Articles | Volume 29, issue 1
https://doi.org/10.5194/hess-29-159-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-159-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Can system dynamics explain long-term hydrological behaviors? The role of endogenous linking structure
Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
Zhuping Sheng
Department of Civil Engineering, Morgan State University, Baltimore, MD 21251, USA
Kiril Manevski
Department of Agroecology, Aarhus University, Tjele 8830, Denmark
Sino-Danish College, University of Chinese Academy of Sciences, Yanqihu Campus, Beijing 101408, China
Department of Environmental Science, iClimate – Aarhus University Interdisciplinary Center for Climate Change, Roskilde 4000, Denmark
Rongtian Zhao
State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Qingzhou Zhang
Land Resources Exploration Center of Hebei Bureau of Geology and Mineral Exploration and Development (Hebei Mine and Geological Disaster Emergency Rescue Center), Shijiazhuang 050081, China
Yanmin Yang
Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
Shumin Han
Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
Jinghong Liu
Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
Yonghui Yang
CORRESPONDING AUTHOR
Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
Sino-Danish College, University of Chinese Academy of Sciences, Yanqihu Campus, Beijing 101408, China
College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
Related authors
Xinyao Zhou, Zhuping Sheng, Yanmin Yang, Shumin Han, Qingzhou Zhang, Huilong Li, and Yonghui Yang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-357, https://doi.org/10.5194/hess-2022-357, 2022
Manuscript not accepted for further review
Short summary
Short summary
The hydrological processes of a watershed system are affected by both natural conditions, such as rainfall and drought, and human activities, such as deforestation and afforestation. Therefore different hydrological responses to climatic and anthropogenic changes are expected. Using a spectral approach, this study confirmed that the driving factors of water storage and streamflow generation mechanism vary over time. This is important for water resources management under changing world.
Xinyao Zhou, Yonghui Yang, Zhuping Sheng, and Yongqiang Zhang
Hydrol. Earth Syst. Sci., 23, 2491–2505, https://doi.org/10.5194/hess-23-2491-2019, https://doi.org/10.5194/hess-23-2491-2019, 2019
Short summary
Short summary
Quantifying the impact of upstream water use on downstream water scarcity is critical for water management. Comparing natural and observed runoff in China's 12 basins, this study found surface water use increased 1.6 times for the 1970s-2000s, driving most arid and semi-arid (ASA) basins into water scarcity status. The water stress decreased downstream in ASA basins due to reduced upstream inflow since the 2000s. Upstream water use caused over a 30 % increase in water scarcity in ASA basins.
Xinyao Zhou, Zhuping Sheng, Yanmin Yang, Shumin Han, Qingzhou Zhang, Huilong Li, and Yonghui Yang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-357, https://doi.org/10.5194/hess-2022-357, 2022
Manuscript not accepted for further review
Short summary
Short summary
The hydrological processes of a watershed system are affected by both natural conditions, such as rainfall and drought, and human activities, such as deforestation and afforestation. Therefore different hydrological responses to climatic and anthropogenic changes are expected. Using a spectral approach, this study confirmed that the driving factors of water storage and streamflow generation mechanism vary over time. This is important for water resources management under changing world.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Xinyao Zhou, Yonghui Yang, Zhuping Sheng, and Yongqiang Zhang
Hydrol. Earth Syst. Sci., 23, 2491–2505, https://doi.org/10.5194/hess-23-2491-2019, https://doi.org/10.5194/hess-23-2491-2019, 2019
Short summary
Short summary
Quantifying the impact of upstream water use on downstream water scarcity is critical for water management. Comparing natural and observed runoff in China's 12 basins, this study found surface water use increased 1.6 times for the 1970s-2000s, driving most arid and semi-arid (ASA) basins into water scarcity status. The water stress decreased downstream in ASA basins due to reduced upstream inflow since the 2000s. Upstream water use caused over a 30 % increase in water scarcity in ASA basins.
