Articles | Volume 18, issue 11
https://doi.org/10.5194/hess-18-4423-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-18-4423-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Mobilisation or dilution? Nitrate response of karst springs to high rainfall events
M. Huebsch
Karlsruhe Institute of Technology (KIT), Institute of Applied Geosciences (AGW), Kaiserstr. 12, 76131 Karlsruhe, Germany
Teagasc, Environmental Research Centre, Johnstown Castle, Co Wexford, Ireland
O. Fenton
Teagasc, Environmental Research Centre, Johnstown Castle, Co Wexford, Ireland
B. Horan
Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
D. Hennessy
Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
K. G. Richards
Teagasc, Environmental Research Centre, Johnstown Castle, Co Wexford, Ireland
P. Jordan
University of Ulster, School of Environmental Sciences, Cromore Road, Coleraine, BT52 1SA, Northern Ireland
N. Goldscheider
Karlsruhe Institute of Technology (KIT), Institute of Applied Geosciences (AGW), Kaiserstr. 12, 76131 Karlsruhe, Germany
C. Butscher
Karlsruhe Institute of Technology (KIT), Institute of Applied Geosciences (AGW), Kaiserstr. 12, 76131 Karlsruhe, Germany
Karlsruhe Institute of Technology (KIT), Institute of Applied Geosciences (AGW), Kaiserstr. 12, 76131 Karlsruhe, Germany
Related authors
M. Huebsch, F. Grimmeisen, M. Zemann, O. Fenton, K. G. Richards, P. Jordan, A. Sawarieh, P. Blum, and N. Goldscheider
Hydrol. Earth Syst. Sci., 19, 1589–1598, https://doi.org/10.5194/hess-19-1589-2015, https://doi.org/10.5194/hess-19-1589-2015, 2015
Short summary
Short summary
Two different in situ spectrophotometers, which were used in the field to determine highly time resolved nitrate-nitrogen (NO3-N) concentrations at two distinct spring discharge sites, are compared: a double and a multiple wavelength spectrophotometer. The objective of the study was to review the hardware options, determine ease of calibration, accuracy, influence of additional substances and to assess positive and negative aspects of the two sensors as well as troubleshooting and trade-offs.
Fabien Koch, Philipp Blum, Heide Stein, Andreas Fuchs, Hans Jürgen Hahn, and Kathrin Menberg
Hydrol. Earth Syst. Sci., 28, 4927–4946, https://doi.org/10.5194/hess-28-4927-2024, https://doi.org/10.5194/hess-28-4927-2024, 2024
Short summary
Short summary
In this study, we identify shifts in groundwater fauna due to natural or human impacts over 2 decades. We find no overall temporal or large-scale trends in fauna or abiotic parameters. However, at a local level, six monitoring wells show shifting or fluctuating faunal parameters. Our findings indicate that changes in surface conditions should be assessed in line with hydrochemical parameters to better understand changes in groundwater fauna and to obtain reliable biomonitoring results.
Haegyeong Lee, Manuel Gossler, Kai Zosseder, Philipp Blum, Peter Bayer, and Gabriel C. Rau
EGUsphere, https://doi.org/10.5194/egusphere-2024-1949, https://doi.org/10.5194/egusphere-2024-1949, 2024
Short summary
Short summary
A systematic laboratory experiment elucidates two-phase heat transport due to water flow in saturated porous media to understand thermal propagation in aquifers. Results reveal delayed thermal arrival in the solid phase, depending on grain size and flow velocity. Analytical modeling using standard local thermal equilibrium (LTE) and advanced local thermal non-equilibrium (LTNE) theory fails to describe temperature breakthrough curves, highlighting the need for more advanced numerical approaches.
Andreas Wunsch, Tanja Liesch, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 28, 2167–2178, https://doi.org/10.5194/hess-28-2167-2024, https://doi.org/10.5194/hess-28-2167-2024, 2024
Short summary
Short summary
Seasons have a strong influence on groundwater levels, but relationships are complex and partly unknown. Using data from wells in Germany and an explainable machine learning approach, we showed that summer precipitation is the key factor that controls the severeness of a low-water period in fall; high summer temperatures do not per se cause stronger decreases. Preceding winters have only a minor influence on such low-water periods in general.
Marco Fuchs, Anna Suzuki, Togo Hasumi, and Philipp Blum
Solid Earth, 15, 353–365, https://doi.org/10.5194/se-15-353-2024, https://doi.org/10.5194/se-15-353-2024, 2024
Short summary
Short summary
In this study, the permeability of a natural fracture in sandstone is estimated based only on its geometry. For this purpose, the topological method of persistent homology is applied to three geometric data sets with different resolutions for the first time. The results of all data sets compare well with conventional experimental and numerical methods. Since the analysis takes less time to the same amount of time, it seems to be a good alternative to conventional methods.
Chloé Fandel, Ty Ferré, François Miville, Philippe Renard, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 27, 4205–4215, https://doi.org/10.5194/hess-27-4205-2023, https://doi.org/10.5194/hess-27-4205-2023, 2023
Short summary
Short summary
From the surface, it is hard to tell where underground cave systems are located. We developed a computer model to create maps of the probable cave network in an area, based on the geologic setting. We then applied our approach in reverse: in a region where an old cave network was mapped, we used modeling to test what the geologic setting might have been like when the caves formed. This is useful because understanding past cave formation can help us predict where unmapped caves are located today.
Jose M. Bastias Espejo, Chris Turnadge, Russell S. Crosbie, Philipp Blum, and Gabriel C. Rau
Hydrol. Earth Syst. Sci., 27, 3447–3462, https://doi.org/10.5194/hess-27-3447-2023, https://doi.org/10.5194/hess-27-3447-2023, 2023
Short summary
Short summary
Analytical models estimate subsurface properties from subsurface–tidal load interactions. However, they have limited accuracy in representing subsurface physics and parameter estimation. We derived a new analytical solution which models flow to wells due to atmospheric tides. We applied it to field data and compared our findings with subsurface knowledge. Our results enhance understanding of subsurface systems, providing valuable information on their behavior.
Guillaume Cinkus, Naomi Mazzilli, Hervé Jourde, Andreas Wunsch, Tanja Liesch, Nataša Ravbar, Zhao Chen, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 27, 2397–2411, https://doi.org/10.5194/hess-27-2397-2023, https://doi.org/10.5194/hess-27-2397-2023, 2023
Short summary
Short summary
The Kling–Gupta Efficiency (KGE) is a performance criterion extensively used to evaluate hydrological models. We conduct a critical study on the KGE and its variant to examine counterbalancing errors. Results show that, when assessing a simulation, concurrent over- and underestimation of discharge can lead to an overall higher criterion score without an associated increase in model relevance. We suggest that one carefully choose performance criteria and use scaling factors.
Guillaume Cinkus, Andreas Wunsch, Naomi Mazzilli, Tanja Liesch, Zhao Chen, Nataša Ravbar, Joanna Doummar, Jaime Fernández-Ortega, Juan Antonio Barberá, Bartolomé Andreo, Nico Goldscheider, and Hervé Jourde
Hydrol. Earth Syst. Sci., 27, 1961–1985, https://doi.org/10.5194/hess-27-1961-2023, https://doi.org/10.5194/hess-27-1961-2023, 2023
Short summary
Short summary
Numerous modelling approaches can be used for studying karst water resources, which can make it difficult for a stakeholder or researcher to choose the appropriate method. We conduct a comparison of two widely used karst modelling approaches: artificial neural networks (ANNs) and reservoir models. Results show that ANN models are very flexible and seem great for reproducing high flows. Reservoir models can work with relatively short time series and seem to accurately reproduce low flows.
Ruben Stemmle, Haegyeong Lee, Philipp Blum, and Kathrin Menberg
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-62, https://doi.org/10.5194/hess-2023-62, 2023
Revised manuscript not accepted
Short summary
Short summary
Using 3D numerical heat transpot models, this study quantifies the potential of low-temperature Aquifer Thermal Energy Storage (ATES) in an urban setting in Southwest Germany. Comparing the determined potential with existing heating and cooling demands shows substantial heating and cooling supply rates that could be achieved by a widespread application of ATES systems. The study also highlights possible greenhouse gas emission savings compared to conventional heating and cooling technologies.
Andreas Wunsch, Tanja Liesch, Guillaume Cinkus, Nataša Ravbar, Zhao Chen, Naomi Mazzilli, Hervé Jourde, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 26, 2405–2430, https://doi.org/10.5194/hess-26-2405-2022, https://doi.org/10.5194/hess-26-2405-2022, 2022
Short summary
Short summary
Modeling complex karst water resources is difficult enough, but often there are no or too few climate stations available within or close to the catchment to deliver input data for modeling purposes. We apply image recognition algorithms to time-distributed, spatially gridded meteorological data to simulate karst spring discharge. Our models can also learn the approximate catchment location of a spring independently.
