Articles | Volume 19, issue 9
https://doi.org/10.5194/hess-19-3727-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-19-3727-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Stream temperature prediction in ungauged basins: review of recent approaches and description of a new physics-derived statistical model
A. Gallice
CORRESPONDING AUTHOR
School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
B. Schaefli
School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
M. Lehning
School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
SLF, WSL Institute for Snow and Avalanche Research, 7260 Davos, Switzerland
M. B. Parlange
School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
Faculty of Applied Sciences, University of British Columbia, Vancouver, Canada
H. Huwald
School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
Related authors
Aurélien Gallice, Mathias Bavay, Tristan Brauchli, Francesco Comola, Michael Lehning, and Hendrik Huwald
Geosci. Model Dev., 9, 4491–4519, https://doi.org/10.5194/gmd-9-4491-2016, https://doi.org/10.5194/gmd-9-4491-2016, 2016
Short summary
Short summary
This paper presents the improvements brought to an existing model for discharge and temperature prediction in Alpine streams. Compared to the original model version, it is now possible to choose between various alternatives to simulate certain parts of the water cycle, such as the technique used to transfer water along the stream network. The paper includes an example of application of the model over an Alpine catchment in Switzerland.
This article is included in the Encyclopedia of Geosciences
Hongxiang Yu, Michael Lehning, Guang Li, Benjamin Walter, Jianping Huang, and Ning Huang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2458, https://doi.org/10.5194/egusphere-2024-2458, 2024
Short summary
Short summary
Cornices are overhanging snow accumulations that form on mountain crests. Previous studies focused on how cornices collapse, little is known about why they form in the first place, specifically how snow particles adhere together to form the front end of the cornice. This study looked at the movement of snow particles around a developing cornice to understand how they gather, the speed and angle at which the snow particles hit the cornice surface, and how this affects the shape of the cornice.
This article is included in the Encyclopedia of Geosciences
Sonja Wahl, Benjamin Walter, Franziska Aemisegger, Luca Bianchi, and Michael Lehning
The Cryosphere, 18, 4493–4515, https://doi.org/10.5194/tc-18-4493-2024, https://doi.org/10.5194/tc-18-4493-2024, 2024
Short summary
Short summary
Wind-driven airborne transport of snow is a frequent phenomenon in snow-covered regions and a process difficult to study in the field as it is unfolding over large distances. Thus, we use a ring wind tunnel with infinite fetch positioned in a cold laboratory to study the evolution of the shape and size of airborne snow. With the help of stable water isotope analyses, we identify the hitherto unobserved process of airborne snow metamorphism that leads to snow particle rounding and growth.
This article is included in the Encyclopedia of Geosciences
Dylan Reynolds, Louis Quéno, Michael Lehning, Mahdi Jafari, Justine Berg, Tobias Jonas, Michael Haugeneder, and Rebecca Mott
The Cryosphere, 18, 4315–4333, https://doi.org/10.5194/tc-18-4315-2024, https://doi.org/10.5194/tc-18-4315-2024, 2024
Short summary
Short summary
Information about atmospheric variables is needed to produce simulations of mountain snowpacks. We present a model that can represent processes that shape mountain snowpack, focusing on the accumulation of snow. Simulations show that this model can simulate the complex path that a snowflake takes towards the ground and that this leads to differences in the distribution of snow by the end of winter. Overall, this model shows promise with regard to improving forecasts of snow in mountains.
This article is included in the Encyclopedia of Geosciences
Benjamin Bouchard, Daniel F. Nadeau, Florent Domine, Nander Wever, Adrien Michel, Michael Lehning, and Pierre-Erik Isabelle
The Cryosphere, 18, 2783–2807, https://doi.org/10.5194/tc-18-2783-2024, https://doi.org/10.5194/tc-18-2783-2024, 2024
Short summary
Short summary
Observations over several winters at two boreal sites in eastern Canada show that rain-on-snow (ROS) events lead to the formation of melt–freeze layers and that preferential flow is an important water transport mechanism in the sub-canopy snowpack. Simulations with SNOWPACK generally show good agreement with observations, except for the reproduction of melt–freeze layers. This was improved by simulating intercepted snow microstructure evolution, which also modulates ROS-induced runoff.
This article is included in the Encyclopedia of Geosciences
Anne-Laure Argentin, Pascal Horton, Bettina Schaefli, Jamal Shokory, Felix Pitscheider, Leona Repnik, Mattia Gianini, Simone Bizzi, Stuart Lane, and Francesco Comiti
EGUsphere, https://doi.org/10.5194/egusphere-2024-1687, https://doi.org/10.5194/egusphere-2024-1687, 2024
Short summary
Short summary
In this article, we show that by taking the optimal parameters calibrated with a semi-lumped model for the discharge at a catchment's outlet, we can accurately simulate runoff at various points within the study area, including three nested and three neighboring catchments. In addition, we demonstrate that employing more intricate melt models, which better represent physical processes, enhances the transfer of parameters in the simulation, until an overparametrization limit is reached.
This article is included in the Encyclopedia of Geosciences
Malve Heinz, Maria Eliza Turek, Bettina Schaefli, Andreas Keiser, and Annelie Holzkämper
EGUsphere, https://doi.org/10.5194/egusphere-2024-1201, https://doi.org/10.5194/egusphere-2024-1201, 2024
Short summary
Short summary
Potato farmers in Switzerland are facing drier conditions and water restrictions. We explored how improving soil health and planting early maturing potato varieties might help to adapt. Using a computer model, we simulated potato yields and irrigation water needs under water scarcity. Our results show that earlier maturing potato varieties reduce the reliance on irrigation but result in lower yields. However, improving soil health can significantly reduce yield losses.
This article is included in the Encyclopedia of Geosciences
Moctar Dembélé, Mathieu Vrac, Natalie Ceperley, Sander J. Zwart, Josh Larsen, Simon J. Dadson, Grégoire Mariéthoz, and Bettina Schaefli
Proc. IAHS, 385, 121–127, https://doi.org/10.5194/piahs-385-121-2024, https://doi.org/10.5194/piahs-385-121-2024, 2024
Short summary
Short summary
This study assesses the impact of climate change on the timing, seasonality and magnitude of mean annual minimum (MAM) flows and annual maximum flows (AMF) in the Volta River basin (VRB). Several climate change projection data are use to simulate river flow under multiple greenhouse gas emission scenarios. Future projections show that AMF could increase with various magnitude but negligible shift in time across the VRB, while MAM could decrease with up to 14 days of delay in occurrence.
This article is included in the Encyclopedia of Geosciences
Tom Müller, Mauro Fischer, Stuart N. Lane, and Bettina Schaefli
EGUsphere, https://doi.org/10.5194/egusphere-2024-631, https://doi.org/10.5194/egusphere-2024-631, 2024
Short summary
Short summary
Based on extensive field observations in a highly glacierized catchment in the Swiss Alps, we develop a combined isotopic and glacio-hydrological model. We show that water stable isotopes may help to better constrain model parameters, especially those linked to water transfer. However, we highlight that separating snow and ice melt for temperate glaciers based on isotope mixing models alone is not advised and should only be considered if their isotopic signatures have clearly different values.
This article is included in the Encyclopedia of Geosciences
Tom Müller, Matteo Roncoroni, Davide Mancini, Stuart N. Lane, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 28, 735–759, https://doi.org/10.5194/hess-28-735-2024, https://doi.org/10.5194/hess-28-735-2024, 2024
Short summary
Short summary
We investigate the role of a newly formed floodplain in an alpine glaciated catchment to store and release water. Based on field measurements, we built a numerical model to simulate the water fluxes and show that recharge occurs mainly due to the ice-melt-fed river. We identify three future floodplains, which could emerge from glacier retreat, and show that their combined storage leads to some additional groundwater storage but contributes little additional baseflow for the downstream river.
This article is included in the Encyclopedia of Geosciences
Dylan Reynolds, Ethan Gutmann, Bert Kruyt, Michael Haugeneder, Tobias Jonas, Franziska Gerber, Michael Lehning, and Rebecca Mott
Geosci. Model Dev., 16, 5049–5068, https://doi.org/10.5194/gmd-16-5049-2023, https://doi.org/10.5194/gmd-16-5049-2023, 2023
Short summary
Short summary
The challenge of running geophysical models is often compounded by the question of where to obtain appropriate data to give as input to a model. Here we present the HICAR model, a simplified atmospheric model capable of running at spatial resolutions of hectometers for long time series or over large domains. This makes physically consistent atmospheric data available at the spatial and temporal scales needed for some terrestrial modeling applications, for example seasonal snow forecasting.
This article is included in the Encyclopedia of Geosciences
Adrià Fontrodona-Bach, Bettina Schaefli, Ross Woods, Adriaan J. Teuling, and Joshua R. Larsen
Earth Syst. Sci. Data, 15, 2577–2599, https://doi.org/10.5194/essd-15-2577-2023, https://doi.org/10.5194/essd-15-2577-2023, 2023
Short summary
Short summary
We provide a dataset of snow water equivalent, the depth of liquid water that results from melting a given depth of snow. The dataset contains 11 071 sites over the Northern Hemisphere, spans the period 1950–2022, and is based on daily observations of snow depth on the ground and a model. The dataset fills a lack of accessible historical ground snow data, and it can be used for a variety of applications such as the impact of climate change on global and regional snow and water resources.
This article is included in the Encyclopedia of Geosciences
Alessio Gentile, Davide Canone, Natalie Ceperley, Davide Gisolo, Maurizio Previati, Giulia Zuecco, Bettina Schaefli, and Stefano Ferraris
Hydrol. Earth Syst. Sci., 27, 2301–2323, https://doi.org/10.5194/hess-27-2301-2023, https://doi.org/10.5194/hess-27-2301-2023, 2023
Short summary
Short summary
What drives young water fraction, F*yw (i.e., the fraction of water in streamflow younger than 2–3 months), variations with elevation? Why is F*yw counterintuitively low in high-elevation catchments, in spite of steeper topography? In this paper, we present a perceptual model explaining how the longer low-flow duration at high elevations, driven by the persistence of winter snowpacks, increases the proportion of stored (old) water contributing to the stream, thus reducing F*yw.
This article is included in the Encyclopedia of Geosciences
Anthony Michelon, Natalie Ceperley, Harsh Beria, Joshua Larsen, Torsten Vennemann, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 27, 1403–1430, https://doi.org/10.5194/hess-27-1403-2023, https://doi.org/10.5194/hess-27-1403-2023, 2023
Short summary
Short summary
Streamflow generation processes in high-elevation catchments are largely influenced by snow accumulation and melt. For this work, we collected and analyzed more than 2800 water samples (temperature, electric conductivity, and stable isotopes of water) to characterize the hydrological processes in such a high Alpine environment. Our results underline the critical role of subsurface flow during all melt periods and the presence of snowmelt even during the winter periods.
This article is included in the Encyclopedia of Geosciences
Hongxiang Yu, Guang Li, Benjamin Walter, Michael Lehning, Jie Zhang, and Ning Huang
The Cryosphere, 17, 639–651, https://doi.org/10.5194/tc-17-639-2023, https://doi.org/10.5194/tc-17-639-2023, 2023
Short summary
Short summary
Snow cornices lead to the potential risk of causing snow avalanche hazards, which are still unknown so far. We carried out a wind tunnel experiment in a cold lab to investigate the environmental conditions for snow cornice accretion recorded by a camera. The length growth rate of the cornices reaches a maximum for wind speeds approximately 40 % higher than the threshold wind speed. Experimental results improve our understanding of the cornice formation process.
This article is included in the Encyclopedia of Geosciences
Varun Sharma, Franziska Gerber, and Michael Lehning
Geosci. Model Dev., 16, 719–749, https://doi.org/10.5194/gmd-16-719-2023, https://doi.org/10.5194/gmd-16-719-2023, 2023
Short summary
Short summary
Most current generation climate and weather models have a relatively simplistic description of snow and snow–atmosphere interaction. One reason for this is the belief that including an advanced snow model would make the simulations too computationally demanding. In this study, we bring together two state-of-the-art models for atmosphere (WRF) and snow cover (SNOWPACK) and highlight both the feasibility and necessity of such coupled models to explore underexplored phenomena in the cryosphere.
This article is included in the Encyclopedia of Geosciences
Tom Müller, Stuart N. Lane, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 26, 6029–6054, https://doi.org/10.5194/hess-26-6029-2022, https://doi.org/10.5194/hess-26-6029-2022, 2022
Short summary
Short summary
This research provides a comprehensive analysis of groundwater storage in Alpine glacier forefields, a zone rapidly evolving with glacier retreat. Based on data analysis of a case study, it provides a simple perceptual model showing where and how groundwater is stored and released in a high Alpine environment. It especially points out the presence of groundwater storages in both fluvial and bedrock aquifers, which may become more important with future glacier retreat.
This article is included in the Encyclopedia of Geosciences
Océane Hames, Mahdi Jafari, David Nicholas Wagner, Ian Raphael, David Clemens-Sewall, Chris Polashenski, Matthew D. Shupe, Martin Schneebeli, and Michael Lehning
Geosci. Model Dev., 15, 6429–6449, https://doi.org/10.5194/gmd-15-6429-2022, https://doi.org/10.5194/gmd-15-6429-2022, 2022
Short summary
Short summary
This paper presents an Eulerian–Lagrangian snow transport model implemented in the fluid dynamics software OpenFOAM, which we call snowBedFoam 1.0. We apply this model to reproduce snow deposition on a piece of ridged Arctic sea ice, which was produced during the MOSAiC expedition through scan measurements. The model appears to successfully reproduce the enhanced snow accumulation and deposition patterns, although some quantitative uncertainties were shown.