Yawen Wang, Martin Wild, Arturo Sanchez-Lorenzo, Yonghui Yang, Veronica Manara, and Dandan Ren
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-657, https://doi.org/10.5194/acp-2016-657, 2016
Revised manuscript not accepted
Short summary
Short summary
The strong decadal variations in surface solar radiation, known as "global dimming and brightening", are considered to be related to anthropogenic activities. Based on a comprehensive set of sunshine duration measurements in China, the present study investigates to what extent these changes occurred, only in cities or also in remote areas. The quantification of this "urbanization effect" enables a more accurate determination of the large scale variations of surface solar radiation over China.
Y. W. Wang and Y. H. Yang
Ann. Geophys., 32, 41–55, https://doi.org/10.5194/angeo-32-41-2014, https://doi.org/10.5194/angeo-32-41-2014, 2014
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Theory development
Characterizing nonlinear, nonstationary, and heterogeneous hydrologic behavior using ensemble rainfall–runoff analysis (ERRA): proof of concept
Ratio limits of water storage and outflow in a rainfall–runoff process
Technical Note: The divide and measure nonconformity – how metrics can mislead when we evaluate on different data partitions
Bimodal hydrographs in a semi-humid forested watershed: characteristics and occurrence conditions
Flood drivers and trends: a case study of the Geul River catchment (the Netherlands) over the past half century
Power law between the apparent drainage density and the pruning area
Causal relationships between vegetation productivity, water availability, and atmospheric dryness at the catchment scale
Stream water sourcing from high-elevation snowpack inferred from stable isotopes of water: a novel application of d-excess values
Elasticity curves describe streamflow sensitivity to precipitation across the entire flow distribution
Seasonal and interannual dissolved organic carbon transport process dynamics in a subarctic headwater catchment revealed by high-resolution measurements
Links between seasonal suprapermafrost groundwater, the hydrothermal change of the active layer, and river runoff in alpine permafrost watersheds
Technical note: Isotopic fractionation of evaporating waters: effect of sub-daily atmospheric variations and eventual depletion of heavy isotopes
Increased nonstationarity of stormflow threshold behaviors in a forested watershed due to abrupt earthquake disturbance
HESS Opinions: Are soils overrated in hydrology?
Hydrologic implications of projected changes in rain-on-snow melt for Great Lakes Basin watersheds
A hydrological framework for persistent pools along non-perennial rivers
Evidence-based requirements for perceptualising intercatchment groundwater flow in hydrological models
Droughts can reduce the nitrogen retention capacity of catchments
Explaining changes in rainfall–runoff relationships during and after Australia's Millennium Drought: a community perspective
Three hypotheses on changing river flood hazards
A multivariate-driven approach for disentangling the reduction in near-natural Iberian water resources post-1980
Hydrology and riparian forests drive carbon and nitrogen supply and DOC : NO3− stoichiometry along a headwater Mediterranean stream
Event controls on intermittent streamflow in a temperate climate
Inclusion of flood diversion canal operation in the H08 hydrological model with a case study from the Chao Phraya River basin: model development and validation
Flood generation: process patterns from the raindrop to the ocean
Use of streamflow indices to identify the catchment drivers of hydrographs
Theoretical and empirical evidence against the Budyko catchment trajectory conjecture
Spatial distribution of groundwater recharge, based on regionalised soil moisture models in Wadi Natuf karst aquifers, Palestine
Barriers to mainstream adoption of catchment-wide natural flood management: a transdisciplinary problem-framing study of delivery practice
Low hydrological connectivity after summer drought inhibits DOC export in a forested headwater catchment
Rainbow color map distorts and misleads research in hydrology – guidance for better visualizations and science communication
Attribution of growing season evapotranspiration variability considering snowmelt and vegetation changes in the arid alpine basins
Event and seasonal hydrologic connectivity patterns in an agricultural headwater catchment
Exploring the role of hydrological pathways in modulating multi-annual climate teleconnection periodicities from UK rainfall to streamflow
Technical note: “Bit by bit”: a practical and general approach for evaluating model computational complexity vs. model performance
Hillslope and groundwater contributions to streamflow in a Rocky Mountain watershed underlain by glacial till and fractured sedimentary bedrock