José M. Bastías Espejo, Andy Wilkins, Gabriel C. Rau, and Philipp Blum
Geosci. Model Dev., 14, 6257–6272, https://doi.org/10.5194/gmd-14-6257-2021, https://doi.org/10.5194/gmd-14-6257-2021, 2021
Short summary
Short summary
The hydraulic and mechanical properties of the subsurface are inherently heterogeneous. RHEA is a simulator that can perform couple hydro-geomechanical processes in heterogeneous porous media with steep gradients. RHEA is able to fully integrate spatial heterogeneity, allowing allocation of distributed hydraulic and geomechanical properties at mesh element level. RHEA is a valuable tool that can simulate problems considering realistic heterogeneity inherent to geologic formations.
Sina Hale, Xavier Ries, David Jaeggi, and Philipp Blum
Solid Earth, 12, 1581–1600, https://doi.org/10.5194/se-12-1581-2021, https://doi.org/10.5194/se-12-1581-2021, 2021
Short summary
Short summary
The construction of tunnels leads to substantial alterations of the surrounding rock, which can be critical concerning safety aspects. We use different mobile methods to assess the hydromechanical properties of an excavation damaged zone (EDZ) in a claystone. We show that long-term exposure and dehydration preserve a notable fracture permeability and significantly increase strength and stiffness. The methods are suitable for on-site monitoring without any further disturbance of the rock.
Markus Merk, Nadine Goeppert, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 25, 3519–3538, https://doi.org/10.5194/hess-25-3519-2021, https://doi.org/10.5194/hess-25-3519-2021, 2021
Short summary
Short summary
Soil moisture levels have decreased significantly over the past 2 decades. This decrease is not uniformly distributed over the observation period. The largest changes occur at tipping points during years of extreme drought, after which soil moisture levels reach significantly different alternate stable states. Not only the overall trend in soil moisture is affected, but also the seasonal dynamics.
Fabien Koch, Kathrin Menberg, Svenja Schweikert, Cornelia Spengler, Hans Jürgen Hahn, and Philipp Blum
Hydrol. Earth Syst. Sci., 25, 3053–3070, https://doi.org/10.5194/hess-25-3053-2021, https://doi.org/10.5194/hess-25-3053-2021, 2021
Short summary
Short summary
In this study, we address the question of whether groundwater fauna in an urban area is natural or affected in comparison to forested land. We find noticeable differences in the spatial distribution of groundwater species and abiotic parameters. An ecological assessment reveals that conditions in the urban area are mainly not good. Yet, there is no clear spatial pattern in terms of land use and anthropogenic impacts. These are significant findings for conservation and usage of urban groundwater.
Arne Jacob, Markus Peltz, Sina Hale, Frieder Enzmann, Olga Moravcova, Laurence N. Warr, Georg Grathoff, Philipp Blum, and Michael Kersten
Solid Earth, 12, 1–14, https://doi.org/10.5194/se-12-1-2021, https://doi.org/10.5194/se-12-1-2021, 2021
Short summary
Short summary
In this work, we combined different imaging and experimental measuring methods for analysis of cross-scale effects which reduce permeability of tight reservoir rocks. Simulated permeability of digital images of rocks is often overestimated, which is caused by non-resolvable clay content within the pores of a rock. By combining FIB-SEM with micro-XCT imaging, we were able to simulate the true clay mineral abundance to match experimentally measured permeability with simulated permeability.
Gabriel C. Rau, Mark O. Cuthbert, R. Ian Acworth, and Philipp Blum
Hydrol. Earth Syst. Sci., 24, 6033–6046, https://doi.org/10.5194/hess-24-6033-2020, https://doi.org/10.5194/hess-24-6033-2020, 2020
Short summary
Short summary
This work provides an important generalisation of a previously developed method that quantifies subsurface barometric efficiency using the groundwater level response to Earth and atmospheric tides. The new approach additionally allows the quantification of hydraulic conductivity and specific storage. This enables improved and rapid assessment of subsurface processes and properties using standard pressure measurements.
Chaojie Cheng, Sina Hale, Harald Milsch, and Philipp Blum
Solid Earth, 11, 2411–2423, https://doi.org/10.5194/se-11-2411-2020, https://doi.org/10.5194/se-11-2411-2020, 2020
Short summary
Short summary
Fluids (like water or gases) within the Earth's crust often flow and interact with rock through fractures. The efficiency with which these fluids may flow through this void space is controlled by the width of the fracture(s). In this study, three different physical methods to measure fracture width were applied and compared and their predictive accuracy was evaluated. As a result, the mobile methods tested may well be applied in the field if a number of limitations and requirements are observed.
Maelle Fresne, Phil Jordan, Per-Erik Mellander, Karen Daly, and Owen Fenton
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-248, https://doi.org/10.5194/hess-2020-248, 2020
Revised manuscript not accepted
Short summary
Short summary
We identifies the role of physical controls (soil properties, rainfall and groundwater level) on phosphorus transport to shallow groundwater at the hillslope scale. Spatial variations in phosphorus transport to groundwater were related to soil properties whereas temporal variations were related to rainfall and groundwater level. The findings provide a support for the localisation of critical zones of phosphorus loss to groundwater and where reduction of phosphorus sources should be prioritized.
Gabriel C. Rau, Vincent E. A. Post, Margaret Shanafield, Torsten Krekeler, Eddie W. Banks, and Philipp Blum
Hydrol. Earth Syst. Sci., 23, 3603–3629, https://doi.org/10.5194/hess-23-3603-2019, https://doi.org/10.5194/hess-23-3603-2019, 2019
Short summary
Short summary
The flow of water is often inferred from water levels and gradients whose measurements are considered trivial despite the many steps and complexity of the instruments involved. We systematically review the four measurement steps required and summarise the systematic errors. To determine the accuracy with which flow can be resolved, we quantify and propagate the random errors. Our results illustrate the limitations of current practice and provide concise recommendations to improve data quality.
Zhao Chen, Andreas Hartmann, Thorsten Wagener, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 22, 3807–3823, https://doi.org/10.5194/hess-22-3807-2018, https://doi.org/10.5194/hess-22-3807-2018, 2018
Short summary
Short summary
This paper investigates potential impacts of climate change on mountainous karst systems. Our study highlights the fast groundwater dynamics in mountainous karst catchments, which make them highly vulnerable to future changing-climate conditions. Additionally, this work presents a novel holistic modeling approach, which can be transferred to similar karst systems for studying the impact of climate change on local karst water resources.
Susanne A. Benz, Peter Bayer, Gerfried Winkler, and Philipp Blum
Hydrol. Earth Syst. Sci., 22, 3143–3154, https://doi.org/10.5194/hess-22-3143-2018, https://doi.org/10.5194/hess-22-3143-2018, 2018
Short summary
Short summary
Climate change is one of the most pressing challenges modern society faces. Increasing temperatures are observed both above ground and, as discussed here, in the groundwater – the source of most drinking water. Within Austria average temperature increased by 0.7 °C over the past 20 years, with an increase of more than 3 °C in some wells and temperature decrease in others. However, these extreme changes can be linked to local events such as the construction of a new drinking water supply.
Daniel Schweizer, Philipp Blum, and Christoph Butscher
Solid Earth, 8, 515–530, https://doi.org/10.5194/se-8-515-2017, https://doi.org/10.5194/se-8-515-2017, 2017
Short summary
Short summary
Any 3-D geological model is subject to uncertainty. We applied the concept of information entropy in order to visualize and quantify changes in uncertainty between geological models based on different types of geological input data. Furthermore, we propose two measures, the city-block and the Jaccard distance, to directly compare dissimilarities between models. The presented approach helps to locate areas of uncertainty within the model domain and quantify model improvements due to added data.
Tobias Kling, Da Huo, Jens-Oliver Schwarz, Frieder Enzmann, Sally Benson, and Philipp Blum
Solid Earth, 7, 1109–1124, https://doi.org/10.5194/se-7-1109-2016, https://doi.org/10.5194/se-7-1109-2016, 2016
Short summary
Short summary
A method is introduced to implement medical CT data of a fractured sandstone under varying confining pressures into fluid flow simulations to reproduce experimental permeabilities. The simulation results reproduce plausible fracture flow features (e.g. flow channeling, fracture closing/opening) and approximate the actual permeabilities, which are affected by the CT resolution and compositional matrix heterogeneities. Additionally, some recommendations are presented concerning future studies.