This article is included in the Encyclopedia of Geosciences
Feiko Bernard van Zadelhoff, Adel Albaba, Denis Cohen, Chris Phillips, Bettina Schaefli, Luuk Dorren, and Massimiliano Schwarz
Nat. Hazards Earth Syst. Sci., 22, 2611–2635, https://doi.org/10.5194/nhess-22-2611-2022, https://doi.org/10.5194/nhess-22-2611-2022, 2022
Short summary
Short summary
Shallow landslides pose a risk to people, property and infrastructure. Assessment of this hazard and the impact of protective measures can reduce losses. We developed a model (SlideforMAP) that can assess the shallow-landslide risk on a regional scale for specific rainfall events. Trees are an effective and cheap protective measure on a regional scale. Our model can assess their hazard reduction down to the individual tree level.
This article is included in the Encyclopedia of Geosciences
Francesca Carletti, Adrien Michel, Francesca Casale, Alice Burri, Daniele Bocchiola, Mathias Bavay, and Michael Lehning
Hydrol. Earth Syst. Sci., 26, 3447–3475, https://doi.org/10.5194/hess-26-3447-2022, https://doi.org/10.5194/hess-26-3447-2022, 2022
Short summary
Short summary
High Alpine catchments are dominated by the melting of seasonal snow cover and glaciers, whose amount and seasonality are expected to be modified by climate change. This paper compares the performances of different types of models in reproducing discharge among two catchments under present conditions and climate change. Despite many advantages, the use of simpler models for climate change applications is controversial as they do not fully represent the physics of the involved processes.
This article is included in the Encyclopedia of Geosciences
David N. Wagner, Matthew D. Shupe, Christopher Cox, Ola G. Persson, Taneil Uttal, Markus M. Frey, Amélie Kirchgaessner, Martin Schneebeli, Matthias Jaggi, Amy R. Macfarlane, Polona Itkin, Stefanie Arndt, Stefan Hendricks, Daniela Krampe, Marcel Nicolaus, Robert Ricker, Julia Regnery, Nikolai Kolabutin, Egor Shimanshuck, Marc Oggier, Ian Raphael, Julienne Stroeve, and Michael Lehning
The Cryosphere, 16, 2373–2402, https://doi.org/10.5194/tc-16-2373-2022, https://doi.org/10.5194/tc-16-2373-2022, 2022
Short summary
Short summary
Based on measurements of the snow cover over sea ice and atmospheric measurements, we estimate snowfall and snow accumulation for the MOSAiC ice floe, between November 2019 and May 2020. For this period, we estimate 98–114 mm of precipitation. We suggest that about 34 mm of snow water equivalent accumulated until the end of April 2020 and that at least about 50 % of the precipitated snow was eroded or sublimated. Further, we suggest explanations for potential snowfall overestimation.
This article is included in the Encyclopedia of Geosciences
Alexandre Tuel, Bettina Schaefli, Jakob Zscheischler, and Olivia Martius
Hydrol. Earth Syst. Sci., 26, 2649–2669, https://doi.org/10.5194/hess-26-2649-2022, https://doi.org/10.5194/hess-26-2649-2022, 2022
Short summary
Short summary
River discharge is strongly influenced by the temporal structure of precipitation. Here, we show how extreme precipitation events that occur a few days or weeks after a previous event have a larger effect on river discharge than events occurring in isolation. Windows of 2 weeks or less between events have the most impact. Similarly, periods of persistent high discharge tend to be associated with the occurrence of several extreme precipitation events in close succession.
This article is included in the Encyclopedia of Geosciences
Stefan Brönnimann, Peter Stucki, Jörg Franke, Veronika Valler, Yuri Brugnara, Ralf Hand, Laura C. Slivinski, Gilbert P. Compo, Prashant D. Sardeshmukh, Michel Lang, and Bettina Schaefli
Clim. Past, 18, 919–933, https://doi.org/10.5194/cp-18-919-2022, https://doi.org/10.5194/cp-18-919-2022, 2022
Short summary
Short summary
Floods in Europe vary on time scales of several decades. Flood-rich and flood-poor periods alternate. Recently floods have again become more frequent. Long time series of peak stream flow, precipitation, and atmospheric variables reveal that until around 1980, these changes were mostly due to changes in atmospheric circulation. However, in recent decades the role of increasing atmospheric moisture due to climate warming has become more important and is now the main driver of flood changes.
This article is included in the Encyclopedia of Geosciences
Moctar Dembélé, Mathieu Vrac, Natalie Ceperley, Sander J. Zwart, Josh Larsen, Simon J. Dadson, Grégoire Mariéthoz, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 26, 1481–1506, https://doi.org/10.5194/hess-26-1481-2022, https://doi.org/10.5194/hess-26-1481-2022, 2022
Short summary
Short summary
Climate change impacts on water resources in the Volta River basin are investigated under various global warming scenarios. Results reveal contrasting changes in future hydrological processes and water availability, depending on greenhouse gas emission scenarios, with implications for floods and drought occurrence over the 21st century. These findings provide insights for the elaboration of regional adaptation and mitigation strategies for climate change.
This article is included in the Encyclopedia of Geosciences
Joel Fiddes, Kristoffer Aalstad, and Michael Lehning
Geosci. Model Dev., 15, 1753–1768, https://doi.org/10.5194/gmd-15-1753-2022, https://doi.org/10.5194/gmd-15-1753-2022, 2022
Short summary
Short summary
This study describes and evaluates a new downscaling scheme that addresses the need for hillslope-scale atmospheric forcing time series for modelling the local impact of regional climate change on the land surface in mountain areas. The method has a global scope and is able to generate all model forcing variables required for hydrological and land surface modelling. This is important, as impact models require high-resolution forcings such as those generated here to produce meaningful results.
This article is included in the Encyclopedia of Geosciences
Adrien Michel, Bettina Schaefli, Nander Wever, Harry Zekollari, Michael Lehning, and Hendrik Huwald
Hydrol. Earth Syst. Sci., 26, 1063–1087, https://doi.org/10.5194/hess-26-1063-2022, https://doi.org/10.5194/hess-26-1063-2022, 2022
Short summary
Short summary
This study presents an extensive study of climate change impacts on river temperature in Switzerland. Results show that, even for low-emission scenarios, water temperature increase will lead to adverse effects for both ecosystems and socio-economic sectors throughout the 21st century. For high-emission scenarios, the effect will worsen. This study also shows that water seasonal warming will be different between the Alpine regions and the lowlands. Finally, efficiency of models is assessed.
This article is included in the Encyclopedia of Geosciences
Pirmin Philipp Ebner, Franziska Koch, Valentina Premier, Carlo Marin, Florian Hanzer, Carlo Maria Carmagnola, Hugues François, Daniel Günther, Fabiano Monti, Olivier Hargoaa, Ulrich Strasser, Samuel Morin, and Michael Lehning
The Cryosphere, 15, 3949–3973, https://doi.org/10.5194/tc-15-3949-2021, https://doi.org/10.5194/tc-15-3949-2021, 2021
Short summary
Short summary
A service to enable real-time optimization of grooming and snow-making at ski resorts was developed and evaluated using both GNSS-measured snow depth and spaceborne snow maps derived from Copernicus Sentinel-2. The correlation to the ground observation data was high. Potential sources for the overestimation of the snow depth by the simulations are mainly the impact of snow redistribution by skiers, compensation of uneven terrain, or spontaneous local adaptions of the snow management.
This article is included in the Encyclopedia of Geosciences
Anthony Michelon, Lionel Benoit, Harsh Beria, Natalie Ceperley, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 25, 2301–2325, https://doi.org/10.5194/hess-25-2301-2021, https://doi.org/10.5194/hess-25-2301-2021, 2021
Short summary
Short summary
Rainfall observation remains a challenge, particularly in mountain environments. Unlike most studies which are model based, this analysis of the rainfall–runoff response of a 13.4 km2 alpine catchment is purely data based and relies on measurements from a network of 12 low-cost rain gauges over 3 months. It assesses the importance of high-density rainfall observations in informing hydrological processes and helps in designing a permanent rain gauge network.
This article is included in the Encyclopedia of Geosciences
Elvira Mächler, Anham Salyani, Jean-Claude Walser, Annegret Larsen, Bettina Schaefli, Florian Altermatt, and Natalie Ceperley
Hydrol. Earth Syst. Sci., 25, 735–753, https://doi.org/10.5194/hess-25-735-2021, https://doi.org/10.5194/hess-25-735-2021, 2021
Short summary
Short summary
In this study, we collected water from an Alpine catchment in Switzerland and compared the genetic information of eukaryotic organisms conveyed by eDNA with the hydrologic information conveyed by naturally occurring hydrologic tracers. At the intersection of two disciplines, our study provides complementary knowledge gains and identifies the next steps to be addressed for using eDNA to achieve complementary insights into Alpine water sources.
This article is included in the Encyclopedia of Geosciences
Anna E. Sikorska-Senoner, Bettina Schaefli, and Jan Seibert
Nat. Hazards Earth Syst. Sci., 20, 3521–3549, https://doi.org/10.5194/nhess-20-3521-2020, https://doi.org/10.5194/nhess-20-3521-2020, 2020
Short summary
Short summary
This work proposes methods for reducing the computational requirements of hydrological simulations for the estimation of very rare floods that occur on average less than once in 1000 years. These methods enable the analysis of long streamflow time series (here for example 10 000 years) at low computational costs and with modelling uncertainty. They are to be used within continuous simulation frameworks with long input time series and are readily transferable to similar simulation tasks.
This article is included in the Encyclopedia of Geosciences
Moctar Dembélé, Bettina Schaefli, Nick van de Giesen, and Grégoire Mariéthoz
Hydrol. Earth Syst. Sci., 24, 5379–5406, https://doi.org/10.5194/hess-24-5379-2020, https://doi.org/10.5194/hess-24-5379-2020, 2020
Short summary
Short summary
This study evaluates 102 combinations of rainfall and temperature datasets from satellite and reanalysis sources as input to a fully distributed hydrological model. The model is recalibrated for each input dataset, and the outputs are evaluated with streamflow, evaporation, soil moisture and terrestrial water storage data. Results show that no single rainfall or temperature dataset consistently ranks first in reproducing the spatio-temporal variability of all hydrological processes.
This article is included in the Encyclopedia of Geosciences
Benjamin Walter, Hendrik Huwald, Josué Gehring, Yves Bühler, and Michael Lehning
The Cryosphere, 14, 1779–1794, https://doi.org/10.5194/tc-14-1779-2020, https://doi.org/10.5194/tc-14-1779-2020, 2020
Short summary
Short summary
We applied a horizontally mounted low-cost precipitation radar to measure velocities, frequency of occurrence, travel distances and turbulence characteristics of blowing snow off a mountain ridge. Our analysis provides a first insight into the potential of radar measurements for determining blowing snow characteristics, improves our understanding of mountain ridge blowing snow events and serves as a valuable data basis for validating coupled numerical weather and snowpack simulations.
This article is included in the Encyclopedia of Geosciences
Harsh Beria, Joshua R. Larsen, Anthony Michelon, Natalie C. Ceperley, and Bettina Schaefli
Geosci. Model Dev., 13, 2433–2450, https://doi.org/10.5194/gmd-13-2433-2020, https://doi.org/10.5194/gmd-13-2433-2020, 2020
Short summary
Short summary
We develop a Bayesian mixing model to address the issue of small sample sizes to describe different sources in hydrological mixing applications. Using composite likelihood functions, the model accounts for an often overlooked bias arising due to unweighted mixing. We test the model efficacy using a series of statistical benchmarking tests and demonstrate its real-life applicability by applying it to a Swiss Alpine catchment to obtain the proportion of groundwater recharged from rain vs. snow.
This article is included in the Encyclopedia of Geosciences
Anthony Michelon, Lionel Benoit, Harsh Beria, Natalie Ceperley, and Bettina Schaefli
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-683, https://doi.org/10.5194/hess-2019-683, 2020
Manuscript not accepted for further review
Short summary
Short summary
Rainfall observation remains a challenge particularly in mountain environments. Unlike most studies which are model based, this analysis of the rainfall-runoff response of a 13.4 km2 alpine catchment is purely data-based and rely on measures from a network of 12 low-cost raingauges over 3 months. It assesses the importance of high-density rainfall observations to inform hydrological processes and help to design a permanent raingauge network.
This article is included in the Encyclopedia of Geosciences
Nander Wever, Leonard Rossmann, Nina Maaß, Katherine C. Leonard, Lars Kaleschke, Marcel Nicolaus, and Michael Lehning
Geosci. Model Dev., 13, 99–119, https://doi.org/10.5194/gmd-13-99-2020, https://doi.org/10.5194/gmd-13-99-2020, 2020
Short summary
Short summary
Sea ice is an important component of the global climate system. The presence of a snow layer covering sea ice can impact ice mass and energy budgets. The detailed, physics-based, multi-layer snow model SNOWPACK was modified to simulate the snow–sea-ice system, providing simulations of the snow microstructure, water percolation and flooding, and superimposed ice formation. The model is applied to in situ measurements from snow and ice mass-balance buoys installed in the Antarctic Weddell Sea.
