope mass balance
Janie Masse-Dufresne, Florent Barbecot, Paul Baudron, and John Gibson
Hydrol. Earth Syst. Sci., 25, 3731–3757, https://doi.org/10.5194/hess-25-3731-2021,https://doi.org/10.5194/hess-25-3731-2021, 2021
Short summary

Cited articles

Arscott, D. B., Tockner, K., and Ward, J.: Thermal heterogeneity along a braided floodplain river (Tagliamento River, northeastern Italy), Can. J. Fish. Aquat. Sci., 58, 2359–2373, 2001.
Aschwanden, H. and Weingartner, R.: Die Abflussregimes der Schweiz, Publikation gewässerkunde nr. 65, Geographisches Institut der Universität Bern, Switzerland, 1985.
Benyahya, L., Caissie, D., St-Hilaire, A., Ouarda, T. B., and Bobée, B.: A Review of Statistical Water Temperature Models, Can. Water Resour. J., 32, 179–192, https://doi.org/10.4296/cwrj3203179, 2007.
Beven, K.: Prophecy, reality and uncertainty in distributed hydrological modelling, Adv. Water Resour., 16, 41–51, https://doi.org/10.1016/0309-1708(93)90028-E, 1993.
Biswal, B. and Marani, M.: Geomorphological origin of recession curves, Geophys. Res. Lett., 37, L24403, https://doi.org/10.1029/2010GL045415, 2010.
Short summary
This study presents a new model to estimate the monthly mean stream temperature of ungauged rivers over multiple years in an Alpine country. Contrary to the other approaches developed to date, which are usually based on standard regression techniques, our model makes use of the understanding that we have about the physics controlling stream temperature. On top of its accuracy being comparable to that of the other models, it can be used to gain some knowledge about the stream temperature dynamics