M. M. R. Jahangir, K. G. Richards, M. G. Healy, L. Gill, C. Müller, P. Johnston, and O. Fenton
Hydrol. Earth Syst. Sci., 20, 109–123, https://doi.org/10.5194/hess-20-109-2016, https://doi.org/10.5194/hess-20-109-2016, 2016
Short summary
Short summary
Removal efficiency of carbon and nitrogen in constructed wetlands is inconsistent and does not reveal whether the removal processes are from physical attenuation or transformation to other reactive forms. Previous research did not consider "pollution swapping" driven by transformational processes. Herein the biogeochemical dynamics and fate of carbon and nitrogen and their potential impact on the environment, as well as novel ways in which these knowledge gaps may be eliminated, are explored.
S. C. Sherriff, J. S. Rowan, A. R. Melland, P. Jordan, O. Fenton, and D. Ó hUallacháin
Hydrol. Earth Syst. Sci., 19, 3349–3363, https://doi.org/10.5194/hess-19-3349-2015, https://doi.org/10.5194/hess-19-3349-2015, 2015
M. Huebsch, F. Grimmeisen, M. Zemann, O. Fenton, K. G. Richards, P. Jordan, A. Sawarieh, P. Blum, and N. Goldscheider
Hydrol. Earth Syst. Sci., 19, 1589–1598, https://doi.org/10.5194/hess-19-1589-2015, https://doi.org/10.5194/hess-19-1589-2015, 2015
Short summary
Short summary
Two different in situ spectrophotometers, which were used in the field to determine highly time resolved nitrate-nitrogen (NO3-N) concentrations at two distinct spring discharge sites, are compared: a double and a multiple wavelength spectrophotometer. The objective of the study was to review the hardware options, determine ease of calibration, accuracy, influence of additional substances and to assess positive and negative aspects of the two sensors as well as troubleshooting and trade-offs.
J. M. Campbell, P. Jordan, and J. Arnscheidt
Hydrol. Earth Syst. Sci., 19, 453–464, https://doi.org/10.5194/hess-19-453-2015, https://doi.org/10.5194/hess-19-453-2015, 2015
Short summary
Short summary
High-resolution phosphorus and flow data were used to gauge the effects of diffuse (soil P) and point source (septic tank system) mitigation measures in two flashy headwater river catchments. Over 4 years the data indicated an overall increase in P concentration in defined high flow ranges and low flow P concentration showed little change. The work indicates fractured responses to catchment management advice and mitigation which were also affected by variations in seasonal hydrometeorology.
K. Menberg, P. Blum, B. L. Kurylyk, and P. Bayer
Hydrol. Earth Syst. Sci., 18, 4453–4466, https://doi.org/10.5194/hess-18-4453-2014, https://doi.org/10.5194/hess-18-4453-2014, 2014
U. Lauber, P. Kotyla, D. Morche, and N. Goldscheider
Hydrol. Earth Syst. Sci., 18, 4437–4452, https://doi.org/10.5194/hess-18-4437-2014, https://doi.org/10.5194/hess-18-4437-2014, 2014
U. Lauber, W. Ufrecht, and N. Goldscheider
Hydrol. Earth Syst. Sci., 18, 435–445, https://doi.org/10.5194/hess-18-435-2014, https://doi.org/10.5194/hess-18-435-2014, 2014
A. Hartmann, M. Weiler, T. Wagener, J. Lange, M. Kralik, F. Humer, N. Mizyed, A. Rimmer, J. A. Barberá, B. Andreo, C. Butscher, and P. Huggenberger
Hydrol. Earth Syst. Sci., 17, 3305–3321, https://doi.org/10.5194/hess-17-3305-2013, https://doi.org/10.5194/hess-17-3305-2013, 2013
H. J. M. van Grinsven, H. F. M. ten Berge, T. Dalgaard, B. Fraters, P. Durand, A. Hart, G. Hofman, B. H. Jacobsen, S. T. J. Lalor, J. P. Lesschen, B. Osterburg, K. G. Richards, A.-K. Techen, F. Vertès, J. Webb, and W. J. Willems
Biogeosciences, 9, 5143–5160, https://doi.org/10.5194/bg-9-5143-2012, https://doi.org/10.5194/bg-9-5143-2012, 2012
K. L. McGeough, R. J. Laughlin, C. J. Watson, C. Müller, M. Ernfors, E. Cahalan, and K. G. Richards
Biogeosciences, 9, 4909–4919, https://doi.org/10.5194/bg-9-4909-2012, https://doi.org/10.5194/bg-9-4909-2012, 2012
Related subject area
Subject: Groundwater hydrology | Techniques and Approaches: Theory development
Identification, mapping, and eco-hydrological signal analysis for groundwater-dependent ecosystems (GDEs) in Langxi River basin, north China
Solutions and case studies for thermally driven reactive transport and porosity evolution in geothermal systems (reactive Lauwerier problem)
Technical note: Analytical solution for well water response to Earth tides in leaky aquifers with storage and compressibility in the aquitard
Flow recession behavior of preferential subsurface flow patterns with minimum energy dissipation
Towards a hydrogeomorphological understanding of proglacial catchments: an assessment of groundwater storage and release in an Alpine catchment
Effect of topographic slope on the export of nitrate in humid catchments: a 3D model study
Transit Time index (TTi) as an adaptation of the humification index to illustrate transit time differences in karst hydrosystems: application to the karst springs of the Fontaine de Vaucluse system (southeastern France)
In situ estimation of subsurface hydro-geomechanical properties using the groundwater response to semi-diurnal Earth and atmospheric tides
The Thiem team – Adolf and Günther Thiem, two forefathers of hydrogeology
Effects of aquifer geometry on seawater intrusion in annulus segment island aquifers
Depth to water table correction for initial carbon-14 activities in groundwater mean residence time estimation
Preferential pathways for fluid and solutes in heterogeneous groundwater systems: self-organization, entropy, work
Statistical characterization of environmental hot spots and hot moments and applications in groundwater hydrology
Technical note: Disentangling the groundwater response to Earth and atmospheric tides to improve subsurface characterisation
Flowing wells: terminology, history and role in the evolution of groundwater science
Asymmetric impact of groundwater use on groundwater droughts
New model of reactive transport in a single-well push–pull test with aquitard effect and wellbore storage
HESS Opinions: The myth of groundwater sustainability in Asia
Groundwater salinity variation in Upazila Assasuni (southwestern Bangladesh), as steered by surface clay layer thickness, relative elevation and present-day land use
Changes in groundwater drought associated with anthropogenic warming
Application of environmental tracers for investigation of groundwater mean residence time and aquifer recharge in fault-influenced hydraulic drop alluvium aquifers
HESS Opinions: Linking Darcy's equation to the linear reservoir
Effects of microarrangement of solid particles on PCE migration and its remediation in porous media
Hydrological connectivity from glaciers to rivers in the Qinghai–Tibet Plateau: roles of suprapermafrost and subpermafrost groundwater
Temporal variations of groundwater tables and implications for submarine groundwater discharge: a 3-decade case study in central Japan
Consequences and mitigation of saltwater intrusion induced by short-circuiting during aquifer storage and recovery in a coastal subsurface
Understanding groundwater – students' pre-conceptions and conceptual change by means of a theory-guided multimedia learning program
The referential grain size and effective porosity in the Kozeny–Carman model
Approximate analysis of three-dimensional groundwater flow toward a radial collector well in a finite-extent unconfined aquifer
Technical Note: The use of an interrupted-flow centrifugation method to characterise preferential flow in low permeability media
Shallow groundwater thermal sensitivity to climate change and land cover disturbances: derivation of analytical expressions and implications for stream temperature modeling
Confronting the vicinity of the surface water and sea shore in a shallow glaciogenic aquifer in southern Finland
Residence times and mixing of water in river banks: implications for recharge and groundwater–surface water exchange
Using 14C and 3H to understand groundwater flow and recharge in an aquifer window
Hydrogeology of an Alpine rockfall aquifer system and its role in flood attenuation and maintaining baseflow
Transferring the concept of minimum energy dissipation from river networks to subsurface flow patterns
Spectral induced polarization measurements for predicting the hydraulic conductivity in sandy aquifers
Transient analysis of fluctuations of electrical conductivity as tracer in the stream bed
Teaching hydrogeology: a review of current practice
Transient flow between aquifers and surface water: analytically derived field-scale hydraulic heads and fluxes
Influence of initial heterogeneities and recharge limitations on the evolution of aperture distributions in carbonate aquifers
Impact of climate change on groundwater point discharge: backflooding of karstic springs (Loiret, France)
Stream depletion rate with horizontal or slanted wells in confined aquifers near a stream
Tidal propagation in an oceanic island with sloping beaches
Mingyang Li, Fulin Li, Shidong Fu, Huawei Chen, Kairan Wang, Xuequn Chen, and Jiwen Huang
Hydrol. Earth Syst. Sci., 28, 4623–4642, https://doi.org/10.5194/hess-28-4623-2024, https://doi.org/10.5194/hess-28-4623-2024, 2024
Short summary
Short summary
Research on groundwater-dependent ecosystems (GDEs) started earlier, but because there is no good identification and classification method, most of the related research is concentrated in Europe and Australia. In this study, the lower Yellow River basin in northern China, with well-developed karsts, was selected as the study area, and a four-diagnostic-criteria framework for identifying the GDEs based on remote sensing, GIS data dredging, and hydrogeological surveys was proposed.