This article is included in the Encyclopedia of Geosciences
Adrien Michel, Tristan Brauchli, Michael Lehning, Bettina Schaefli, and Hendrik Huwald
Hydrol. Earth Syst. Sci., 24, 115–142, https://doi.org/10.5194/hess-24-115-2020, https://doi.org/10.5194/hess-24-115-2020, 2020
Short summary
Short summary
This study constitutes the first comprehensive analysis of river
temperature in Switzerland combined with discharge and key meteorological variables, such as air temperature and precipitation. It is also the first study to discuss the large-scale seasonal behaviour of stream temperature in Switzerland. This research shows the clear increase of river temperature in Switzerland over the last few decades and may serve as a solid reference for future climate change scenario simulations.
This article is included in the Encyclopedia of Geosciences
Varun Sharma, Louise Braud, and Michael Lehning
The Cryosphere, 13, 3239–3260, https://doi.org/10.5194/tc-13-3239-2019, https://doi.org/10.5194/tc-13-3239-2019, 2019
Short summary
Short summary
Snow surfaces, under the action of wind, form beautiful shapes such as waves and dunes. This study is the first ever study to simulate these shapes using a state-of-the-art numerical modelling tool. While these beautiful and ephemeral shapes on snow surfaces are fascinating from a purely aesthetic point of view, they are also critical in regulating the transfer of heat and mass between the atmosphere and snowpacks, thus being of huge importance to the Earth system.
This article is included in the Encyclopedia of Geosciences
Elvira Mächler, Anham Salyani, Jean-Claude Walser, Annegret Larsen, Bettina Schaefli, Florian Altermatt, and Natalie Ceperley
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-551, https://doi.org/10.5194/hess-2019-551, 2019
Revised manuscript not accepted
Short summary
Short summary
We explored what genetic material collected from water (eDNA) tells us about the flow of mountain streams, which are particularly valuable for habitat and water resources, but highly variable. We saw that when flow increased, more diverse eDNA was transported, especially in the main channel and tributaries. Whereas in the springs, we saw more diverse eDNA when the electrical conductivity of the water increased, likely indicating more underground surface contact.
This article is included in the Encyclopedia of Geosciences
Varun Sharma, Francesco Comola, and Michael Lehning
The Cryosphere, 12, 3499–3509, https://doi.org/10.5194/tc-12-3499-2018, https://doi.org/10.5194/tc-12-3499-2018, 2018
Short summary
Short summary
The Thorpe-Mason (TM) model describes how an ice grain sublimates during aeolian transport. We revisit this classic model using simple numerical experiments and discover that for many common scenarios, the model is likely to underestimate the amount of ice loss. Extending this result to drifting and blowing snow using high-resolution turbulent flow simulations, the study shows that current estimates for ice loss due to sublimation in regions such as Antarctica need to be significantly updated.
This article is included in the Encyclopedia of Geosciences
Franziska Gerber, Nikola Besic, Varun Sharma, Rebecca Mott, Megan Daniels, Marco Gabella, Alexis Berne, Urs Germann, and Michael Lehning
The Cryosphere, 12, 3137–3160, https://doi.org/10.5194/tc-12-3137-2018, https://doi.org/10.5194/tc-12-3137-2018, 2018
Short summary
Short summary
A comparison of winter precipitation variability in operational radar measurements and high-resolution simulations reveals that large-scale variability is well captured by the model, depending on the event. Precipitation variability is driven by topography and wind. A good portion of small-scale variability is captured at the highest resolution. This is essential to address small-scale precipitation processes forming the alpine snow seasonal snow cover – an important source of water.
This article is included in the Encyclopedia of Geosciences
Christian Gabriel Sommer, Nander Wever, Charles Fierz, and Michael Lehning
The Cryosphere, 12, 2923–2939, https://doi.org/10.5194/tc-12-2923-2018, https://doi.org/10.5194/tc-12-2923-2018, 2018
Short summary
Short summary
Wind packing is how wind produces hard crusts at the surface of the snowpack. This is relevant for the local mass balance in polar regions. However, not much is known about this process and it is difficult to capture its high spatial and temporal variability. A wind-packing event was measured in Antarctica. It could be quantified how drifting snow leads to wind packing and generates barchan dunes. The documentation of these deposition dynamics is an important step in understanding polar snow.
This article is included in the Encyclopedia of Geosciences
Ana Clara Santos, Maria Manuela Portela, Andrea Rinaldo, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 22, 2377–2389, https://doi.org/10.5194/hess-22-2377-2018, https://doi.org/10.5194/hess-22-2377-2018, 2018
Short summary
Short summary
This paper assesses the performance of an analytical modeling framework for probability distributions for summer streamflow of 25 Swiss catchments that present a wide range of hydroclimatic regimes, including snow- and icemelt-influenced streamflows. Two versions of the model were tested: linear and nonlinear. The results show that the model performs well for summer discharges under all analyzed regimes and that model performance varies with mean catchment elevation.
This article is included in the Encyclopedia of Geosciences
Martin Beniston, Daniel Farinotti, Markus Stoffel, Liss M. Andreassen, Erika Coppola, Nicolas Eckert, Adriano Fantini, Florie Giacona, Christian Hauck, Matthias Huss, Hendrik Huwald, Michael Lehning, Juan-Ignacio López-Moreno, Jan Magnusson, Christoph Marty, Enrique Morán-Tejéda, Samuel Morin, Mohamed Naaim, Antonello Provenzale, Antoine Rabatel, Delphine Six, Johann Stötter, Ulrich Strasser, Silvia Terzago, and Christian Vincent
The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, https://doi.org/10.5194/tc-12-759-2018, 2018
Short summary
Short summary
This paper makes a rather exhaustive overview of current knowledge of past, current, and future aspects of cryospheric issues in continental Europe and makes a number of reflections of areas of uncertainty requiring more attention in both scientific and policy terms. The review paper is completed by a bibliography containing 350 recent references that will certainly be of value to scholars engaged in the fields of glacier, snow, and permafrost research.
This article is included in the Encyclopedia of Geosciences
Thomas Grünewald, Fabian Wolfsperger, and Michael Lehning
The Cryosphere, 12, 385–400, https://doi.org/10.5194/tc-12-385-2018, https://doi.org/10.5194/tc-12-385-2018, 2018
Short summary
Short summary
Snow farming is the conservation of snow during summer. Large snow piles are covered with a sawdust insulation layer, reducing melt and guaranteeing a specific amount of available snow in autumn, independent of the weather conditions. Snow volume changes in two heaps were monitored, showing that about a third of the snow was lost. Model simulations confirmed the large effect of the insulation on energy balance and melt. The model can now be used as a tool to examine future snow-farming projects.
This article is included in the Encyclopedia of Geosciences
Nander Wever, Francesco Comola, Mathias Bavay, and Michael Lehning
Hydrol. Earth Syst. Sci., 21, 4053–4071, https://doi.org/10.5194/hess-21-4053-2017, https://doi.org/10.5194/hess-21-4053-2017, 2017
Short summary
Short summary
The assessment of flood risks in alpine, snow-covered catchments requires an understanding of the
linkage between the snow cover, soil and discharge in the stream network. Simulations of soil moisture and streamflow were performed and compared with observations. It was found that discharge at the catchment outlet during intense rainfall or snowmelt periods correlates positively with the initial soil moisture state, in both measurements and simulations.
This article is included in the Encyclopedia of Geosciences
Sebastian Würzer, Nander Wever, Roman Juras, Michael Lehning, and Tobias Jonas
Hydrol. Earth Syst. Sci., 21, 1741–1756, https://doi.org/10.5194/hess-21-1741-2017, https://doi.org/10.5194/hess-21-1741-2017, 2017
Short summary
Short summary
We discuss a dual-domain water transport model in a physics-based snowpack model to account for preferential flow (PF) in addition to matrix flow. So far no operationally used snow model has explicitly accounted for PF. The new approach is compared to existing water transport models and validated against in situ data from sprinkling and natural rain-on-snow (ROS) events. Our work demonstrates the benefit of considering PF in modelling hourly snowpack runoff, especially during ROS conditions.
This article is included in the Encyclopedia of Geosciences
Anna Haberkorn, Nander Wever, Martin Hoelzle, Marcia Phillips, Robert Kenner, Mathias Bavay, and Michael Lehning
The Cryosphere, 11, 585–607, https://doi.org/10.5194/tc-11-585-2017, https://doi.org/10.5194/tc-11-585-2017, 2017
Short summary
Short summary
The effects of permafrost degradation on rock slope stability in the Alps affect people and infrastructure. Modelling the evolution of permafrost is therefore of great importance. However, the snow cover has generally not been taken into account in model studies of steep, rugged rock walls. Thus, we present a distributed model study on the influence of the snow cover on rock temperatures. The promising results are discussed against detailed rock temperature measurements and snow depth data.
This article is included in the Encyclopedia of Geosciences
Christoph Marty, Sebastian Schlögl, Mathias Bavay, and Michael Lehning
The Cryosphere, 11, 517–529, https://doi.org/10.5194/tc-11-517-2017, https://doi.org/10.5194/tc-11-517-2017, 2017
Short summary
Short summary
We simulate the future snow cover in the Alps with the help of a snow model, which is fed by projected temperature and precipitation changes from a large set of climate models. The results demonstrate that snow below 1000 m is probably a rare guest at the end of the century. Moreover, even above 3000 m the simulations show a drastic decrease in snow depth. However, the results reveal that the projected snow cover reduction can be mitigated by 50 % if we manage to keep global warming below 2°.
This article is included in the Encyclopedia of Geosciences
Aurélien Gallice, Mathias Bavay, Tristan Brauchli, Francesco Comola, Michael Lehning, and Hendrik Huwald
Geosci. Model Dev., 9, 4491–4519, https://doi.org/10.5194/gmd-9-4491-2016, https://doi.org/10.5194/gmd-9-4491-2016, 2016
Short summary
Short summary
This paper presents the improvements brought to an existing model for discharge and temperature prediction in Alpine streams. Compared to the original model version, it is now possible to choose between various alternatives to simulate certain parts of the water cycle, such as the technique used to transfer water along the stream network. The paper includes an example of application of the model over an Alpine catchment in Switzerland.
This article is included in the Encyclopedia of Geosciences
Nander Wever, Sebastian Würzer, Charles Fierz, and Michael Lehning
The Cryosphere, 10, 2731–2744, https://doi.org/10.5194/tc-10-2731-2016, https://doi.org/10.5194/tc-10-2731-2016, 2016
Short summary
Short summary
The study presents a dual domain approach to simulate liquid water flow in snow using the 1-D physics based snow cover model SNOWPACK. In this approach, the pore space is separated into a part for matrix flow and a part that represents preferential flow. Using this approach, water can percolate sub-freezing snow and form dense (ice) layers. A comparison with snow pits shows that some of the observed ice layers were reproduced by the model while others remain challenging to simulate.
This article is included in the Encyclopedia of Geosciences
Rebecca Mott, Enrico Paterna, Stefan Horender, Philip Crivelli, and Michael Lehning
The Cryosphere, 10, 445–458, https://doi.org/10.5194/tc-10-445-2016, https://doi.org/10.5194/tc-10-445-2016, 2016
Short summary
Short summary
For the first time, this contribution investigates atmospheric decoupling above melting snow in a wind tunnel study. High-resolution vertical profiles of
sensible heat fluxes are measured directly over the melting snow patch.
The study shows that atmospheric decoupling is strongly increased in topographic sheltering but only for low wind velocities. Then turbulent mixing close to the surface is strongly suppressed, facilitating the formation of cold-air pooling in local depressions.
This article is included in the Encyclopedia of Geosciences
N. Wever, L. Schmid, A. Heilig, O. Eisen, C. Fierz, and M. Lehning
The Cryosphere, 9, 2271–2293, https://doi.org/10.5194/tc-9-2271-2015, https://doi.org/10.5194/tc-9-2271-2015, 2015
Short summary
Short summary
A verification of the physics based SNOWPACK model with field observations showed that typical snowpack properties like density and temperature are adequately simulated. Also two water transport schemes were verified, showing that although Richards equation improves snowpack runoff and several aspects of the internal snowpack structure, the bucket scheme appeared to have a higher agreement with the snow microstructure. The choice of water transport scheme may depend on the intended application.
This article is included in the Encyclopedia of Geosciences
W. Steinkogler, B. Sovilla, and M. Lehning
The Cryosphere, 9, 1819–1830, https://doi.org/10.5194/tc-9-1819-2015, https://doi.org/10.5194/tc-9-1819-2015, 2015
Short summary
Short summary
Infrared radiation thermography (IRT) was used to assess the surface temperature of avalanches with high spatial resolution. Thermal energy increase due to friction was mainly depending on the elevation drop of the avalanche. Warming due to entrainment was very specific to the individual avalanche and depends on the temperature of the snow along the path and the erosion depth. The warmest temperatures were located in the deposits of the dense core.
This article is included in the Encyclopedia of Geosciences
E. Trujillo and M. Lehning
The Cryosphere, 9, 1249–1264, https://doi.org/10.5194/tc-9-1249-2015, https://doi.org/10.5194/tc-9-1249-2015, 2015
Short summary
Short summary
In this article, we present a methodology for the objective evaluation of the error in capturing mean snow depths from point measurements. We demonstrate, using LIDAR snow depths, how the model can be used for assisting the design of survey strategies such that the error is minimized or an estimation threshold is achieved. Furthermore, the model can be extended to other spatially distributed snow variables (e.g., SWE) whose statistical properties are comparable to those of snow depth.