A framework for seasonal variations of hydrological model parameters: impact on model results and response to dynamic catchment characteristics
Hydrology and beyond: the scientific work of August Colding revisited
The influence of a prolonged meteorological drought on catchment water storage capacity: a hydrological-model perspective
Hydrological and runoff formation processes based on isotope tracing during ablation period in the source regions of Yangtze River
Importance of snowmelt contribution to seasonal runoff and summer low flows in Czechia
Concentration–discharge relationships vary among hydrological events, reflecting differences in event characteristics
Recession analysis revisited: impacts of climate on parameter estimation
Understanding the effects of climate warming on streamflow and active groundwater storage in an alpine catchment: the upper Lhasa River
Technical note: An improved discharge sensitivity metric for young water fractions
Hydrological signatures describing the translation of climate seasonality into streamflow seasonality
Spatial and temporal variation in river corridor exchange across a 5th-order mountain stream network
Historic hydrological droughts 1891–2015: systematic characterisation for a diverse set of catchments across the UK
A topographic index explaining hydrological similarity by accounting for the joint controls of runoff formation
Trajectories of nitrate input and output in three nested catchments along a land use gradient
James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 4427–4454, https://doi.org/10.5194/hess-28-4427-2024, https://doi.org/10.5194/hess-28-4427-2024, 2024
Short summary
Short summary
Here, I present a new way to quantify how streamflow responds to rainfall across a range of timescales. This approach can estimate how different rainfall intensities affect streamflow. It can also quantify how runoff response to rainfall varies, depending on how wet the landscape already is before the rain falls. This may help us to understand processes and landscape properties that regulate streamflow and to assess the susceptibility of different landscapes to flooding.
Yulong Zhu, Yang Zhou, Xiaorong Xu, Changqing Meng, and Yuankun Wang
Hydrol. Earth Syst. Sci., 28, 4251–4261, https://doi.org/10.5194/hess-28-4251-2024, https://doi.org/10.5194/hess-28-4251-2024, 2024
Short summary
Short summary
A timely local flood forecast is an effective way to reduce casualties and economic losses. The current theoretical or numerical models play an important role in local flood forecasting. However, they still cannot bridge the contradiction between high calculation accuracy, high calculation efficiency, and simple operability. Therefore, this paper expects to propose a new flood forecasting model with higher computational efficiency and simpler operation.
Daniel Klotz, Martin Gauch, Frederik Kratzert, Grey Nearing, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 28, 3665–3673, https://doi.org/10.5194/hess-28-3665-2024, https://doi.org/10.5194/hess-28-3665-2024, 2024
Short summary
Short summary
The evaluation of model performance is essential for hydrological modeling. Using performance criteria requires a deep understanding of their properties. We focus on a counterintuitive aspect of the Nash–Sutcliffe efficiency (NSE) and show that if we divide the data into multiple parts, the overall performance can be higher than all the evaluations of the subsets. Although this follows from the definition of the NSE, the resulting behavior can have unintended consequences in practice.
Zhen Cui, Fuqiang Tian, Zilong Zhao, Zitong Xu, Yongjie Duan, Jie Wen, and Mohd Yawar Ali Khan
Hydrol. Earth Syst. Sci., 28, 3613–3632, https://doi.org/10.5194/hess-28-3613-2024, https://doi.org/10.5194/hess-28-3613-2024, 2024
Short summary
Short summary
We investigated the response characteristics and occurrence conditions of bimodal hydrographs using 10 years of hydrometric and isotope data in a semi-humid forested watershed in north China. Our findings indicate that bimodal hydrographs occur when the combined total of the event rainfall and antecedent soil moisture index exceeds 200 mm. Additionally, we determined that delayed stormflow is primarily contributed to by shallow groundwater.
Athanasios Tsiokanos, Martine Rutten, Ruud J. van der Ent, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 28, 3327–3345, https://doi.org/10.5194/hess-28-3327-2024, https://doi.org/10.5194/hess-28-3327-2024, 2024
Short summary
Short summary
We focus on past high-flow events to find flood drivers in the Geul. We also explore flood drivers’ trends across various timescales and develop a new method to detect the main direction of a trend. Our results show that extreme 24 h precipitation alone is typically insufficient to cause floods. The combination of extreme rainfall and wet initial conditions determines the chance of flooding. Precipitation that leads to floods increases in winter, whereas no consistent trends are found in summer.
