Articles | Volume 19, issue 6
https://doi.org/10.5194/hess-19-2925-2015
https://doi.org/10.5194/hess-19-2925-2015
Research article
 | 
24 Jun 2015
Research article |  | 24 Jun 2015

TopREML: a topological restricted maximum likelihood approach to regionalize trended runoff signatures in stream networks

M. F. Müller and S. E. Thompson

Related authors

Social dilemmas and poor water quality in household water systems
Gopal Penny, Diogo Bolster, and Marc F. Müller
Hydrol. Earth Syst. Sci., 26, 1187–1202, https://doi.org/10.5194/hess-26-1187-2022,https://doi.org/10.5194/hess-26-1187-2022, 2022
Short summary
Climatic and anthropogenic drivers of a drying Himalayan river
Gopal Penny, Zubair A. Dar, and Marc F. Müller
Hydrol. Earth Syst. Sci., 26, 375–395, https://doi.org/10.5194/hess-26-375-2022,https://doi.org/10.5194/hess-26-375-2022, 2022
Short summary
A simple cloud-filling approach for remote sensing water cover assessments
Connor Mullen, Gopal Penny, and Marc F. Müller
Hydrol. Earth Syst. Sci., 25, 2373–2386, https://doi.org/10.5194/hess-25-2373-2021,https://doi.org/10.5194/hess-25-2373-2021, 2021
Short summary
Monitoring small reservoirs' storage with satellite remote sensing in inaccessible areas
Nicolas Avisse, Amaury Tilmant, Marc François Müller, and Hua Zhang
Hydrol. Earth Syst. Sci., 21, 6445–6459, https://doi.org/10.5194/hess-21-6445-2017,https://doi.org/10.5194/hess-21-6445-2017, 2017
Short summary
Comparing statistical and process-based flow duration curve models in ungauged basins and changing rain regimes
M. F. Müller and S. E. Thompson
Hydrol. Earth Syst. Sci., 20, 669–683, https://doi.org/10.5194/hess-20-669-2016,https://doi.org/10.5194/hess-20-669-2016, 2016
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Theory development
Technical Note: The divide and measure nonconformity – how metrics can mislead when we evaluate on different data partitions
Daniel Klotz, Martin Gauch, Frederik Kratzert, Grey Nearing, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 28, 3665–3673, https://doi.org/10.5194/hess-28-3665-2024,https://doi.org/10.5194/hess-28-3665-2024, 2024
Short summary
Bimodal hydrographs in a semi-humid forested watershed: characteristics and occurrence conditions
Zhen Cui, Fuqiang Tian, Zilong Zhao, Zitong Xu, Yongjie Duan, Jie Wen, and Mohd Yawar Ali Khan
Hydrol. Earth Syst. Sci., 28, 3613–3632, https://doi.org/10.5194/hess-28-3613-2024,https://doi.org/10.5194/hess-28-3613-2024, 2024
Short summary
Flood drivers and trends: a case study of the Geul River catchment (the Netherlands) over the past half century
Athanasios Tsiokanos, Martine Rutten, Ruud J. van der Ent, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 28, 3327–3345, https://doi.org/10.5194/hess-28-3327-2024,https://doi.org/10.5194/hess-28-3327-2024, 2024
Short summary
Power law between the apparent drainage density and the pruning area
Soohyun Yang, Kwanghun Choi, and Kyungrock Paik
Hydrol. Earth Syst. Sci., 28, 3119–3132, https://doi.org/10.5194/hess-28-3119-2024,https://doi.org/10.5194/hess-28-3119-2024, 2024
Short summary
Characterizing nonlinear, nonstationary, and heterogeneous hydrologic behavior using Ensemble Rainfall-Runoff Analysis (ERRA): proof of concept
James W. Kirchner
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-103,https://doi.org/10.5194/hess-2024-103, 2024
Revised manuscript accepted for HESS
Short summary

Cited articles

Anders, A. M., Roe, G. H., Hallet, B., Montgomery, D. R., Finnegan, N. J., and Putkonen, J.: Spatial patterns of precipitation and topography in the Himalaya, Geol. Soc. Am. Special Papers, 398, 39–53, 2006.
Bishop, G. D. and Church, M. R.: Automated approaches for regional runoff mapping in the northeastern United States, J. Hydrol., 138, 361–383, 1992.
Belisle, C. J. P.: Convergence theorems for a class of simulated annealing algorithms on Rd, J. Appl. Probab., 29, 885–895, 1992.
Blöschl, G., Sivapalan, M., Wagener, T., Viglione, A., and Savenije, H.: Runoff prediction in ungauged basins: Synthesis across processes, places and scales, Cambridge University Press, 2013.
Bosch, D., Sheridan, J., and Davis, F.: Rainfall characteristics and spatial correlation for the Georgia Coastal Plain, Trans. ASAE, 42, 1637–1644, 1999.
Download
Short summary
We introduce TopREML as a method to predict runoff signatures in ungauged basins using linear mixed models with spatially correlated random effects. The nested nature of streamflow networks is accounted for by allowing for stronger correlations between flow-connected basins. The restricted maximum likelihood framework provides best linear unbiased predictions of both the predicted flow variable and its uncertainty as shown in Monte Carlo and cross-validation analyses in Nepal and Austria.