This article is included in the Encyclopedia of Geosciences
J. Schwaab, M. Bavay, E. Davin, F. Hagedorn, F. Hüsler, M. Lehning, M. Schneebeli, E. Thürig, and P. Bebi
Biogeosciences, 12, 467–487, https://doi.org/10.5194/bg-12-467-2015, https://doi.org/10.5194/bg-12-467-2015, 2015
T. Grünewald, Y. Bühler, and M. Lehning
The Cryosphere, 8, 2381–2394, https://doi.org/10.5194/tc-8-2381-2014, https://doi.org/10.5194/tc-8-2381-2014, 2014
Short summary
Short summary
Elevation dependencies of snow depth are analysed based on snow depth maps obtained from airborne remote sensing. Elevation gradients are characterised by a specific shape: an increase of snow depth with elevation is followed by a distinct peak at a certain level and a decrease in the highest elevations. We attribute this shape to an increase of precipitation with altitude, which is modified by topographical-induced redistribution processes of the snow on the ground (wind, gravitation).
This article is included in the Encyclopedia of Geosciences
N. Wever, T. Jonas, C. Fierz, and M. Lehning
Hydrol. Earth Syst. Sci., 18, 4657–4669, https://doi.org/10.5194/hess-18-4657-2014, https://doi.org/10.5194/hess-18-4657-2014, 2014
Short summary
Short summary
We simulated a severe rain-on-snow event in the Swiss Alps in October 2011 with a detailed multi-layer snow cover model. We found a strong modulating effect of the incoming rainfall signal by the snow cover. Initially, water from both rainfall and snow melt was absorbed by the snowpack. But once the snowpack released the stored water, simulated outflow rates exceeded rainfall and snow melt rates. The simulations suggest that structural snowpack changes enhanced the outflow during this event.
This article is included in the Encyclopedia of Geosciences
B. Schaefli, L. Nicótina, C. Imfeld, P. Da Ronco, E. Bertuzzo, and A. Rinaldo
Geosci. Model Dev., 7, 2733–2746, https://doi.org/10.5194/gmd-7-2733-2014, https://doi.org/10.5194/gmd-7-2733-2014, 2014
Short summary
Short summary
This paper presents the Spatially Explicit Hydrologic Response of the Laboratory of Ecohydrology of the Ecole Polytechnique Fédérale de Lausanne for hydrologic simulation at the catchment scale. It simulates the mobilization of water at the subcatchment scale and the transport to the outlet through a convolution with the river network. We discuss the parameter estimation and model performance for discharge simulation in the high Alpine Dischmabach catchment (Switzerland).
This article is included in the Encyclopedia of Geosciences
N. Wever, C. Fierz, C. Mitterer, H. Hirashima, and M. Lehning
The Cryosphere, 8, 257–274, https://doi.org/10.5194/tc-8-257-2014, https://doi.org/10.5194/tc-8-257-2014, 2014
T. Grünewald, J. Stötter, J. W. Pomeroy, R. Dadic, I. Moreno Baños, J. Marturià, M. Spross, C. Hopkinson, P. Burlando, and M. Lehning
Hydrol. Earth Syst. Sci., 17, 3005–3021, https://doi.org/10.5194/hess-17-3005-2013, https://doi.org/10.5194/hess-17-3005-2013, 2013
C. D. Groot Zwaaftink, A. Cagnati, A. Crepaz, C. Fierz, G. Macelloni, M. Valt, and M. Lehning
The Cryosphere, 7, 333–347, https://doi.org/10.5194/tc-7-333-2013, https://doi.org/10.5194/tc-7-333-2013, 2013
Related subject area
Subject: Rivers and Lakes | Techniques and Approaches: Modelling approaches
The role of neotectonics and climate variability in the Pleistocene-to-Holocene hydrological evolution of the Fuente de Piedra playa lake (southern Iberian Peninsula)
On the cause of large daily river flow fluctuations in the Mekong River
This article is included in the Encyclopedia of Geosciences
A hybrid data-driven approach to analyze the drivers of lake level dynamics
Estimating velocity distribution and flood discharge at river bridges using entropy theory – insights from computational fluid dynamics flow fields
Learning from a large-scale calibration effort of multiple lake models
Assessing the different components of the water balance of Lake Titicaca
Isotopic evaluation of the National Water Model reveals missing agricultural irrigation contributions to streamflow across the western United States
The influence of permafrost and other environmental controls on stream thermal sensitivity across Yukon, Canada
Timing of spring events changes under modelled future climate scenarios in a mesotrophic lake
Effects of high-quality elevation data and explanatory variables on the accuracy of flood inundation mapping via Height Above Nearest Drainage
Apparent Friction Coefficient Used for Flow Calculation in Straight Compound Channels With Trees On Floodplains
Assessing national exposure and impact to glacial lake outburst floods considering uncertainty under data sparsity
Understanding the compound flood risk along the coast of the contiguous United States
Benchmarking high-resolution hydrologic model performance of long-term retrospective streamflow simulations in the contiguous United States
Sources of skill in lake temperature, discharge and ice-off seasonal forecasting tools
Past and future climate change effects on the thermal regime and oxygen solubility of four peri-alpine lakes
Exploring tracer information in a small stream to improve parameter identifiability and enhance the process interpretation in transient storage models
How do inorganic nitrogen processing pathways change quantitatively at daily, seasonal, and multiannual scales in a large agricultural stream?
Seasonal forecasting of lake water quality and algal bloom risk using a continuous Gaussian Bayesian network
Spatially referenced Bayesian state-space model of total phosphorus in western Lake Erie
Future water temperature of rivers in Switzerland under climate change investigated with physics-based models
Physical controls and a priori estimation of raising land surface elevation across the southwestern Bangladesh delta using tidal river management
Evaluation and interpretation of convolutional long short-term memory networks for regional hydrological modelling
Synthesizing the impacts of baseflow contribution on concentration–discharge (C–Q) relationships across Australia using a Bayesian hierarchical model
Calibrating 1D hydrodynamic river models in the absence of cross-section geometry using satellite observations of water surface elevation and river width
A global algorithm for identifying changing streamflow regimes: application to Canadian natural streams (1966–2010)
Streamflow drought: implication of drought definitions and its application for drought forecasting
Quantifying floodwater impacts on a lake water budget via volume-dependent transient stable isotope mass balance
River runoff in Switzerland in a changing climate – changes in moderate extremes and their seasonality
River runoff in Switzerland in a changing climate – runoff regime changes and their time of emergence
Machine-learning methods for stream water temperature prediction
Bathymetry and latitude modify lake warming under ice
Lake thermal structure drives interannual variability in summer anoxia dynamics in a eutrophic lake over 37 years
Reservoir evaporation in a Mediterranean climate: comparing direct methods in Alqueva Reservoir, Portugal
Diverging hydrological drought traits over Europe with global warming
Anthropogenic influence on the Rhine water temperatures
A new form of the Saint-Venant equations for variable topography
Simulations of future changes in thermal structure of Lake Erken: proof of concept for ISIMIP2b lake sector local simulation strategy
Assessment of the geomorphic effectiveness of controlled floods in a braided river using a reduced-complexity numerical model
Worldwide lake level trends and responses to background climate variation
Modeling inorganic carbon dynamics in the Seine River continuum in France
A data-based predictive model for spatiotemporal variability in stream water quality
Flooding in the Mekong Delta: the impact of dyke systems on downstream hydrodynamics
Reconstruction of the 1941 GLOF process chain at Lake Palcacocha (Cordillera Blanca, Peru)
Historical modelling of changes in Lake Erken thermal conditions
Improving lake mixing process simulations in the Community Land Model by using K profile parameterization
Upgraded global mapping information for earth system modelling: an application to surface water depth at the ECMWF
Sediment transport modelling in riverine environments: on the importance of grain-size distribution, sediment density, and suspended sediment concentrations at the upstream boundary
Replication of ecologically relevant hydrological indicators following a modified covariance approach to hydrological model parameterization
Lidar-based approaches for estimating solar insolation in heavily forested streams
Alejandro Jiménez-Bonilla, Lucía Martegani, Miguel Rodríguez-Rodríguez, Fernando Gázquez, Manuel Díaz-Azpíroz, Sergio Martos, Klaus Reicherter, and Inmaculada Expósito
Hydrol. Earth Syst. Sci., 28, 5311–5329, https://doi.org/10.5194/hess-28-5311-2024, https://doi.org/10.5194/hess-28-5311-2024, 2024
Short summary
Short summary
We conducted an interdisciplinary study of the Fuente de Piedra playa lake's evolution in southern Spain. We made water balances for the Fuente de Piedra playa lake's lifespan. Our results indicate that the Fuente de Piedra playa lake's level moved and tilted south-west, which was caused by active faults.
This article is included in the Encyclopedia of Geosciences
Khosro Morovati, Keer Zhang, Lidi Shi, Yadu Pokhrel, Maozhou Wu, Paradis Someth, Sarann Ly, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 28, 5133–5147, https://doi.org/10.5194/hess-28-5133-2024, https://doi.org/10.5194/hess-28-5133-2024, 2024
Short summary
Short summary
This study examines large daily river flow fluctuations in the dammed Mekong River, developing integrated 3D hydrodynamic and response time models alongside a hydrological model with an embedded reservoir module. This approach allows estimation of travel times between hydrological stations and contributions of subbasins and upstream regions. Findings show a power correlation between upstream discharge and travel time, and significant fluctuations occurred even before dam construction.
Márk Somogyvári, Dieter Scherer, Frederik Bart, Ute Fehrenbach, Akpona Okujeni, and Tobias Krueger
Hydrol. Earth Syst. Sci., 28, 4331–4348, https://doi.org/10.5194/hess-28-4331-2024, https://doi.org/10.5194/hess-28-4331-2024, 2024
Short summary
Short summary
We study the drivers behind the changes in lake levels, creating a series of models from least to most complex. In this study, we have shown that the decreasing levels of Groß Glienicker Lake in Germany are not simply the result of changes in climate but are affected by other processes. In our example, reduced inflow from a growing forest, regionally sinking groundwater levels and the modifications in the local rainwater infrastructure together resulted in an increasing lake level loss.
This article is included in the Encyclopedia of Geosciences
Farhad Bahmanpouri, Tommaso Lazzarin, Silvia Barbetta, Tommaso Moramarco, and Daniele P. Viero
Hydrol. Earth Syst. Sci., 28, 3717–3737, https://doi.org/10.5194/hess-28-3717-2024, https://doi.org/10.5194/hess-28-3717-2024, 2024
Short summary
Short summary
The entropy model is a reliable tool to estimate flood discharge in rivers using observed level and surface velocity. Often, level and velocity sensors are placed on bridges, which may disturb the flow. Using accurate numerical models, we explored the entropy model reliability nearby a multi-arch bridge. We found that it is better to place sensors and to estimate the discharge upstream of bridges; downstream, the entropy model needs the river-wide distribution of surface velocity as input data.
This article is included in the Encyclopedia of Geosciences
Johannes Feldbauer, Jorrit P. Mesman, Tobias K. Andersen, and Robert Ladwig
EGUsphere, https://doi.org/10.5194/egusphere-2024-2447, https://doi.org/10.5194/egusphere-2024-2447, 2024
Short summary
Short summary
Models help to understand natural systems and are used to predict changes based on scenarios e.g. climate change. To simulate water temperature and deduce impact on water quality in lakes, 1D hydrodynamic models are often used. There are several such models which differ in their assumptions and mathematical process description. This study examines the performance of four such models on a global dataset of 73 lakes and relates the performance to the models structure and the lake characteristics.
This article is included in the Encyclopedia of Geosciences
Nilo Lima-Quispe, Denis Ruelland, Antoine Rabatel, Waldo Lavado-Casimiro, and Thomas Condom
EGUsphere, https://doi.org/10.5194/egusphere-2024-2370, https://doi.org/10.5194/egusphere-2024-2370, 2024
Short summary
Short summary
This study estimated the water balance of Lake Titicaca using an integrated modeling framework that considers natural hydrological processes and net irrigation consumption. The proposed approach was implemented at a daily scale for a period of 35 years. This framework is able to simulate lake water levels with good accuracy over a wide range of hydroclimatic conditions. The findings demonstrate that a simple representation of hydrological processes is suitable for use in poorly-gauged regions.
This article is included in the Encyclopedia of Geosciences
Annie L. Putman, Patrick C. Longley, Morgan C. McDonnell, James Reddy, Michelle Katoski, Olivia L. Miller, and J. Renée Brooks
Hydrol. Earth Syst. Sci., 28, 2895–2918, https://doi.org/10.5194/hess-28-2895-2024, https://doi.org/10.5194/hess-28-2895-2024, 2024
Short summary
Short summary
Accuracy of streamflow estimates where water management and use are prevalent, such as the western US, reflect hydrologic modeling decisions. To evaluate process inclusion decisions, we equipped a hydrologic model with tracers and compared estimates to observations. The tracer-equipped model performed well, and differences between the model and observations suggest that the inclusion of water from irrigation may improve model performance in this region.
This article is included in the Encyclopedia of Geosciences
Andras Janos Szeitz and Sean K. Carey
EGUsphere, https://doi.org/10.5194/egusphere-2024-1741, https://doi.org/10.5194/egusphere-2024-1741, 2024
Short summary
Short summary
Stream temperature sensitivity in northern regions responds to many of the same environmental controls as in temperate regions, but the presence of annually frozen ground (permafrost) influences catchment hydrology and stream temperature regimes. Permafrost can have positive and negative influences on thermal regimes. The net effect of northern environmental change on stream temperature is complex and uncertain, but permafrost will likely play a role through its control on cold region hydrology.