Soohyun Yang, Kwanghun Choi, and Kyungrock Paik
Hydrol. Earth Syst. Sci., 28, 3119–3132, https://doi.org/10.5194/hess-28-3119-2024, https://doi.org/10.5194/hess-28-3119-2024, 2024
Short summary
Short summary
In extracting a river network from a digital elevation model, an arbitrary pruning area should be specified. As this value grows, the apparent drainage density is reduced following a power function. This reflects the fractal topographic nature. We prove this relationship related to the known power law in the exceedance probability distribution of drainage area. The power-law exponent is expressed with fractal dimensions. Our findings are supported by analysis of 14 real river networks.
Guta Wakbulcho Abeshu, Hong-Yi Li, Mingjie Shi, and Ruby Leung
EGUsphere, https://doi.org/10.5194/egusphere-2024-1748, https://doi.org/10.5194/egusphere-2024-1748, 2024
Short summary
Short summary
This study examined how water availability, climate dryness, and plant productivity interact at the catchment scale. Using various indices and statistical methods, it found a 0–2-month lag in these interactions. Strong correlations during peak productivity months were observed, with a notable hysteresis effect in vegetation response to changes in water availability and climate dryness. The findings help better understand catchment responses to climate variability.
Matthias Sprenger, Rosemary W. H. Carroll, David Marchetti, Carleton Bern, Harsh Beria, Wendy Brown, Alexander Newman, Curtis Beutler, and Kenneth H. Williams
Hydrol. Earth Syst. Sci., 28, 1711–1723, https://doi.org/10.5194/hess-28-1711-2024, https://doi.org/10.5194/hess-28-1711-2024, 2024
Short summary
Short summary
Stable isotopes of water (described as d-excess) in mountain snowpack can be used to infer proportions of high-elevation snowmelt in stream water. In a Colorado River headwater catchment, nearly half of the water during peak streamflow is derived from melted snow at elevations greater than 3200 m. High-elevation snowpack contributions were higher for years with lower snowpack and warmer spring temperatures. Thus, we suggest that d-excess could serve to assess high-elevation snowpack changes.
Bailey J. Anderson, Manuela I. Brunner, Louise J. Slater, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 28, 1567–1583, https://doi.org/10.5194/hess-28-1567-2024, https://doi.org/10.5194/hess-28-1567-2024, 2024
Short summary
Short summary
Elasticityrefers to how much the amount of water in a river changes with precipitation. We usually calculate this using average streamflow values; however, the amount of water within rivers is also dependent on stored water sources. Here, we look at how elasticity varies across the streamflow distribution and show that not only do low and high streamflows respond differently to precipitation change, but also these differences vary with water storage availability.
Danny Croghan, Pertti Ala-Aho, Jeffrey Welker, Kaisa-Riikka Mustonen, Kieran Khamis, David M. Hannah, Jussi Vuorenmaa, Bjørn Kløve, and Hannu Marttila
Hydrol. Earth Syst. Sci., 28, 1055–1070, https://doi.org/10.5194/hess-28-1055-2024, https://doi.org/10.5194/hess-28-1055-2024, 2024
Short summary
Short summary
The transport of dissolved organic carbon (DOC) from land into streams is changing due to climate change. We used a multi-year dataset of DOC and predictors of DOC in a subarctic stream to find out how transport of DOC varied between seasons and between years. We found that the way DOC is transported varied strongly seasonally, but year-to-year differences were less apparent. We conclude that the mechanisms of transport show a higher degree of interannual consistency than previously thought.
Jia Qin, Yongjian Ding, Faxiang Shi, Junhao Cui, Yaping Chang, Tianding Han, and Qiudong Zhao
Hydrol. Earth Syst. Sci., 28, 973–987, https://doi.org/10.5194/hess-28-973-2024, https://doi.org/10.5194/hess-28-973-2024, 2024
Short summary
Short summary
The linkage between the seasonal hydrothermal change of active layer, suprapermafrost groundwater, and surface runoff, which has been regarded as a “black box” in hydrological analyses and simulations, is a bottleneck problem in permafrost hydrological studies. Based on field observations, this study identifies seasonal variations and causes of suprapermafrost groundwater. The linkages and framework of watershed hydrology responding to the freeze–thaw of the active layer also are explored.