Roi Roded, Einat Aharonov, Piotr Szymczak, Manolis Veveakis, Boaz Lazar, and Laura E. Dalton
Hydrol. Earth Syst. Sci., 28, 4559–4576, https://doi.org/10.5194/hess-28-4559-2024, https://doi.org/10.5194/hess-28-4559-2024, 2024
Short summary
Short summary
Common practices in water resource management and geothermal applications involve the injection of hot or cold water into aquifers. The resulting thermal changes may lead to chemical disequilibrium and consequent mineral dissolution/precipitation in the rock void space. A mathematical model is developed to study the effects of such thermal fluid injection on the evolution of water composition, aquifer porosity, and permeability. The model is then applied to two important case studies.
Rémi Valois, Agnès Rivière, Jean-Michel Vouillamoz, and Gabriel C. Rau
Hydrol. Earth Syst. Sci., 28, 1041–1054, https://doi.org/10.5194/hess-28-1041-2024, https://doi.org/10.5194/hess-28-1041-2024, 2024
Short summary
Short summary
Characterizing aquifer systems is challenging because it is difficult to obtain in situ information. They can, however, be characterized using natural forces such as Earth tides. Models that account for more complex situations are still necessary to extend the use of Earth tides to assess hydromechanical properties of aquifer systems. Such a model is developed in this study and applied to a case study in Cambodia, where a combination of tides was used in order to better constrain the model.
Jannick Strüven and Stefan Hergarten
Hydrol. Earth Syst. Sci., 27, 3041–3058, https://doi.org/10.5194/hess-27-3041-2023, https://doi.org/10.5194/hess-27-3041-2023, 2023
Short summary
Short summary
This study uses dendritic flow patterns to analyze the recession behavior of aquifer springs. The results show that the long-term recession becomes slower for large catchments. After a short recharge event, however, the short-term behavior differs strongly from the exponential recession that would be expected from a linear reservoir. The exponential component still accounts for more than 80 % of the total discharge, much more than typically assumed for karst aquifers.
Tom Müller, Stuart N. Lane, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 26, 6029–6054, https://doi.org/10.5194/hess-26-6029-2022, https://doi.org/10.5194/hess-26-6029-2022, 2022
Short summary
Short summary
This research provides a comprehensive analysis of groundwater storage in Alpine glacier forefields, a zone rapidly evolving with glacier retreat. Based on data analysis of a case study, it provides a simple perceptual model showing where and how groundwater is stored and released in a high Alpine environment. It especially points out the presence of groundwater storages in both fluvial and bedrock aquifers, which may become more important with future glacier retreat.
Jie Yang, Qiaoyu Wang, Ingo Heidbüchel, Chunhui Lu, Yueqing Xie, Andreas Musolff, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 26, 5051–5068, https://doi.org/10.5194/hess-26-5051-2022, https://doi.org/10.5194/hess-26-5051-2022, 2022
Short summary
Short summary
We assessed the effect of catchment topographic slopes on the nitrate export dynamics in terms of the nitrogen mass fluxes and concentration level using a coupled surface–subsurface model. We found that flatter landscapes tend to retain more nitrogen mass in the soil and export less nitrogen mass to the stream, explained by the reduced leaching and increased potential of degradation in flat landscapes. We emphasized that stream water quality is potentially less vulnerable in flatter landscapes.
Leïla Serène, Christelle Batiot-Guilhe, Naomi Mazzilli, Christophe Emblanch, Milanka Babic, Julien Dupont, Roland Simler, Matthieu Blanc, and Gérard Massonnat
Hydrol. Earth Syst. Sci., 26, 5035–5049, https://doi.org/10.5194/hess-26-5035-2022, https://doi.org/10.5194/hess-26-5035-2022, 2022
Short summary
Short summary
This work aims to develop the Transit Time index (TTi) as a natural tracer of karst groundwater transit time, usable in the 0–6-month range. Based on the fluorescence of organic matter, TTi shows its relevance to detect a small proportion of fast infiltration water within a mix, while other natural transit time tracers provide no or less sensitive information. Comparison of the average TTi of different karst springs also provides consistent results with the expected relative transit times.
Gabriel C. Rau, Timothy C. McMillan, Martin S. Andersen, and Wendy A. Timms
Hydrol. Earth Syst. Sci., 26, 4301–4321, https://doi.org/10.5194/hess-26-4301-2022, https://doi.org/10.5194/hess-26-4301-2022, 2022
Short summary
Short summary
This work develops and applies a new method to estimate hydraulic and geomechanical subsurface properties in situ using standard groundwater and atmospheric pressure records. The estimated properties comply with expected values except for the Poisson ratio, which we attribute to the investigated scale and conditions. Our new approach can be used to cost-effectively investigate the subsurface using standard monitoring datasets.
Georg J. Houben and Okke Batelaan
Hydrol. Earth Syst. Sci., 26, 4055–4091, https://doi.org/10.5194/hess-26-4055-2022, https://doi.org/10.5194/hess-26-4055-2022, 2022
Short summary
Short summary
Unbeknown to most hydrologists, many methods used in groundwater hydrology today go back to work by Adolf and Günther Thiem. Their work goes beyond the Dupuit–Thiem analytical model for pump tests mentioned in many textbooks. It includes, e.g., the development and improvement of isopotential maps, tracer tests, and vertical well constructions. Extensive literature and archive research has been conducted to identify how and where the Thiems developed their methods and how they spread.
Zhaoyang Luo, Jun Kong, Chengji Shen, Pei Xin, Chunhui Lu, Ling Li, and David Andrew Barry
Hydrol. Earth Syst. Sci., 25, 6591–6602, https://doi.org/10.5194/hess-25-6591-2021, https://doi.org/10.5194/hess-25-6591-2021, 2021
Short summary
Short summary
Analytical solutions are derived for steady-state seawater intrusion in annulus segment aquifers. These analytical solutions are validated by comparing their predictions with experimental data. We find seawater intrusion is the most extensive in divergent aquifers, and the opposite is the case for convergent aquifers. The analytical solutions facilitate engineers and hydrologists in evaluating seawater intrusion more efficiently in annulus segment aquifers with a complex geometry.
Dylan J. Irvine, Cameron Wood, Ian Cartwright, and Tanya Oliver
Hydrol. Earth Syst. Sci., 25, 5415–5424, https://doi.org/10.5194/hess-25-5415-2021, https://doi.org/10.5194/hess-25-5415-2021, 2021
Short summary
Short summary
It is widely assumed that 14C is in contact with the atmosphere until recharging water reaches the water table. Unsaturated zone (UZ) studies have shown that 14C decreases with depth below the land surface. We produce a relationship between UZ 14C and depth to the water table to estimate input 14C activities for groundwater age estimation. Application of the new relationship shows that it is important for UZ processes to be considered in groundwater mean residence time estimation.
Erwin Zehe, Ralf Loritz, Yaniv Edery, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 25, 5337–5353, https://doi.org/10.5194/hess-25-5337-2021, https://doi.org/10.5194/hess-25-5337-2021, 2021
Short summary
Short summary
This study uses the concepts of entropy and work to quantify and explain the emergence of preferential flow and transport in heterogeneous saturated porous media. We found that the downstream concentration of solutes in preferential pathways implies a downstream declining entropy in the transverse distribution of solute transport pathways. Preferential flow patterns with lower entropies emerged within media of higher heterogeneity – a stronger self-organization despite a higher randomness.
Jiancong Chen, Bhavna Arora, Alberto Bellin, and Yoram Rubin
Hydrol. Earth Syst. Sci., 25, 4127–4146, https://doi.org/10.5194/hess-25-4127-2021, https://doi.org/10.5194/hess-25-4127-2021, 2021
Short summary
Short summary
We developed a stochastic framework with indicator random variables to characterize the spatiotemporal distribution of environmental hot spots and hot moments (HSHMs) that represent rare locations and events exerting a disproportionate influence over the environment. HSHMs are characterized by static and dynamic indicators. This framework is advantageous as it allows us to calculate the uncertainty associated with HSHMs based on uncertainty associated with its contributors.