This article is included in the Encyclopedia of Geosciences
Jorrit P. Mesman, Inmaculada C. Jiménez-Navarro, Ana I. Ayala, Javier Senent-Aparicio, Dennis Trolle, and Don C. Pierson
Hydrol. Earth Syst. Sci., 28, 1791–1802, https://doi.org/10.5194/hess-28-1791-2024, https://doi.org/10.5194/hess-28-1791-2024, 2024
Short summary
Short summary
Spring events in lakes are key processes for ecosystem functioning. We used a coupled catchment–lake model to investigate future changes in the timing of spring discharge, ice-off, spring phytoplankton peak, and onset of stratification in a mesotrophic lake. We found a clear trend towards earlier occurrence under climate warming but also that relative shifts in the timing occurred, such as onset of stratification advancing more slowly than the other events.
This article is included in the Encyclopedia of Geosciences
Fernando Aristizabal, Taher Chegini, Gregory Petrochenkov, Fernando Salas, and Jasmeet Judge
Hydrol. Earth Syst. Sci., 28, 1287–1315, https://doi.org/10.5194/hess-28-1287-2024, https://doi.org/10.5194/hess-28-1287-2024, 2024
Short summary
Short summary
Floods are significant natural disasters that affect people and property. This study uses a simplified terrain index and the latest lidar-derived digital elevation maps (DEMs) to investigate flood inundation extent quality. We examined inundation quality influenced by different spatial resolutions and other variables. Results showed that lidar DEMs enhance inundation quality, but their resolution is less impactful in our context. Further studies on reservoirs and urban flooding are recommended.
This article is included in the Encyclopedia of Geosciences
Adam Kozioł, Adam Kiczko, Marcin Krukowski, Elżbieta Kubrak, Janusz Kubrak, Grzegorz Majewski, and Andrzej Brandyk
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-74, https://doi.org/10.5194/hess-2024-74, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Floodplain trees play a crucial role in increasing flow resistance. Their impact extends beyond floodplains to affect the main channel. The experiments reveal the influence of floodplain trees on the discharge capacity of channels with varying roughness. We determine resistance coefficients for different roughness levels of the main channel bottom. The research contributes to a deeper understanding of open-channel flow dynamics and has practical implications for river engineering.
This article is included in the Encyclopedia of Geosciences
Huili Chen, Qiuhua Liang, Jiaheng Zhao, and Sudan Bikash Maharjan
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-260, https://doi.org/10.5194/hess-2023-260, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Glacial Lake Outburst Floods (GLOFs) can cause serious damage. To assess their risks, we developed an innovative framework using remote sensing, Bayesian models, flood modeling, and open-source data. This enables us to evaluate GLOFs on a national scale, despite limited data and challenges accessing high-altitude lakes. We evaluated dangerous lakes in Nepal, identifying those most at risk. This work is crucial for understanding GLOF risks and the framework can be transferred to other areas.
This article is included in the Encyclopedia of Geosciences
Dongyu Feng, Zeli Tan, Donghui Xu, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 27, 3911–3934, https://doi.org/10.5194/hess-27-3911-2023, https://doi.org/10.5194/hess-27-3911-2023, 2023
Short summary
Short summary
This study assesses the flood risks concurrently induced by river flooding and coastal storm surge along the coast of the contiguous United States using statistical and numerical models. We reveal a few hotspots of such risks, the critical spatial variabilities within a river basin and over the whole US coast, and the uncertainties of the risk assessment. We highlight the importance of weighing different risk measures to avoid underestimating or exaggerating the compound flood impacts.
This article is included in the Encyclopedia of Geosciences
Erin Towler, Sydney S. Foks, Aubrey L. Dugger, Jesse E. Dickinson, Hedeff I. Essaid, David Gochis, Roland J. Viger, and Yongxin Zhang
Hydrol. Earth Syst. Sci., 27, 1809–1825, https://doi.org/10.5194/hess-27-1809-2023, https://doi.org/10.5194/hess-27-1809-2023, 2023
Short summary
Short summary
Hydrologic models developed to assess water availability need to be systematically evaluated. This study evaluates the long-term performance of two high-resolution hydrologic models that simulate streamflow across the contiguous United States. Both models show similar performance overall and regionally, with better performance in minimally disturbed basins than in those impacted by human activity. At about 80 % of the sites, both models outperform the seasonal climatological benchmark.
This article is included in the Encyclopedia of Geosciences
François Clayer, Leah Jackson-Blake, Daniel Mercado-Bettín, Muhammed Shikhani, Andrew French, Tadhg Moore, James Sample, Magnus Norling, Maria-Dolores Frias, Sixto Herrera, Elvira de Eyto, Eleanor Jennings, Karsten Rinke, Leon van der Linden, and Rafael Marcé
Hydrol. Earth Syst. Sci., 27, 1361–1381, https://doi.org/10.5194/hess-27-1361-2023, https://doi.org/10.5194/hess-27-1361-2023, 2023
Short summary
Short summary
We assessed the predictive skill of forecasting tools over the next season for water discharge and lake temperature. Tools were forced with seasonal weather predictions; however, most of the prediction skill originates from legacy effects and not from seasonal weather predictions. Yet, when skills from seasonal weather predictions are present, additional skill comes from interaction effects. Skilful lake seasonal predictions require better weather predictions and realistic antecedent conditions.
This article is included in the Encyclopedia of Geosciences
Olivia Desgué-Itier, Laura Melo Vieira Soares, Orlane Anneville, Damien Bouffard, Vincent Chanudet, Pierre Alain Danis, Isabelle Domaizon, Jean Guillard, Théo Mazure, Najwa Sharaf, Frédéric Soulignac, Viet Tran-Khac, Brigitte Vinçon-Leite, and Jean-Philippe Jenny
Hydrol. Earth Syst. Sci., 27, 837–859, https://doi.org/10.5194/hess-27-837-2023, https://doi.org/10.5194/hess-27-837-2023, 2023
Short summary
Short summary
The long-term effects of climate change will include an increase in lake surface and deep water temperatures. Incorporating up to 6 decades of limnological monitoring into an improved 1D lake model approach allows us to predict the thermal regime and oxygen solubility in four peri-alpine lakes over the period 1850–2100. Our modeling approach includes a revised selection of forcing variables and provides a way to investigate the impacts of climate variations on lakes for centennial timescales.
This article is included in the Encyclopedia of Geosciences
Enrico Bonanno, Günter Blöschl, and Julian Klaus
Hydrol. Earth Syst. Sci., 26, 6003–6028, https://doi.org/10.5194/hess-26-6003-2022, https://doi.org/10.5194/hess-26-6003-2022, 2022
Short summary
Short summary
There is an unclear understanding of which processes regulate the transport of water, solutes, and pollutants in streams. This is crucial since these processes control water quality in river networks. Compared to other approaches, we obtained clearer insights into the processes controlling solute transport in the investigated reach. This work highlights the risks of using uncertain results for interpreting the processes controlling water movement in streams.
This article is included in the Encyclopedia of Geosciences
Jingshui Huang, Dietrich Borchardt, and Michael Rode
Hydrol. Earth Syst. Sci., 26, 5817–5833, https://doi.org/10.5194/hess-26-5817-2022, https://doi.org/10.5194/hess-26-5817-2022, 2022
Short summary
Short summary
In this study, we set up a water quality model using a 5-year paired high-frequency water quality dataset from a large agricultural stream. The simulations were compared with the 15 min interval measurements and showed very good fits. Based on these, we quantified the N uptake pathway rates and efficiencies at daily, seasonal, and yearly scales. This study offers an overarching understanding of N processing in large agricultural streams across different temporal scales.
This article is included in the Encyclopedia of Geosciences
Leah A. Jackson-Blake, François Clayer, Sigrid Haande, James E. Sample, and S. Jannicke Moe
Hydrol. Earth Syst. Sci., 26, 3103–3124, https://doi.org/10.5194/hess-26-3103-2022, https://doi.org/10.5194/hess-26-3103-2022, 2022
Short summary
Short summary
We develop a Gaussian Bayesian network (GBN) for seasonal forecasting of lake water quality and algal bloom risk in a nutrient-impacted lake in southern Norway. Bayesian networks are powerful tools for environmental modelling but are almost exclusively discrete. We demonstrate that a continuous GBN is a promising alternative approach. Predictive performance of the GBN was similar or improved compared to a discrete network, and it was substantially less time-consuming and subjective to develop.
This article is included in the Encyclopedia of Geosciences
Timothy J. Maguire, Craig A. Stow, and Casey M. Godwin
Hydrol. Earth Syst. Sci., 26, 1993–2017, https://doi.org/10.5194/hess-26-1993-2022, https://doi.org/10.5194/hess-26-1993-2022, 2022
Short summary
Short summary
Water within large water bodies is constantly moving. Consequently, water movement masks causal relationships that exist between rivers and lakes. Incorporating water movement into models of nutrient concentration allows us to predict concentrations at unobserved locations and at observed locations on days not sampled. Our modeling approach does this while accommodating nutrient concentration data from multiple sources and provides a way to experimentally define the impact of rivers on lakes.
This article is included in the Encyclopedia of Geosciences
Adrien Michel, Bettina Schaefli, Nander Wever, Harry Zekollari, Michael Lehning, and Hendrik Huwald
Hydrol. Earth Syst. Sci., 26, 1063–1087, https://doi.org/10.5194/hess-26-1063-2022, https://doi.org/10.5194/hess-26-1063-2022, 2022
Short summary
Short summary
This study presents an extensive study of climate change impacts on river temperature in Switzerland. Results show that, even for low-emission scenarios, water temperature increase will lead to adverse effects for both ecosystems and socio-economic sectors throughout the 21st century. For high-emission scenarios, the effect will worsen. This study also shows that water seasonal warming will be different between the Alpine regions and the lowlands. Finally, efficiency of models is assessed.
This article is included in the Encyclopedia of Geosciences
Md Feroz Islam, Paul P. Schot, Stefan C. Dekker, Jasper Griffioen, and Hans Middelkoop
Hydrol. Earth Syst. Sci., 26, 903–921, https://doi.org/10.5194/hess-26-903-2022, https://doi.org/10.5194/hess-26-903-2022, 2022
Short summary
Short summary
The potential of sedimentation in the lowest parts of polders (beels) through controlled flooding with dike breach (tidal river management – TRM) to counterbalance relative sea level rise (RSLR) in 234 beels of SW Bangladesh is determined in this study, using 2D models and multiple regression. Lower beels located closer to the sea have the highest potential. Operating TRM only during the monsoon season is sufficient to raise the land surface of most beels by more than 3 times the yearly RSLR.
This article is included in the Encyclopedia of Geosciences
Sam Anderson and Valentina Radić
Hydrol. Earth Syst. Sci., 26, 795–825, https://doi.org/10.5194/hess-26-795-2022, https://doi.org/10.5194/hess-26-795-2022, 2022
Short summary
Short summary
We develop and interpret a spatiotemporal deep learning model for regional streamflow prediction at more than 200 stream gauge stations in western Canada. We find the novel modelling style to work very well for daily streamflow prediction. Importantly, we interpret model learning to show that it has learned to focus on physically interpretable and physically relevant information, which is a highly desirable quality of machine-learning-based hydrological models.
This article is included in the Encyclopedia of Geosciences
Danlu Guo, Camille Minaudo, Anna Lintern, Ulrike Bende-Michl, Shuci Liu, Kefeng Zhang, and Clément Duvert
Hydrol. Earth Syst. Sci., 26, 1–16, https://doi.org/10.5194/hess-26-1-2022, https://doi.org/10.5194/hess-26-1-2022, 2022
Short summary
Short summary
We investigate the impact of baseflow contribution on concentration–flow (C–Q) relationships across the Australian continent. We developed a novel Bayesian hierarchical model for six water quality variables across 157 catchments that span five climate zones. For sediments and nutrients, the C–Q slope is generally steeper for catchments with a higher median and a greater variability of baseflow contribution, highlighting the key role of variable flow pathways in particulate and solute export.
This article is included in the Encyclopedia of Geosciences
Liguang Jiang, Silja Westphal Christensen, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 25, 6359–6379, https://doi.org/10.5194/hess-25-6359-2021, https://doi.org/10.5194/hess-25-6359-2021, 2021
Short summary
Short summary
River roughness and geometry are essential to hydraulic river models. However, measurements of these quantities are not available in most rivers globally. Nevertheless, simultaneous calibration of channel geometric parameters and roughness is difficult as they compensate for each other. This study introduces an alternative approach of parameterization and calibration that reduces parameter correlations by combining cross-section geometry and roughness into a conveyance parameter.
This article is included in the Encyclopedia of Geosciences
Masoud Zaerpour, Shadi Hatami, Javad Sadri, and Ali Nazemi
Hydrol. Earth Syst. Sci., 25, 5193–5217, https://doi.org/10.5194/hess-25-5193-2021, https://doi.org/10.5194/hess-25-5193-2021, 2021
Short summary
Short summary
Streamflow regimes are changing globally particularly in cold regions. We develop a novel algorithm for detecting shifting streamflow regimes using changes in first and second moments of ensemble streamflow features. This algorithm is generic and can be used globally. To showcase its application, we assess alterations in Canadian natural streams from 1966 to 2010 to provide the first temporally consistent, pan-Canadian assessment of change in natural streamflow regimes, coast to coast to coast.