Gabriel C. Rau, Mark O. Cuthbert, R. Ian Acworth, and Philipp Blum
Hydrol. Earth Syst. Sci., 24, 6033–6046, https://doi.org/10.5194/hess-24-6033-2020, https://doi.org/10.5194/hess-24-6033-2020, 2020
Short summary
Short summary
This work provides an important generalisation of a previously developed method that quantifies subsurface barometric efficiency using the groundwater level response to Earth and atmospheric tides. The new approach additionally allows the quantification of hydraulic conductivity and specific storage. This enables improved and rapid assessment of subsurface processes and properties using standard pressure measurements.
Xiao-Wei Jiang, John Cherry, and Li Wan
Hydrol. Earth Syst. Sci., 24, 6001–6019, https://doi.org/10.5194/hess-24-6001-2020, https://doi.org/10.5194/hess-24-6001-2020, 2020
Short summary
Short summary
The gushing of water from flowing wells is a natural phenomenon of interest to the public. This review demonstrates that this spectacular phenomenon also instigated the science of groundwater and can be considered a root of groundwater hydrology. Observations of flowing wells not only led to the foundation of many principles of traditional groundwater hydrology but also played a vital role in the paradigm shift from aquitard-bound flow to cross-formational flow driven by topography.
Doris E. Wendt, Anne F. Van Loon, John P. Bloomfield, and David M. Hannah
Hydrol. Earth Syst. Sci., 24, 4853–4868, https://doi.org/10.5194/hess-24-4853-2020, https://doi.org/10.5194/hess-24-4853-2020, 2020
Short summary
Short summary
Groundwater use changes the availability of groundwater, especially during droughts. This study investigates the impact of groundwater use on groundwater droughts. A methodological framework is presented that was developed and applied to the UK. We identified an asymmetric impact of groundwater use on droughts, which highlights the relation between short-term and long-term strategies for sustainable groundwater use.
Quanrong Wang, Junxia Wang, Hongbin Zhan, and Wenguang Shi
Hydrol. Earth Syst. Sci., 24, 3983–4000, https://doi.org/10.5194/hess-24-3983-2020, https://doi.org/10.5194/hess-24-3983-2020, 2020
Franklin W. Schwartz, Ganming Liu, and Zhongbo Yu
Hydrol. Earth Syst. Sci., 24, 489–500, https://doi.org/10.5194/hess-24-489-2020, https://doi.org/10.5194/hess-24-489-2020, 2020
Short summary
Short summary
We are concerned about the sad state of affairs around groundwater in the developing countries of Asia and the obvious implications for sustainability. Groundwater production for irrigated agriculture has led to water-level declines that continue to worsen. Yet in the most populous countries, China, India, Pakistan, and Iran, there are only token efforts towards evidence-based sustainable management. It is unrealistic to expect evidence-based groundwater sustainability to develop any time soon.
Floris Loys Naus, Paul Schot, Koos Groen, Kazi Matin Ahmed, and Jasper Griffioen
Hydrol. Earth Syst. Sci., 23, 1431–1451, https://doi.org/10.5194/hess-23-1431-2019, https://doi.org/10.5194/hess-23-1431-2019, 2019
Short summary
Short summary
In this paper, we postulate a possible evolution of the groundwater salinity around a village in southwestern Bangladesh, based on high-density fieldwork. We identified that the thickness of the surface clay layer, the surface elevation and the present-day land use determine whether fresh or saline groundwater has formed. The outcomes show how the large groundwater salinity variation in southwestern Bangladesh can be understood, which is valuable for the water management in the region.
John P. Bloomfield, Benjamin P. Marchant, and Andrew A. McKenzie
Hydrol. Earth Syst. Sci., 23, 1393–1408, https://doi.org/10.5194/hess-23-1393-2019, https://doi.org/10.5194/hess-23-1393-2019, 2019
Short summary
Short summary
Groundwater is susceptible to drought due to natural variations in climate; however, to date there is no evidence of a relationship between climate change and groundwater drought. Using two long groundwater level records from the UK, we document increases in frequency, magnitude and intensity and changes in duration of groundwater drought associated with climate warming and infer that, given the extent of shallow groundwater globally, warming may widely effect changes to groundwater droughts.
Bin Ma, Menggui Jin, Xing Liang, and Jing Li
Hydrol. Earth Syst. Sci., 23, 427–446, https://doi.org/10.5194/hess-23-427-2019, https://doi.org/10.5194/hess-23-427-2019, 2019
Short summary
Short summary
Groundwater supplies the most freshwater for industrial and agricultural production and domestic use in the arid northwest of China. This research uses environmental tracers to enhance one's understanding of groundwater, including aquifer recharge sources and groundwater mean residence times in the alluvium aquifers. The results provide valuable implications for groundwater resources regulation and sustainable development and have practical significance for other arid areas.
Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 22, 1911–1916, https://doi.org/10.5194/hess-22-1911-2018, https://doi.org/10.5194/hess-22-1911-2018, 2018
Short summary
Short summary
This paper provides the connection between two simple equations describing groundwater flow at different scales: the Darcy equation describes groundwater flow at pore scale, the linear reservoir equation at catchment scale. The connection between the two appears to be very simple. The two parameters of the equations are proportional, depending on the porosity of the subsoil and the resistance for the groundwater to enter the surface drainage network.
Ming Wu, Jianfeng Wu, Jichun Wu, and Bill X. Hu
Hydrol. Earth Syst. Sci., 22, 1001–1015, https://doi.org/10.5194/hess-22-1001-2018, https://doi.org/10.5194/hess-22-1001-2018, 2018
Short summary
Short summary
Fractal models of regular triangle arrangement (RTA) and square pitch arrangement (SPA) are developed in this study. Results suggest RTA can cause more groundwater contamination and make remediation more difficult. In contrast, the cleanup of contaminants in aquifers with SPA is easier. This study demonstrates how microscale arrangements control contaminant migration and remediation, which is helpful in designing successful remediation schemes for subsurface contamination.
Rui Ma, Ziyong Sun, Yalu Hu, Qixin Chang, Shuo Wang, Wenle Xing, and Mengyan Ge
Hydrol. Earth Syst. Sci., 21, 4803–4823, https://doi.org/10.5194/hess-21-4803-2017, https://doi.org/10.5194/hess-21-4803-2017, 2017
Short summary
Short summary
The roles of groundwater flow in the hydrological cycle within the alpine area characterized by permafrost or seasonal frost are poorly known. We investigated the role of permafrost in controlling groundwater flow and hydrological connections between glaciers and river. The recharge, flow path and discharge of permafrost groundwater at the study site were explored. Two mechanisms were proposed to explain the significantly seasonal variation in interaction between groundwater and surface water.
Bing Zhang, Jing Zhang, and Takafumi Yoshida
Hydrol. Earth Syst. Sci., 21, 3417–3425, https://doi.org/10.5194/hess-21-3417-2017, https://doi.org/10.5194/hess-21-3417-2017, 2017
Short summary
Short summary
Since groundwater is the linkage between climate changes and fresh submarine groundwater discharge, the variations of and relationships among monthly groundwater table, rainfall, snowfall, and climate change events from 1985 to 2015 were analyzed by wavelet coherence to discuss the implications for climate changes. The results show the increase in precipitation and the groundwater table, indicating that fresh submarine groundwater discharge flux may increase under climate change.
Koen Gerardus Zuurbier and Pieter Jan Stuyfzand
Hydrol. Earth Syst. Sci., 21, 1173–1188, https://doi.org/10.5194/hess-21-1173-2017, https://doi.org/10.5194/hess-21-1173-2017, 2017
Short summary
Short summary
The subsurface is increasingly perforated for exploitation of water and energy. This has increased the risk of leakage between originally separated aquifers. It is shown how this leakage can have a very negative impact on the recovery of freshwater during aquifer storage and recovery (ASR) in brackish-saline aquifers. Deep interception of intruding brackish-saline water can mitigate the negative effects and buoyancy of freshwater to some extent, but not completely.
Ulrike Unterbruner, Sylke Hilberg, and Iris Schiffl
Hydrol. Earth Syst. Sci., 20, 2251–2266, https://doi.org/10.5194/hess-20-2251-2016, https://doi.org/10.5194/hess-20-2251-2016, 2016
Short summary
Short summary
Studies show that young people have difficulties with correctly understanding groundwater. We designed a multimedia learning program about groundwater and tested its learning efficacy with pupils and teacher-training students. A novelty is the theory-guided designing of the program on the basis of hydrogeology and science education. The pupils and students greatly benefited from working through the multimedia learning program.
Kosta Urumović and Kosta Urumović Sr.
Hydrol. Earth Syst. Sci., 20, 1669–1680, https://doi.org/10.5194/hess-20-1669-2016, https://doi.org/10.5194/hess-20-1669-2016, 2016
Short summary
Short summary
Calculation of hydraulic conductivity of porous materials is crucial for further use in hydrogeological modeling. The Kozeny–Carman model is theoretically impeccable but has not been properly used in recent scientific and expert literature. In this paper, proper use of the Kozeny-Carman formula is given through presentation of geometric mean grain size in the drilled-core sample as the referential mean grain size. Also, procedures for identification of real effective porosity of porous media are presented.
C.-S. Huang, J.-J. Chen, and H.-D. Yeh
Hydrol. Earth Syst. Sci., 20, 55–71, https://doi.org/10.5194/hess-20-55-2016, https://doi.org/10.5194/hess-20-55-2016, 2016
Short summary
Short summary
Existing solutions for the problem of pumping at a radial collector well (RCW) in unconfined aquifers either require laborious calculation or predict divergent results at a middle period of pumping. This study relaxes the above two limitations to develop a new analytical solution for the problem. The application of the solution is convenient for those who are not familiar with numerical methods. New findings regarding the responses of flow to pumping at RCW are addressed.
R. A. Crane, M. O. Cuthbert, and W. Timms
Hydrol. Earth Syst. Sci., 19, 3991–4000, https://doi.org/10.5194/hess-19-3991-2015, https://doi.org/10.5194/hess-19-3991-2015, 2015
Short summary
Short summary
We present an interrupted-flow centrifugation technique to characterise the vertical hydraulic properties of dual porosity, low permeability media. Use of large core samples (100mm diameter) enables hydraulic-conductivity-scale issues in dual porosity media to be overcome. Elevated centrifugal force also enables simulating in situ total stress conditions. The methodology is an important tool to assess the ability of dual porosity aquitards to protect underlying aquifer systems.
B. L. Kurylyk, K. T. B. MacQuarrie, D. Caissie, and J. M. McKenzie
Hydrol. Earth Syst. Sci., 19, 2469–2489, https://doi.org/10.5194/hess-19-2469-2015, https://doi.org/10.5194/hess-19-2469-2015, 2015
Short summary
Short summary
Changes in climate and land cover are known to warm streams by altering surface heat fluxes. However, the influence of these disturbances on shallow groundwater temperature are not as well understood. In small streams, groundwater discharge may also exert a control on stream temperature, and thus groundwater warming may eventually produce additional stream warming not considered in most existing models. This study investigates these processes and suggests stream temperature model improvements.
S. Luoma, J. Okkonen, K. Korkka-Niemi, N. Hendriksson, and B. Backman
Hydrol. Earth Syst. Sci., 19, 1353–1370, https://doi.org/10.5194/hess-19-1353-2015, https://doi.org/10.5194/hess-19-1353-2015, 2015
N. P. Unland, I. Cartwright, D. I. Cendón, and R. Chisari
Hydrol. Earth Syst. Sci., 18, 5109–5124, https://doi.org/10.5194/hess-18-5109-2014, https://doi.org/10.5194/hess-18-5109-2014, 2014
Short summary
Short summary
Periodic flooding of rivers should result in increased groundwater recharge near rivers and thus - younger and fresher groundwater near rivers. This study found the age and salinity of shallow groundwater to increase with proximity to the Tambo River in South East Australia. This appears to be due to the upwelling of older, regional groundwater closer the river. Other chemical parameters are consistent with this. This is a process that may be occurring in other similar river systems.
A. P. Atkinson, I. Cartwright, B. S. Gilfedder, D. I. Cendón, N. P. Unland, and H. Hofmann
Hydrol. Earth Syst. Sci., 18, 4951–4964, https://doi.org/10.5194/hess-18-4951-2014, https://doi.org/10.5194/hess-18-4951-2014, 2014
Short summary
Short summary
This research article uses of radiogenic isotopes, stable isotopes and groundwater geochemistry to study groundwater age and recharge processes in the Gellibrand Valley, a relatively unstudied catchment and potential groundwater resource. The valley is found to contain both "old", regionally recharged groundwater (300-10,000 years) in the near-river environment, and modern groundwater (0-100 years old) further back on the floodplain. There is no recharge of the groundwater by high river flows.
U. Lauber, P. Kotyla, D. Morche, and N. Goldscheider
Hydrol. Earth Syst. Sci., 18, 4437–4452, https://doi.org/10.5194/hess-18-4437-2014, https://doi.org/10.5194/hess-18-4437-2014, 2014
S. Hergarten, G. Winkler, and S. Birk
Hydrol. Earth Syst. Sci., 18, 4277–4288, https://doi.org/10.5194/hess-18-4277-2014, https://doi.org/10.5194/hess-18-4277-2014, 2014
M. Attwa and T. Günther
Hydrol. Earth Syst. Sci., 17, 4079–4094, https://doi.org/10.5194/hess-17-4079-2013, https://doi.org/10.5194/hess-17-4079-2013, 2013
C. Schmidt, A. Musolff, N. Trauth, M. Vieweg, and J. H. Fleckenstein
Hydrol. Earth Syst. Sci., 16, 3689–3697, https://doi.org/10.5194/hess-16-3689-2012, https://doi.org/10.5194/hess-16-3689-2012, 2012
T. Gleeson, D. M. Allen, and G. Ferguson
Hydrol. Earth Syst. Sci., 16, 2159–2168, https://doi.org/10.5194/hess-16-2159-2012, https://doi.org/10.5194/hess-16-2159-2012, 2012
G. H. de Rooij
Hydrol. Earth Syst. Sci., 16, 649–669, https://doi.org/10.5194/hess-16-649-2012, https://doi.org/10.5194/hess-16-649-2012, 2012
B. Hubinger and S. Birk
Hydrol. Earth Syst. Sci., 15, 3715–3729, https://doi.org/10.5194/hess-15-3715-2011, https://doi.org/10.5194/hess-15-3715-2011, 2011
E. Joigneaux, P. Albéric, H. Pauwels, C. Pagé, L. Terray, and A. Bruand
Hydrol. Earth Syst. Sci., 15, 2459–2470, https://doi.org/10.5194/hess-15-2459-2011, https://doi.org/10.5194/hess-15-2459-2011, 2011
P.-R. Tsou, Z.-Y. Feng, H.-D. Yeh, and C.-S. Huang
Hydrol. Earth Syst. Sci., 14, 1477–1485, https://doi.org/10.5194/hess-14-1477-2010, https://doi.org/10.5194/hess-14-1477-2010, 2010
Y.-C. Chang, D.-S. Jeng, and H.-D. Yeh
Hydrol. Earth Syst. Sci., 14, 1341–1351, https://doi.org/10.5194/hess-14-1341-2010, https://doi.org/10.5194/hess-14-1341-2010, 2010
Cited articles
Andrade, A. I. A. S. S. and Stigter, T. Y.: Multi-method assessment of nitrate and pesticide contamination in shallow alluvial groundwater as a function of hydrogeological setting and land use, Agr. Water Manage., 96, 1751–1765, https://doi.org/10.1016/j.agwat.2009.07.014, 2009.
Arheimer, B., and Lidén, R.: Nitrogen and phosphorus concentrations from agricultural catchments – influence of spatial and temporal variables, J. Hydrol., 227, 140–159, https://doi.org/10.1016/S0022-1694(99)00177-8, 2000.
Atkinson, T.: Diffuse flow and conduit flow in limestone terrain in the Mendip Hills, Somerset (Great Britain), J. Hydrol., 35, 93–110, 1977.
Badruzzaman, M., Pinzon, J., Oppenheimer, J., and Jacangelo, J. G.: Sources of nutrients impacting surface waters in florida: A review, J. Environ. Manage., 109, 80–92, 2012.
Baedke, S. and Krothe, N.: Derivation of effective hydraulic parameters of a karst aquifer from discharge hydrograph analysis, Water Resour. Res., 37, 13–19, 2001.
Bakalowicz, M.: Karst groundwater: A challenge for new resources, Hydrogeol. J., 13, 148–160, https://doi.org/10.1007/s10040-004-0402-9, 2005.
Bakalowicz, M. and Mangion, J.: The limestone aquifers of malta: Their recharge conditions from isotope and chemical surveys, IAHS-AISH Publication, 49–54, 2003.