This article is included in the Encyclopedia of Geosciences
Samuel J. Sutanto and Henny A. J. Van Lanen
Hydrol. Earth Syst. Sci., 25, 3991–4023, https://doi.org/10.5194/hess-25-3991-2021, https://doi.org/10.5194/hess-25-3991-2021, 2021
Short summary
Short summary
This paper provides a comprehensive overview of the differences within streamflow droughts derived using different identification approaches, namely the variable threshold, fixed threshold, and the Standardized Streamflow Index, including an analysis of both historical drought and implications for forecasting. Our results clearly show that streamflow droughts derived from different approaches deviate from each other in terms of drought occurrence, timing, duration, and deficit volume.
This article is included in the Encyclopedia of Geosciences
Janie Masse-Dufresne, Florent Barbecot, Paul Baudron, and John Gibson
Hydrol. Earth Syst. Sci., 25, 3731–3757, https://doi.org/10.5194/hess-25-3731-2021, https://doi.org/10.5194/hess-25-3731-2021, 2021
Short summary
Short summary
A volume-dependent transient isotopic mass balance model was developed for an artificial lake in Canada, in a context where direct measurements of surface water fluxes are difficult. It revealed that floodwater inputs affected the dynamics of the lake in spring but also significantly influenced the long-term water balance due to temporary subsurface storage of floodwater. Such models are paramount for understanding the vulnerability of lakes to changes in groundwater quantity and quality.
This article is included in the Encyclopedia of Geosciences
Regula Muelchi, Ole Rössler, Jan Schwanbeck, Rolf Weingartner, and Olivia Martius
Hydrol. Earth Syst. Sci., 25, 3577–3594, https://doi.org/10.5194/hess-25-3577-2021, https://doi.org/10.5194/hess-25-3577-2021, 2021
Short summary
Short summary
This study analyses changes in magnitude, frequency, and seasonality of moderate low and high flows for 93 catchments in Switzerland. In lower-lying catchments (below 1500 m a.s.l.), moderate low-flow magnitude (frequency) will decrease (increase). In Alpine catchments (above 1500 m a.s.l.), moderate low-flow magnitude (frequency) will increase (decrease). Moderate high flows tend to occur more frequent, and their magnitude increases in most catchments except some Alpine catchments.
This article is included in the Encyclopedia of Geosciences
Regula Muelchi, Ole Rössler, Jan Schwanbeck, Rolf Weingartner, and Olivia Martius
Hydrol. Earth Syst. Sci., 25, 3071–3086, https://doi.org/10.5194/hess-25-3071-2021, https://doi.org/10.5194/hess-25-3071-2021, 2021
Short summary
Short summary
Runoff regimes in Switzerland will change significantly under climate change. Projected changes are strongly elevation dependent with earlier time of emergence and stronger changes in high-elevation catchments where snowmelt and glacier melt play an important role. The magnitude of change and the climate model agreement on the sign increase with increasing global mean temperatures and stronger emission scenarios. This amplification highlights the importance of climate change mitigation.
This article is included in the Encyclopedia of Geosciences
Moritz Feigl, Katharina Lebiedzinski, Mathew Herrnegger, and Karsten Schulz
Hydrol. Earth Syst. Sci., 25, 2951–2977, https://doi.org/10.5194/hess-25-2951-2021, https://doi.org/10.5194/hess-25-2951-2021, 2021
Short summary
Short summary
In this study we developed machine learning approaches for daily river water temperature prediction, using different data preprocessing methods, six model types, a range of different data inputs and 10 study catchments. By comparing to current state-of-the-art models, we could show a significant improvement of prediction performance of the tested approaches. Furthermore, we could gain insight into the relationships between model types, input data and predicted stream water temperature.
This article is included in the Encyclopedia of Geosciences
Cintia L. Ramón, Hugo N. Ulloa, Tomy Doda, Kraig B. Winters, and Damien Bouffard
Hydrol. Earth Syst. Sci., 25, 1813–1825, https://doi.org/10.5194/hess-25-1813-2021, https://doi.org/10.5194/hess-25-1813-2021, 2021
Short summary
Short summary
When solar radiation penetrates the frozen surface of lakes, shallower zones underneath warm faster than deep interior waters. This numerical study shows that the transport of excess heat to the lake interior depends on the lake circulation, affected by Earth's rotation, and controls the lake warming rates and the spatial distribution of the heat flux across the ice–water interface. This work contributes to the understanding of the circulation and thermal structure patterns of ice-covered lakes.
This article is included in the Encyclopedia of Geosciences
Robert Ladwig, Paul C. Hanson, Hilary A. Dugan, Cayelan C. Carey, Yu Zhang, Lele Shu, Christopher J. Duffy, and Kelly M. Cobourn
Hydrol. Earth Syst. Sci., 25, 1009–1032, https://doi.org/10.5194/hess-25-1009-2021, https://doi.org/10.5194/hess-25-1009-2021, 2021
Short summary
Short summary
Using a modeling framework applied to 37 years of dissolved oxygen time series data from Lake Mendota, we identified the timing and intensity of thermal energy stored in the lake water column, the lake's resilience to mixing, and surface primary production as the most important drivers of interannual dynamics of low oxygen concentrations at the lake bottom. Due to climate change, we expect an increase in the spatial and temporal extent of low oxygen concentrations in Lake Mendota.
This article is included in the Encyclopedia of Geosciences
Carlos Miranda Rodrigues, Madalena Moreira, Rita Cabral Guimarães, and Miguel Potes
Hydrol. Earth Syst. Sci., 24, 5973–5984, https://doi.org/10.5194/hess-24-5973-2020, https://doi.org/10.5194/hess-24-5973-2020, 2020
Short summary
Short summary
In Mediterranean environments, evaporation is a key component of reservoir water budgets. Prediction of surface evaporation becomes crucial for adequate reservoir water management. This study provides an applicable method for calculating evaporation based on pan measurements applied at Alqueva Reservoir (southern Portugal), one of the largest artificial lakes in Europe. Moreover, the methodology presented here could be applied to other Mediterranean reservoirs.
This article is included in the Encyclopedia of Geosciences
Carmelo Cammalleri, Gustavo Naumann, Lorenzo Mentaschi, Bernard Bisselink, Emiliano Gelati, Ad De Roo, and Luc Feyen
Hydrol. Earth Syst. Sci., 24, 5919–5935, https://doi.org/10.5194/hess-24-5919-2020, https://doi.org/10.5194/hess-24-5919-2020, 2020
Short summary
Short summary
Climate change is anticipated to alter the demand and supply of water at the earth's surface. This study shows how hydrological droughts will change across Europe with increasing global warming levels, showing that at 3 K global warming an additional 11 million people and 4.5 ×106 ha of agricultural land will be exposed to droughts every year, on average. These effects are mostly located in the Mediterranean and Atlantic regions of Europe.
This article is included in the Encyclopedia of Geosciences
Alex Zavarsky and Lars Duester
Hydrol. Earth Syst. Sci., 24, 5027–5041, https://doi.org/10.5194/hess-24-5027-2020, https://doi.org/10.5194/hess-24-5027-2020, 2020
Short summary
Short summary
River water temperature is an important parameter for water quality and an important variable for physical, chemical and biological processes. River water is also used as a cooling agent by power plants and production facilities. We study long-term trends in river water temperature and correlate them to meteorological influences and power production or economic indices.
This article is included in the Encyclopedia of Geosciences
Cheng-Wei Yu, Ben R. Hodges, and Frank Liu
Hydrol. Earth Syst. Sci., 24, 4001–4024, https://doi.org/10.5194/hess-24-4001-2020, https://doi.org/10.5194/hess-24-4001-2020, 2020
Short summary
Short summary
This study investigates the effects of bottom slope discontinuity on the stability of numerical solutions for the Saint-Venant equations. A new reference slope concept is proposed to ensure smooth source terms and eliminate potential numerical oscillations. It is shown that a simple algebraic transformation of channel geometry provides a smooth reference slope while preserving the correct cross-sectional flow area and the piezometric pressure gradient that drives the flow.
This article is included in the Encyclopedia of Geosciences
Ana I. Ayala, Simone Moras, and Donald C. Pierson
Hydrol. Earth Syst. Sci., 24, 3311–3330, https://doi.org/10.5194/hess-24-3311-2020, https://doi.org/10.5194/hess-24-3311-2020, 2020
Short summary
Short summary
The impacts of different levels of global warming on the thermal structure of Lake Erken are assessed. We used the General Ocean Turbulence Model (GOTM) to simulate water temperature driven by meteorological scenarios supplied by the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) and tested its ability at different frequencies. Then, daily ISIMIP meteorological scenarios were disaggregated and assessed for the effects of climate change on lake thermal structure.
This article is included in the Encyclopedia of Geosciences
Luca Ziliani, Nicola Surian, Gianluca Botter, and Luca Mao
Hydrol. Earth Syst. Sci., 24, 3229–3250, https://doi.org/10.5194/hess-24-3229-2020, https://doi.org/10.5194/hess-24-3229-2020, 2020
Short summary
Short summary
Although geomorphic recovery is a key issue in many rivers worldwide, controlled floods have been rarely designed using geomorphological criteria. An integrated approach is used to assess the effects of different controlled-flood scenarios in a strongly regulated river. None of the controlled-flood strategies provide significant morphological benefits. Nevertheless, this study represents a significant contribution for the management and restoration of highly disturbed rivers.
This article is included in the Encyclopedia of Geosciences
Benjamin M. Kraemer, Anton Seimon, Rita Adrian, and Peter B. McIntyre
Hydrol. Earth Syst. Sci., 24, 2593–2608, https://doi.org/10.5194/hess-24-2593-2020, https://doi.org/10.5194/hess-24-2593-2020, 2020
Short summary
Short summary
Lake levels go up and down due to natural variability in the climate. But the effects of natural variability on lake levels can sometimes be confused for the influence of humans. Here we used long-term data from 200 globally distributed lakes and an advanced statistical approach to show that the effects of natural variability on lake levels can be disentangled from other effects leading to better estimates of long-term changes that may be partially caused by humans.
This article is included in the Encyclopedia of Geosciences
Audrey Marescaux, Vincent Thieu, Nathalie Gypens, Marie Silvestre, and Josette Garnier
Hydrol. Earth Syst. Sci., 24, 2379–2398, https://doi.org/10.5194/hess-24-2379-2020, https://doi.org/10.5194/hess-24-2379-2020, 2020
Short summary
Short summary
Rivers have been recognized as an active part of the carbon cycle where transformations are associated with CO2 outgassing. To understand it, we propose a modeling approach with the biogeochemical model, pyNuts-Riverstrahler. We implemented it on the human-impacted Seine River. Sources of carbon to the river were characterized by field measurements in groundwater and in wastewater. Outgassing was the most important in streams, and peaks were simulated downstream of wastewater treatment effluent.
This article is included in the Encyclopedia of Geosciences
Danlu Guo, Anna Lintern, J. Angus Webb, Dongryeol Ryu, Ulrike Bende-Michl, Shuci Liu, and Andrew William Western
Hydrol. Earth Syst. Sci., 24, 827–847, https://doi.org/10.5194/hess-24-827-2020, https://doi.org/10.5194/hess-24-827-2020, 2020
Short summary
Short summary
This study developed predictive models to represent the spatial and temporal variation of stream water quality across Victoria, Australia. The model structures were informed by a data-driven approach, which identified the key controls of water quality variations from long-term records. These models are helpful to identify likely future changes in water quality and, in turn, provide critical information for developing management strategies to improve stream water quality.
This article is included in the Encyclopedia of Geosciences
Vo Quoc Thanh, Dano Roelvink, Mick van der Wegen, Johan Reyns, Herman Kernkamp, Giap Van Vinh, and Vo Thi Phuong Linh
Hydrol. Earth Syst. Sci., 24, 189–212, https://doi.org/10.5194/hess-24-189-2020, https://doi.org/10.5194/hess-24-189-2020, 2020
Short summary
Short summary
The Vietnamese Mekong Delta (VMD) is a rice bowl of not only Vietnam, but also the world; agriculture is the main source of livelihood in the delta. The VMD is facing threats related to water management and hydraulic structures. Dykes are built to protect agricultural crops in the floodplains and may influence water regimes downstream in the VMD. If the VMD floodplains are completely protected by dykes, yearly mean water levels could increase by 3 cm (at Can Tho) and 1.5 cm (at My Thuan).
This article is included in the Encyclopedia of Geosciences
Martin Mergili, Shiva P. Pudasaini, Adam Emmer, Jan-Thomas Fischer, Alejo Cochachin, and Holger Frey
Hydrol. Earth Syst. Sci., 24, 93–114, https://doi.org/10.5194/hess-24-93-2020, https://doi.org/10.5194/hess-24-93-2020, 2020
Short summary
Short summary
In 1941, the glacial lagoon Lake Palcacocha in the Cordillera Blanca (Peru) drained suddenly. The resulting outburst flood/debris flow consumed another lake and had a disastrous impact on the town of Huaraz 23 km downstream. We reconstuct this event through a numerical model to learn about the possibility of prediction of similar processes in the future. Remaining challenges consist of the complex process interactions and the lack of experience due to the rare occurrence of such process chains.