Baran, N., Lepiller, M., and Mouvet, C.: Agricultural diffuse pollution in a chalk aquifer (trois fontaines, france): Influence of pesticide properties and hydrodynamic constraints, J. Hydrol., 358, 56–69, https://doi.org/10.1016/j.jhydrol.2008.05.031, 2008.
Bende-Michl, U., Verburg, K., and Cresswell, H.: High-frequency nutrient monitoring to infer seasonal patterns in catchment source availability, mobilisation and delivery, Environ. Monit. Assess., 185, 9191–9219, https://doi.org/10.1007/s10661-013-3246-8, 2013.
Birk, S., Liedl, R., and Sauter, M.: Karst spring responses examined by process-based modeling, Ground Water, 44, 832–836, https://doi.org/10.1111/j.1745-6584.2006.00175.x, 2006.
Böhlke, J.-K.: Groundwater recharge and agricultural contamination, Hydrogeol. J., 10, 153–179, https://doi.org/10.1007/s10040-001-0183-3, 2002.
Buckley, C. and Carney, P.: The potential to reduce the risk of diffuse pollution from agriculture while improving economic performance at farm level, Environ. Sci. Pol., 25, 118–126, 2013.
Butscher, C., Auckenthaler, A., Scheidler, S., and Huggenberger, P.: Validation of a numerical indicator of microbial contamination for karst springs, Ground Water, 49, 66–76, 2011.
Campbell, J. L., Hornbeck, J. W., Mitchell, M. J., Adams, M. B., Castro, M. S., Driscoll, C. T., Kahl, J. S., Kochenderfer, J. N., Likens, G. E., and Lynch, J. A.: Input-output budgets of inorganic nitrogen for 24 forest watersheds in the northeastern United States: a review, Water, Air, and Soil Pollution, 151, 373–396, 2004.
Di, H. J. and Cameron, K. C.: Nitrate leaching in temperate agroecosystems: Sources, factors and mitigating strategies, Nutr. Cycl. Agroecosys., 64, 237–256, https://doi.org/10.1023/a:1021471531188, 2002.
Di, H. J., Cameron, K. C., Moore, S., and Smith, N. P.: Nitrate leaching and pasture yields following the application of dairy shed effluent or ammonium fertilizer under spray or flood irrigation: results of a lysimeter study, Soil Use Manage., 14, 209–214, 1998.
Drolc, A. and Vrtovšek, J.: Nitrate and nitrite nitrogen determination in waste water using on-line uv spectrometric method, Bioresource Technol., 101, 4228–4233, https://doi.org/10.1016/j.biortech.2010.01.015, 2010.
European Community (EC): Council Directive 91/676/EEC of 21 May 1991 concerning the protection of waters against pollution by nitrates from agricultural sources, Off. J. Eur. Commun., 1–8, 1991.
Einsiedl, F. and Mayer, B.: Hydrodynamic and microbial processes controlling nitrate in a fissured-porous karst aquifer of the Franconian Alb, Southern Germany, Environ. Sci. Technol., 40, 6697–6702, 2006.
Einsiedl, F., Maloszewski, P., and Stichler, W.: Estimation of denitrification potential in a karst aquifer using the 15N and 18O isotopes of NO3-, Biogeochemistry, 72, 67–86, 2005.
Ford, D. C. and Williams, P. W.: Karst hydrogeology and geomorphology, John Wiley & Sons, 2007.
Gächter, R., Steingruber, S., Reinhardt, M., and Wehrli, B.: Nutrient transfer from soil to surface waters: Differences between nitrate and phosphate, Aquat. Sci., 66, 117–122, https://doi.org/10.1007/s00027-003-0661-x, 2004.
Galloway, J. N. and Cowling, E. B.: Reactive nitrogen and the world: 200 years of change, Ambio, 31, 64–71, 2002.
Geological Survey of Ireland (GSI): The Karst of Ireland – Limestone Landscapes, Caves and Groundwater Drainage Systems, 1–37, 2000.
Goldscheider, N., Pronk, M., and Zopfi, J.: New insights into the transport of sediments and microorganisms in karst groundwater by continuous monitoring of particle-size distribution, Geologia Croatica, 63, 137–142, 2010.
Grimmeisen, F., Zeemann, M., Sawarieh, A., Wolf, L. and Goldscheider, N.: Groundwater protection of an urbanized karst area with semi-arid climate – Case study Hazzir spring, Wadi Shueib, Jordan, Poster, Grundwasserschutz und Grundwassernutzung – FH-DGG-Tagung, Dresden, 2012 (in German).
Hem, J. D.: Study and interpretation of the chemical characteristics of natural water, US Geological Survey, Water Supply Paper 2254, 1–263, 1985.
Heffernan, J. B., Albertin, A. R., Fork, M. L., Katz, B. G., and Cohen, M. J.: Denitrification and inference of nitrogen sources in the karstic Floridan Aquifer, Biogeosciences, 9, 1671–1690, https://doi.org/10.5194/bg-9-1671-2012, 2012.
Huebsch, M., Horan, B., Blum, P., Richards, K. G., Grant, J., and Fenton, O.: Impact of agronomic practices of an intensive dairy farm on nitrogen concentrations in a karst aquifer in Ireland, Agric. Ecosyst. Environ., 179, 187–199, https://doi.org/10.1016/j.agee.2013.08.021, 2013.
Jahangir, M. M. R., Johnston, P., Khalil, M. I., Hennessy, D., Humphreys, J., Fenton, O., and Richards, K. G.: Groundwater: A pathway for terrestrial c and n losses and indirect greenhouse gas emissions, Agriculture, Ecosystems and Environment, 159, 40–48, 2012a.
Jahangir, M. M. R., Johnston, P., Khalil, M. I., and Richards, K. G.: Linking hydrogeochemistry to nitrate abundance in groundwater in agricultural settings in ireland, J. Hydrol., 448–449, 212–222, https://doi.org/10.1016/j.jhydrol.2012.04.054, 2012b.
Kaçaroglu, F.: Review of groundwater pollution and protection in karst areas, Water, Air, and Soil Pollution, 113, 337–356, 1999.
Kamphake, L. J., Hannah, S. A., and Cohen, J. M.: Automated analysis for nitrate by hydrazine reduction, Water Res., 1, 205–216, 1967.
Kiraly, L.: Modelling karst aquifers by the combined discrete channel and continuum approach, Bulletin d'Hydrogéologie, 16, 77–98, 1998.
Knobeloch, L., Salna, B., Hogan, A., Postle, J., and Anderson, H.: Blue babies and nitrate-contaminated well water, Environ. Health Persp., 108, 675–678, https://doi.org/10.2307/3434890, 2000.
Kurz, I., Coxon, C., Tunney, H., and Ryan, D.: Effects of grassland management practices and environmental conditions on nutrient concentrations in overland flow, J. Hydrol., 304, 35–50, 2005.
L'hirondel, J.: Nitrate and man: Toxic, harmless or beneficial?, CABI, 2002.
Landig, F.: Determination of nitrate fluxes in a fractured karst limestone aquifer below a dairy farm in Co. Cork, Ireland, University of Tübingen, 1–93, 2009.
Landig, F., Fenton, O., Bons, P., Hennessy, D., Richards, K., and Blum, P.: Estimation of nitrate discharge in a fractured limestone aquifer below a dairy farm in Ireland, IAHS-AISH Publication, 469–472, 2011.
Liao, L., Green, C. T., Bekins, B. A., and Böhlke, J. K.: Factors controlling nitrate fluxes in groundwater in agricultural areas, Water Resour. Res., 48, W00L09, https://doi.org/10.1029/2011wr011008, 2012.
Liu, R., Zhang, P., Wang, X., Chen, Y., and Shen, Z.: Assessment of effects of best management practices on agricultural non-point source pollution in xiangxi river watershed, Agricult. Water Manage., 117, 9–18, https://doi.org/10.1016/j.agwat.2012.10.018, 2013.
Mahler, B. J., Valdes, D., Musgrove, M., and Massei, N.: Nutrient dynamics as indicators of karst processes: Comparison of the chalk aquifer (normandy, france) and the edwards aquifer (Texas, USA), J. Contam. Hydrol., 98, 36–49, https://doi.org/10.1016/j.jconhyd.2008.02.006, 2008.
Mellander, P. E., Jordan, P., Melland, A. R., Murphy, P. N. C., Wall, D. P., Mechan, S., Meehan, R., Kelly, C., Shine, O., and Shortle, G.: Quantification of phosphorus transport from a karstic agricultural watershed to emerging spring water, Environ. Sci. Technol., 47, 6111–6119, 2013.
Mudarra, M., Andreo, B., and Mudry, J.: Monitoring groundwater in the discharge area of a complex karst aquifer to assess the role of the saturated and unsaturated zones, Environ. Earth Sci., 65, 2321–2336, https://doi.org/10.1007/s12665-011-1032-x, 2012.
Musgrove, M., Katz, B. G., Fahlquist, L. S., Crandall, C. A., and Lindgren, R. J.: Factors Affecting Public-Supply Well Vulnerability in Two Karst Aquifers, Groundwater, 52, 63–75, https://doi.org/10.1111/gwat.12201, 2014.
Oenema, O., Van Liere, L., and Schoumans, O.: Effects of lowering nitrogen and phosphorus surpluses in agriculture on the quality of groundwater and surface water in the netherlands, J. Hydrol., 304, 289–301, 2005.
Oenema, J., van Ittersum, M., and van Keulen, H.: Improving nitrogen management on grassland on commercial pilot dairy farms in the Netherlands, Agriculture, Ecosystems and Environment, 162, 116–126, 2012.
Official Journal of the European 871 Communities (OJEC): Directive 2000/60/EC of the European Parliament and of the council of 23rd October 2000 establishing a framework for Community action in the field of water policy, 1–72, 2000.
Panno, S.: Groundwater contamination in karst terrain of southwestern Illinois, Environmental geology (USA), 1996.
Panno, S. V. and Kelly, W. R.: Nitrate and herbicide loading in two groundwater basins of illinois' sinkhole plain, J. Hydrol., 290, 229–242, https://doi.org/10.1016/j.jhydrol.2003.12.017, 2004.
Panno, S., Hackley, K., Hwang, H., and Kelly, W.: Determination of the sources of nitrate contamination in karst springs using isotopic and chemical indicators, Chem. Geol., 179, 113–128, 2001.
Patil, R. H., Laegdsmand, M., Olesen, J. E., and Porter, J. R.: Effect of soil warming and rainfall patterns on soil N cycling in Northern Europe, Agriculture, Ecosystems and Environment, 139, 195–205, 2010.
Peterson, E. W., Davis, R. K., Brahana, J. V., and Orndorff, H. A.: Movement of nitrate through regolith covered karst terrane, northwest arkansas, J. Hydrol., 256, 35–47, https://doi.org/10.1016/S0022-1694(01)00525-X, 2002.
Plagnes, V. and Bakalowicz, M.: The protection of a karst water resource from the example of the larzac karst plateau (south of france): A matter of regulations or a matter of process knowledge?, Eng. Geol., 65, 107–116, https://doi.org/10.1016/S0013-7952(01)00117-X, 2002.
Pronk, M., Goldscheider, N., and Zopfi, J.: Particle-size distribution as indicator for fecal bacteria contamination of drinking water from karst springs, Environ. Sci. Technol., 41, 8400–8405, 2007.
Pronk, M., Goldscheider, N., and Zopfi, J.: Microbial communities in karst groundwater and their potential use for biomonitoring, Hydrogeol. J., 17, 37–48, 2009.
Pu, J., Yuan, D., He, Q., Wang, Z., Hu, Z., and Gou, P.: High-resolution monitoring of nitrate variations in a typical subterranean karst stream, chongqing, china, Environ. Earth Sci., 64, 1985–1993, https://doi.org/10.1007/s12665-011-1019-7, 2011.
Rahman, R., Frind, E. O., and Rudolph, D. L.: Assessing the impact of beneficial management practices for controlling nitrate concentrations in well water, IAHS-AISH publication, 326–329, 2011.
Ribolzi, O., Andrieux, P., Valles, V., Bouzigues, R., Bariac, T., and Voltz, M.: Contribution of groundwater and overland flows to storm flow generation in a cultivated mediterranean catchment. Quantification by natural chemical tracing, J. Hydrol., 233, 241–257, https://doi.org/10.1016/S0022-1694(00)00238-9, 2000.
Rowden, R., Liu, H., and Libra, R.: Results from the big spring basin water quality monitoring and demonstration projects, iowa, USA, Hydrogeol. J., 9, 487–497, https://doi.org/10.1007/s100400100150, 2001.
Ryan, M. and Meiman, J.: An examination of short-term variations in water quality at a karst spring in kentucky, Ground Water, 34, 23–30, https://doi.org/10.1111/j.1745-6584.1996.tb01861.x, 1996.
Schulte, R. P. O., Diamond, J., Finkele, K., Holden, N. M., and Brereton, A. J.: Predicting the soil moisture conditions of irish grasslands, Irish J. Agricult. Food Res., 44, 95–110, 2005.
Schwientek, M., Osenbrück, K., and Fleischer, M.: Investigating hydrological drivers of nitrate export dynamics in two agricultural catchments in germany using high-frequency data series, Environ. Earth Sci., 69, 381–393, https://doi.org/10.1007/s12665-013-2322-2, 2013.
Sebestyen, S. D., Boyer, E. W., Shanley, J. B., Kendall, C., Doctor, D. H., Aiken, G. R., and Ohte, N.: Sources, transformations, and hydrological processes that control stream nitrate and dissolved organic matter concentrations during snowmelt in an upland forest, Water Resour. Res., 44, W12410, https://doi.org/10.1029/2008wr006983, 2008.
Shuster, E. T. and White, W. B.: Seasonal fluctuations in the chemistry of lime-stone springs: A possible means for characterizing carbonate aquifers, J. Hydrol., 14, 93–128, https://doi.org/10.1016/0022-1694(71)90001-1, 1971.
Sophocleous, M.: On understanding and predicting groundwater response time, Ground Water, 50, 528–540, https://doi.org/10.1111/j.1745-6584.2011.00876.x, 2012.
Spalding, R. F. and Exner, M. E.: Occurrence of nitrate in groundwater – a review, J. Environ. Qual., 22, 392–402, 1993.
Stark, C. H. and Richards, K. G.: The continuing challenge of agricultural nitrogen loss to the environment in the context of global change and advancing research, Dyn. Soil Dyn. Plant, 2, 1–12, 2008.
Stigter, T. Y., Carvalho Dill, A. M. M., and Ribeiro, L.: Major issues regarding the efficiency of monitoring programs for nitrate contaminated groundwater, Environ. Sci. Technol., 45, 8674–8682, https://doi.org/10.1021/es201798g, 2011.
Storey, M. V., van der Gaag, B., and Burns, B. P.: Advances in on-line drinking water quality monitoring and early warning systems, Water Res., 45, 741–747, 2011.
Stueber, A. M. and Criss, R. E.: Origin and transport of dissolved chemicals in a karst watershed, southwestern illinois, J. Am. Water Resour. Assoc., 41, 267–290, https://doi.org/10.1111/j.1752-1688.2005.tb03734.x, 2005.
Tedd, K. M., Coxon, C. E., Misstear, B. D. R., Daly, D., Craig, M., Mannix, A., and Hunter Williams, N. H.: An integrated pressure and pathway approach to the spatial analysis of groundwater nitrate: A case study from the southeast of ireland, Sci. Tot. Environ., 476–477, 460–476, https://doi.org/10.1016/j.scitotenv.2013.12.085, 2014.
Toran, L. and White, W. B.: Variation in nitrate and calcium as indicators of recharge pathways in nolte spring, pa, Environ. Geol., 48, 854–860, https://doi.org/10.1007/s00254-005-0018-y, 2005.
Walkowiak, D. K.: Isco Open Channel Flow Measurement Handbook, Teledyne Isco Inc., Lincoln, 1–520, 2006.
White, W. B.: Geomorphology and hydrology of karst terrains, Oxford university press New York, 1988.
Whitehead, D. C.: Grassland Nitrogen, CAB International, Wallingford, Oxon, UK, 1-416, 1995.
Worthington, S. R., Ford, D. C., and Beddows, P. A.: Porosity and permeability enhancement in unconfined carbonate aquifers as a result of dissolution, Speleogenesis Evolution of Karst Aquifers: Huntsville, Alabama, National Speleological Society, Inc, 463–472, 2000.
Yang, P., Yuan, D., Ye, X., Xie, S., Chen, X., and Liu, Z.: Sources and migration path of chemical compositions in a karst groundwater system during rainfall events, Chin. Sci. Bull., 58, 2488–2496, https://doi.org/10.1007/s11434-013-5762-x, 2013.
Zhijun, W., Pingheng, Y., Qiufang, H., Daoxian, Y., Wenhao, Y., and Yinglun, K.: Hydrochemical variation and its influencing factors in typical karst subterranean river in sw china, 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE), 1–5, https://doi.org/10.1109/icbbe.2010.5518244, 2010.