This article is included in the Encyclopedia of Geosciences
Simone Moras, Ana I. Ayala, and Don C. Pierson
Hydrol. Earth Syst. Sci., 23, 5001–5016, https://doi.org/10.5194/hess-23-5001-2019, https://doi.org/10.5194/hess-23-5001-2019, 2019
Short summary
Short summary
We used a hydrodynamic model to reconstruct daily historical water temperature of Lake Erken (Sweden) between 1961 and 2017 to demonstrate the ongoing effect of climate change on lake thermal conditions. The results show that the lake has warmed most rapidly in the last 30 years and that it is now subject to a longer and more stable stratification. The methods used here to reconstruct historical water temperature records can be easily extended to other lakes.
This article is included in the Encyclopedia of Geosciences
Qunhui Zhang, Jiming Jin, Xiaochun Wang, Phaedra Budy, Nick Barrett, and Sarah E. Null
Hydrol. Earth Syst. Sci., 23, 4969–4982, https://doi.org/10.5194/hess-23-4969-2019, https://doi.org/10.5194/hess-23-4969-2019, 2019
Short summary
Short summary
We improved lake mixing process simulations by applying a vertical mixing scheme, K profile parameterization (KPP), in the Community Land Model (CLM) version 4.5, developed by the National Center for Atmospheric Research. The current vertical mixing scheme in CLM requires an arbitrarily enlarged eddy diffusivity to enhance water mixing. The coupled CLM-KPP considers a boundary layer for eddy development. The improved lake model provides an important tool for lake hydrology and ecosystem studies.
This article is included in the Encyclopedia of Geosciences
Margarita Choulga, Ekaterina Kourzeneva, Gianpaolo Balsamo, Souhail Boussetta, and Nils Wedi
Hydrol. Earth Syst. Sci., 23, 4051–4076, https://doi.org/10.5194/hess-23-4051-2019, https://doi.org/10.5194/hess-23-4051-2019, 2019
Short summary
Short summary
Lakes influence weather and climate of regions, especially if several of them are located close by. Just by using upgraded lake depths, based on new or more recent measurements and geological methods of depth estimation, errors of lake surface water forecasts produced by the European Centre for Medium-Range Weather Forecasts became 12–20 % lower compared with observations for 27 lakes collected by the Finnish Environment Institute. For ice-off date forecasts errors changed insignificantly.
This article is included in the Encyclopedia of Geosciences
Jérémy Lepesqueur, Renaud Hostache, Núria Martínez-Carreras, Emmanuelle Montargès-Pelletier, and Christophe Hissler
Hydrol. Earth Syst. Sci., 23, 3901–3915, https://doi.org/10.5194/hess-23-3901-2019, https://doi.org/10.5194/hess-23-3901-2019, 2019
Short summary
Short summary
This article evaluates the influence of sediment representation in a sediment transport model. A short-term simulation is used to assess how far changing the sediment characteristics in the modelling experiment changes riverbed evolution and sediment redistribution during a small flood event. The study shows in particular that representing sediment with extended grain-size and grain-density distributions allows for improving model accuracy and performances.
This article is included in the Encyclopedia of Geosciences
Annie Visser-Quinn, Lindsay Beevers, and Sandhya Patidar
Hydrol. Earth Syst. Sci., 23, 3279–3303, https://doi.org/10.5194/hess-23-3279-2019, https://doi.org/10.5194/hess-23-3279-2019, 2019
Short summary
Short summary
The ecological impact of changes in river flow may be explored through the simulation of ecologically relevant flow indicators. Traditional approaches to model parameterization are not well-suited for this. To this end, this paper considers the ability of a
This article is included in the Encyclopedia of Geosciences
modified covariance approach, applied to five hydrologically diverse catchments. An overall improvement in consistency is observed, whilst timing and rate of change represent the best and worst replicated indicators respectively.
Jeffrey J. Richardson, Christian E. Torgersen, and L. Monika Moskal
Hydrol. Earth Syst. Sci., 23, 2813–2822, https://doi.org/10.5194/hess-23-2813-2019, https://doi.org/10.5194/hess-23-2813-2019, 2019
Short summary
Short summary
High stream temperatures can be detrimental to the survival of aquatic species such as endangered salmon. Stream temperatures can be reduced by shade provided by trees in riparian areas. Two lidar-based methods were effective at assessing stream shading. These methods can be used in place of expensive field measurements.
This article is included in the Encyclopedia of Geosciences
Cited articles
Arscott, D. B., Tockner, K., and Ward, J.: Thermal heterogeneity along a braided floodplain river (Tagliamento River, northeastern Italy), Can. J. Fish. Aquat. Sci., 58, 2359–2373, 2001.
Aschwanden, H. and Weingartner, R.: Die Abflussregimes der Schweiz, Publikation gewässerkunde nr. 65, Geographisches Institut der Universität Bern, Switzerland, 1985.
Benyahya, L., Caissie, D., St-Hilaire, A., Ouarda, T. B., and Bobée, B.: A Review of Statistical Water Temperature Models, Can. Water Resour. J., 32, 179–192, https://doi.org/10.4296/cwrj3203179, 2007.
Beven, K.: Prophecy, reality and uncertainty in distributed hydrological modelling, Adv. Water Resour., 16, 41–51, https://doi.org/10.1016/0309-1708(93)90028-E, 1993.
Biswal, B. and Marani, M.: Geomorphological origin of recession curves, Geophys. Res. Lett., 37, L24403, https://doi.org/10.1029/2010GL045415, 2010.
Bogan, T., Mohseni, O., and Stefan, H. G.: Stream temperature-equilibrium temperature relationship, Water Resour. Res., 39, 1245, https://doi.org/10.1029/2003WR002034, 2003.
Bogan, T., Stefan, H. G., and Mohseni, O.: Imprints of secondary heat sources on the stream temperature/equilibrium temperature relationship, Water Resour. Res., 40, W12510, https://doi.org/10.1029/2003WR002733, 2004.
Brown, G. W.: Predicting Temperatures of Small Streams, Water Resour. Res., 5, 68–75, https://doi.org/10.1029/WR005i001p00068, 1969.
Burnham, K. P. and Anderson, D. R.: Model selection and multimodel inference: a practical information-theoretic approach, Springer, New York, USA, 2002.
Bustillo, V., Moatar, F., Ducharne, A., Thiéry, D., and Poirel, A.: A multimodel comparison for assessing water temperatures under changing climate conditions via the equilibrium temperature concept: case study of the Middle Loire River, France, Hydrol. Process., 28, 1507–1524, https://doi.org/10.1002/hyp.9683, 2014.
Caissie, D.: The thermal regime of rivers: a review, Freshwater Biol., 51, 1389–1406, https://doi.org/10.1111/j.1365-2427.2006.01597.x, 2006.
Caissie, D., El-Jabi, N., and Satish, M. G.: Modelling of maximum daily water temperatures in a small stream using air temperatures, J. Hydrol., 251, 14–28, https://doi.org/10.1016/S0022-1694(01)00427-9, 2001.
Caissie, D., Satish, M. G., and El-Jabi, N.: Predicting river water temperatures using the equilibrium temperature concept with application on Miramichi River catchments (New Brunswick, Canada), Hydrol. Process., 19, 2137–2159, https://doi.org/10.1002/hyp.5684, 2005.
Caldwell, R. J., Gangopadhyay, S., Bountry, J., Lai, Y., and Elsner, M. M.: Statistical modeling of daily and subdaily stream temperatures: Application to the Methow River Basin, Washington, Water Resour. Res., 49, 4346–4361, https://doi.org/10.1002/wrcr.20353, 2013.
Chang, H. and Psaris, M.: Local landscape predictors of maximum stream temperature and thermal sensitivity in the Columbia River Basin, USA, Sci. Total Environ., 461–462, 587–600, https://doi.org/10.1016/j.scitotenv.2013.05.033, 2013.
Daigle, A., St-Hilaire, A., Peters, D., and Baird, D.: Multivariate Modelling of Water Temperature in the Okanagan Watershed, Can. Water Resour. J., 35, 237–258, https://doi.org/10.4296/cwrj3503237, 2010.
Daly, S. F.: Anchor ice flooding in Jackson, WY, in: World Water and Environmental Resources Congress 2005: Impacts of Global Climate Change, 1–9, American Society of Civil Engineers, Anchorage, Alaska, USA, 15–19 May 2005, https://doi.org/10.1061/40792(173)240, 2005.
DeWeber, J. T. and Wagner, T.: A regional neural network ensemble for predicting mean daily river water temperature, J. Hydrol., 517, 187–200, https://doi.org/10.1016/j.jhydrol.2014.05.035, 2014.
Ducharne, A.: Importance of stream temperature to climate change impact on water quality, Hydrol. Earth Syst. Sci., 12, 797–810, https://doi.org/10.5194/hess-12-797-2008, 2008.
Ducharne, A.: Reducing scale dependence in TOPMODEL using a dimensionless topographic index, Hydrol. Earth Syst. Sci., 13, 2399–2412, https://doi.org/10.5194/hess-13-2399-2009, 2009.
Eckhardt, K.: How to construct recursive digital filters for baseflow separation, Hydrol. Process., 19, 507–515, https://doi.org/10.1002/hyp.5675, 2005.
Edinger, J. E., Duttweiler, D. W., and Geyer, J. C.: The Response of Water Temperatures to Meteorological Conditions, Water Resour. Res., 4, 1137–1143, https://doi.org/10.1029/WR004i005p01137, 1968.
Gardner, B. and Sullivan, P. J.: Spatial and temporal stream temperature prediction: Modeling nonstationary temporal covariance structures, Water Resour. Res., 40, https://doi.org/10.1029/2003WR002511, 2004.
Garner, G., Hannah, D. M., Sadler, J. P., and Orr, H. G.: River temperature regimes of England and Wales: spatial patterns, inter-annual variability and climatic sensitivity, Hydrol. Process., 28, 5583–5598, https://doi.org/10.1002/hyp.9992, 2014.
Gosink, J. P.: Synopsis of Analytic Solutions for the Temperature Distribution in a River Downstream From a Dam or Reservoir, Water Resour. Res., 22, 979–983, https://doi.org/10.1029/WR022i006p00979, 1986.
Grbić, R., Kurtagić, D., and Slišković, D.: Stream water temperature prediction based on Gaussian process regression, Expert Systems with Applications, 40, 7407–7414, https://doi.org/10.1016/j.eswa.2013.06.077, 2013.
Haag, I. and Luce, A.: The integrated water balance and water temperature model LARSIM-WT, Hydrol. Process., 22, 1046–1056, https://doi.org/10.1002/hyp.6983, 2008.
Hannah, D. M., Malcolm, I. A., Soulsby, C., and Youngson, A. F.: Heat exchanges and temperatures within a salmon spawning stream in the Cairngorms, Scotland: seasonal and sub-seasonal dynamics, River Res. Appl., 20, 635–652, https://doi.org/10.1002/rra.771, 2004.
Hawkins, C. P., Hogue, J. N., Decker, L. M., and Feminella, J. W.: Channel Morphology, Water Temperature, and Assemblage Structure of Stream Insects, J. N. Am. Benthol. Soc., 16, 728–749, 1997.
Herb, W. R. and Stefan, H. G.: Modified equilibrium temperature models for cold-water streams, Water Resour. Res., 47, W06519, https://doi.org/10.1029/2010WR009586, 2011.
Hill, R. A., Hawkins, C. P., and Carlisle, D. M.: Predicting thermal reference conditions for USA streams and rivers, Freshwater Science, 32, 39–55, https://doi.org/10.1899/12-009.1, 2013.
Hrachowitz, M., Soulsby, C., Imholt, C., Malcolm, I. A., and Tetzlaff, D.: Thermal regimes in a large upland salmon river: a simple model to identify the influence of landscape controls and climate change on maximum temperatures, Hydrol. Process., 24, 3374–3391, https://doi.org/10.1002/hyp.7756, 2010.
Hrachowitz, M., Savenije, H., Blöschl, G., McDonnell, J., Sivapalan, M., Pomeroy, J., Arheimer, B., Blume, T., Clark, M., Ehret, U., Fenicia, F., Freer, J., Gelfan, A., Gupta, H., Hughes, D., Hut, R., Montanari, A., Pande, S., Tetzlaff, D., Troch, P., Uhlenbrook, S., Wagener, T., Winsemius, H., Woods, R., Zehe, E., and Cudennec, C.: A decade of Predictions in Ungauged Basins (PUB) – a review, Hydrolog. Sci. J., 58, 1198–1255, https://doi.org/10.1080/02626667.2013.803183, 2013.
Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9, 90–95, 2007.
Imholt, C., Soulsby, C., Malcolm, I. A., Hrachowitz, M., Gibbins, C. N., Langan, S., and Tetzlaff, D.: Influence of scale on thermal characteristics in a large montane river basin, River Res. Appl., 29, 403–419, https://doi.org/10.1002/rra.1608, 2013.
Isaak, D. J. and Hubert, W. A.: A hypothesis about factors that affect maximum summer stream temperatures across montane landscapes, JAWRA J. Am. Water Resour. As., 37, 351–366, https://doi.org/10.1111/j.1752-1688.2001.tb00974.x, 2001,
Isaak, D. J., Luce, C. H., Rieman, B. E., Nagel, D. E., Peterson, E. E., Horan, D. L., Parkes, S., and Chandler, G. L.: Effects of climate change and wildfire on stream temperatures and salmonid thermal habitat in a mountain river network, Ecol. Appl., 20, 1350–1371, 2010.
Jakob, A.: Temperaturen in Schweizer Fliessgewässern, GWA, 3, 221–231, 2010.
Johnson, F.: Stream temperatures in an Alpine area, J. Hydrol., 14, 322–336, https://doi.org/10.1016/0022-1694(71)90042-4, 1971.
Johnson, M. F., Wilby, R. L., and Toone, J. A.: Inferring air–water temperature relationships from river and catchment properties, Hydrol. Process., 28, 2912–2928, https://doi.org/10.1002/hyp.9842, 2014.
Jones, K. L., Poole, G. C., Meyer, J. L., Bumback, W., and Kramer, E. A.: Quantifying expected ecological response to natural resource legislation: a case study of riparian buffers, aquatic habitat, and trout populations, Ecology and Society, 11, 15, available at: http://www.ecologyandsociety.org/vol11/iss2/art15/ (last access: 31 August 2015), 2006.
Kelleher, C., Wagener, T., Gooseff, M., McGlynn, B., McGuire, K., and Marshall, L.: Investigating controls on the thermal sensitivity of Pennsylvania streams, Hydrol. Process., 26, 771–785, https://doi.org/10.1002/hyp.8186, 2012.
Knighton, D.: Fluvial forms and processes: a new perspective, Arnold, Routledge, New York, USA, 1998.
Langford, T.: Ecological Effects of Thermal Discharges, Pollution Monitoring Series, Springer, http://books.google.ch/books?id=f1M6lkRZ7MUC (last access: 17 March 2015), 1990.
Leach, J. A. and Moore, R. D.: Winter stream temperature in the rain-on-snow zone of the Pacific Northwest: influences of hillslope runoff and transient snow cover, Hydrol. Earth Syst. Sci., 18, 819–838, https://doi.org/10.5194/hess-18-819-2014, 2014.
Leach, J. A. and Moore, R. D.: Observations and modeling of hillslope throughflow temperatures in a coastal forested catchment, Water Resour. Res., 51, 3770–3795, https://doi.org/10.1002/2014WR016763, 2015.
Macedo, M. N., Coe, M. T., DeFries, R., Uriarte, M., Brando, P. M., Neill, C., and Walker, W. S.: Land-use-driven stream warming in southeastern Amazonia, Philos. T. R. Soc. B, 368, 1619, https://doi.org/10.1098/rstb.2012.0153, 2013.
Mayer, T. D.: Controls of summer stream temperature in the Pacific Northwest, J. Hydrol., 475, 323–335, https://doi.org/10.1016/j.jhydrol.2012.10.012, 2012.
Meier, W., Bonjour, C., Wüest, A., and Reichert, P.: Modeling the Effect of Water Diversion on the Temperature of Mountain Streams, J. Environ. Eng., 129, 755–764, https://doi.org/10.1061/(ASCE)0733-9372(2003)129:8(755), 2003.
Miyake, Y. and Takeuchi, U.: On the temperature of river waters of Japan, Japanese Journal of Limnology, 15, 145–151, 1951.
Mohseni, O., Stefan, H. G., and Erickson, T. R.: A nonlinear regression model for weekly stream temperatures, Water Resour. Res., 34, 2685–2692, https://doi.org/10.1029/98WR01877, 1998.
Moore, R., Nelitz, M., and Parkinson, E.: Empirical modelling of maximum weekly average stream temperature in British Columbia, Canada, to support assessment of fish habitat suitability, Can. Water Resour. J., 38, 135–147, https://doi.org/10.1080/07011784.2013.794992, 2013.
Moore, R. D., Spittlehouse, D. L., and Story, A.: Riparian microclimate and stream temperature response to forest harvesting: a review, J. Am. Water Resour. As., 41, 813–834, https://doi.org/10.1111/j.1752-1688.2005.tb03772.x, 2005.
Müller, V.: Erarbeitung eines anthropogen unbeeinflussten, typischen Jahresgangs der Wassertemperatur nach biozönotischen Regionen, Master's thesis, Swiss Federal Institute of Technology Zurich, Switzerland, 2011.
Mutzner, R., Bertuzzo, E., Tarolli, P., Weijs, S. V., Nicotina, L., Ceola, S., Tomasic, N., Rodriguez-Iturbe, I., Parlange, M. B., and Rinaldo, A.: Geomorphic signatures on Brutsaert base flow recession analysis, Water Resour. Res., 49, 5462–5472, https://doi.org/10.1002/wrcr.20417, 2013.
Nash, J. and Sutcliffe, J.: River flow forecasting through conceptual models part I – A discussion of principles, J. Hydrol., 10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Nelitz, M. A., MacIsaac, E. A., and Peterman, R. M.: A Science-Based Approach for Identifying Temperature-Sensitive Streams for Rainbow Trout, N. Am. J. Fish. Manage., 27, 405–424, https://doi.org/10.1577/M05-146.1, 2007.
Nelson, K. C. and Palmer, M. A.: Stream Temperature Surges Under Urbanization and Climate Change: Data, Models, and Responses, J. Am. Water Resour. As., 43, 440–452, https://doi.org/10.1111/j.1752-1688.2007.00034.x, 2007.
Ozaki, N., Fukushima, T., Harasawa, H., Kojiri, T., Kawashima, K., and Ono, M.: Statistical analyses on the effects of air temperature fluctuations on river water qualities, Hydrol. Process., 17, 2837–2853, 2003.
Polehn, R. A. and Kinsel, W. C.: Transient temperature solution for stream flow from a controlled temperature source, Water Resour. Res., 33, 261–265, https://doi.org/10.1029/96WR03016, 1997.
Polehn, R. A. and Kinsel, W. C.: Transient temperature solution for a river with distributed inflows, Water Resour. Res., 36, 787–791, https://doi.org/10.1029/1999WR900350, 2000.
Pratt, B. and Chang, H.: Effects of land cover, topography, and built structure on seasonal water quality at multiple spatial scales, J. Hazard. Mater., 209–210, 48–58, https://doi.org/10.1016/j.jhazmat.2011.12.068, 2012.
Risley, J. C., Roehl, E. A., and Conrads, P. A.: Estimating Water Temperatures in Small Streams in Western Oregon Using Neural Network Models, U.S. Geological Survey, Water-Resources Investigations, Portland, Oregon, USA, Report 02-4218, 2003.
Rivers-Moore, N., Mantel, A., and Dallas, H.: Prediction of water temperature metrics using spatial modelling in the Eastern and Western Cape, South Africa, Water SA, 32, 167–176, https://doi.org/10.4314/wsa.v38i2.2, 2012.
Roth, T. R., Westhoff, M. C., Huwald, H., Huff, J. A., Rubin, J. F., Barrenetxea, G., Vetterli, M., Parriaux, A., Selker, J. S., and Parlange, M. B.: Stream Temperature Response to Three Riparian Vegetation Scenarios by Use of a Distributed Temperature Validated Model, Environ. Sci. Tech., 44, 2072–2078, https://doi.org/10.1021/es902654f, 2010.
Rubin, J.-F., Richard, A., Chevalley, P.-A., O'Rourke, J., Ingold, S., Rebetez, M., Huwald, H., Barrenetxea, G., Hass, P., Montavon, R., Travaglini, O., Guisan, A., Frossard, P.-A., Prunier, P., Zouaoui, I., Pusterla, C., Cid, M., Gavillet, G., Kummer, N., and Ciotti, V.: Rapport Clim-arbres, Tech. rep., La Maison de la Rivière and Haute École du Paysage, d'Ingénierie et d'Architecture de Genève, available at: http://www.proclim.ch/4dcgi/proclim/fr/News?2435 (last access: 31 August 2015), 2012.
Ruesch, A. S., Torgersen, C. E., Lawler, J. J., Olden, J. D., Peterson, E. E., Volk, C. J., and Lawrence, D. J.: Projected Climate-Induced Habitat Loss for Salmonids in the John Day River Network, Oregon, USA, Conserv. Biol., 26, 873–882, https://doi.org/10.1111/j.1523-1739.2012.01897.x, 2012.
Schädler, M.: Die Temperatur schweizerischer Fliessgewässer, Tech. rep., Swiss Federal Office for the Environment, Section Hydrology, Bern, Switzerland, 2008.
Schaefli, B. and Gupta, H. V.: Do Nash values have value?, Hydrol. Process., 21, 2075–2080, https://doi.org/10.1002/hyp.6825, 2007.
Scott, M. C., Helfman, G. S., McTammany, M. E., Benfield, E. F., and Bolstad, P. V.: Multiscale influences on physical and chemical stream conditions across blue ridge landscapes, J. Am. Water Resour. As., 38, 1379–1392, https://doi.org/10.1111/j.1752-1688.2002.tb04353.x, 2002.
Segura, C., Caldwell, P., Sun, G., McNulty, S., and Zhang, Y.: A model to predict stream water temperature across the conterminous USA, Hydrol. Process., 29, 2178–2195, https://doi.org/10.1002/hyp.10357, 2014.
Sinokrot, B. A. and Stefan, H. G.: Stream temperature dynamics: Measurements and modeling, Water Resour. Res., 29, 2299–2312, https://doi.org/10.1029/93WR00540, 1993.
Sivapalan, M., Takeuchi, K., Franks, S. W., Gupta, V. K., Karambiri, H., Lakshmi, V., Liang, X., McDonnell, J. J., Mendiondo, E. M., O'Connell, P. E., Oki, T., Pomeroy, J. W., Schertzer, D., Uhlenbrook, S., and Zehe, E.: IAHS Decade on Predictions in Ungauged Basins (PUB), 2003–2012: Shaping an exciting future for the hydrological sciences, Hydrolog. Sci. J., 48, 857–880, https://doi.org/10.1623/hysj.48.6.857.51421, 2003.
Sponseller, R. A., Benfield, E. F., and Valett, H. M.: Relationships between land use, spatial scale and stream macroinvertebrate communities, Freshwater Biol., 46, 1409–1424, https://doi.org/10.1046/j.1365-2427.2001.00758.x, 2001.
Stefan, H. G. and Preud'homme, E. B.: Stream temperature estimation from air temperature, J. Am. Water Resour. As., 29, 27–45, https://doi.org/10.1111/j.1752-1688.1993.tb01502.x, 1993.
Tague, C., Farrell, M., Grant, G., Lewis, S., and Rey, S.: Hydrogeologic controls on summer stream temperatures in the McKenzie River basin, Oregon, Hydrol. Process., 21, 3288–3300, https://doi.org/10.1002/hyp.6538, 2007.
Theurer, F. D., Voos, K. A., and Miller, W. J.: Instream water temperature model. Instream Flow Information Paper 16, Federal Government Series 16, FWS/OBS-84/15, Fort Collins, Colorado, USA, 1984.
Toffolon, M., Siviglia, A., and Zolezzi, G.: Thermal wave dynamics in rivers affected by hydropeaking, Water Resour. Res., 46, W08536, https://doi.org/10.1029/2009WR008234, 2010.
van Dijk, A. I. J. M.: Climate and terrain factors explaining streamflow response and recession in Australian catchments, Hydrol. Earth Syst. Sci., 14, 159–169, https://doi.org/10.5194/hess-14-159-2010, 2010.
Wagenmakers, E.-J. and Farrell, S.: AIC model selection using Akaike weights, Psychon. B. Rev., 11, 192–196, https://doi.org/10.3758/BF03206482, 2004.
Webb, B. W., Hannah, D. M., Moore, R. D., Brown, L. E., and Nobilis, F.: Recent advances in stream and river temperature research, Hydrol. Process., 22, 902–918, https://doi.org/10.1002/hyp.6994, 2008.
Wehrly, K. E., Brenden, T. O., and Wang, L.: A Comparison of Statistical Approaches for Predicting Stream Temperatures Across Heterogeneous Landscapes1, J. Am. Water Resour. As., 45, 986–997, https://doi.org/10.1111/j.1752-1688.2009.00341.x, 2009.
Westenbroek, S., Stewart, J., Buchwald, C., Mitro, M., Lyons, J., and Greb, S.: A Model for Evaluating Stream Temperature Response to Climate Change Scenarios in Wisconsin, in: Watershed Management Conference 2010, American Society of Civil Engineers, Madison, Wisconsin, USA, ISBN 978-0-7844-1143-8, https://doi.org/10.1061/41143(394)1, 2010.
Westhoff, M. C., Savenije, H. H. G., Luxemburg, W. M. J ., Stelling, G. S., van de Giesen, N. C., Selker, J. S., Pfister, L., and Uhlenbrook, S.: A distributed stream temperature model using high resolution temperature observations, Hydrol. Earth Syst. Sci., 11, 1469–1480, https://doi.org/10.5194/hess-11-1469-2007, 2007.
Young, R. G., Quarterman, A. J., Eyles, R. F., Smith, R. A., and Bowden, W. B.: Water quality and thermal regime of the Motueka River: Influences of land cover, geology and position in the catchment, New Zeal. J. Mar. Fresh., 39, 803–825, https://doi.org/10.1080/00288330.2005.9517354, 2005.
Short summary
This study presents a new model to estimate the monthly mean stream temperature of ungauged rivers over multiple years in an Alpine country. Contrary to the other approaches developed to date, which are usually based on standard regression techniques, our model makes use of the understanding that we have about the physics controlling stream temperature. On top of its accuracy being comparable to that of the other models, it can be used to gain some knowledge about the stream temperature dynamics
This study presents a new model to estimate the monthly mean stream temperature of ungauged...