Francesc Gallart, Sebastián González-Fuentes, and Pilar Llorens
Hydrol. Earth Syst. Sci., 28, 229–239, https://doi.org/10.5194/hess-28-229-2024, https://doi.org/10.5194/hess-28-229-2024, 2024
Short summary
Short summary
Normally, lighter oxygen and hydrogen isotopes are preferably evaporated from a water body, which becomes enriched in heavy isotopes. However, we observed that, in a water body subject to prolonged evaporation, some periods of heavy isotope depletion instead of enrichment happened. Furthermore, the usual models that describe the isotopy of evaporating waters may be in error if the atmospheric conditions of temperature and relative humidity are time-averaged instead of evaporation flux-weighted.
Guotao Zhang, Peng Cui, Carlo Gualtieri, Nazir Ahmed Bazai, Xueqin Zhang, and Zhengtao Zhang
Hydrol. Earth Syst. Sci., 27, 3005–3020, https://doi.org/10.5194/hess-27-3005-2023, https://doi.org/10.5194/hess-27-3005-2023, 2023
Short summary
Short summary
This study used identified stormflow thresholds as a diagnostic tool to characterize abrupt variations in catchment emergent patterns pre- and post-earthquake. Earthquake-induced landslides with spatial heterogeneity and temporally undulating recovery increase the hydrologic nonstationary; thus, large post-earthquake floods are more likely to occur. This study contributes to mitigation and adaptive strategies for unpredictable hydrologic regimes triggered by abrupt natural disturbances.
Hongkai Gao, Fabrizio Fenicia, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 2607–2620, https://doi.org/10.5194/hess-27-2607-2023, https://doi.org/10.5194/hess-27-2607-2023, 2023
Short summary
Short summary
It is a deeply rooted perception that soil is key in hydrology. In this paper, we argue that it is the ecosystem, not the soil, that is in control of hydrology. Firstly, in nature, the dominant flow mechanism is preferential, which is not particularly related to soil properties. Secondly, the ecosystem, not the soil, determines the land–surface water balance and hydrological processes. Moving from a soil- to ecosystem-centred perspective allows more realistic and simpler hydrological models.
Daniel T. Myers, Darren L. Ficklin, and Scott M. Robeson
Hydrol. Earth Syst. Sci., 27, 1755–1770, https://doi.org/10.5194/hess-27-1755-2023, https://doi.org/10.5194/hess-27-1755-2023, 2023
Short summary
Short summary
We projected climate change impacts to rain-on-snow (ROS) melt events in the Great Lakes Basin. Decreases in snowpack limit future ROS melt. Areas with mean winter/spring air temperatures near freezing are most sensitive to ROS changes. The projected proportion of total monthly snowmelt from ROS decreases. The timing for ROS melt is projected to be 2 weeks earlier by the mid-21st century and affects spring streamflow. This could affect freshwater resources management.
Sarah A. Bourke, Margaret Shanafield, Paul Hedley, Sarah Chapman, and Shawan Dogramaci
Hydrol. Earth Syst. Sci., 27, 809–836, https://doi.org/10.5194/hess-27-809-2023, https://doi.org/10.5194/hess-27-809-2023, 2023
Short summary
Short summary
Here we present a hydrological framework for understanding the mechanisms supporting the persistence of water in pools along non-perennial rivers. Pools may collect water after rainfall events, be supported by water stored within the river channel sediments, or receive inflows from regional groundwater. These hydraulic mechanisms can be identified using a range of diagnostic tools (critiqued herein). We then apply this framework in north-west Australia to demonstrate its value.
Louisa D. Oldham, Jim Freer, Gemma Coxon, Nicholas Howden, John P. Bloomfield, and Christopher Jackson
Hydrol. Earth Syst. Sci., 27, 761–781, https://doi.org/10.5194/hess-27-761-2023, https://doi.org/10.5194/hess-27-761-2023, 2023
Short summary
Short summary
Water can move between river catchments via the subsurface, termed intercatchment groundwater flow (IGF). We show how a perceptual model of IGF can be developed with relatively simple geological interpretation and data requirements. We find that IGF dynamics vary in space, correlated to the dominant underlying geology. We recommend that IGF
loss functionsmay be used in conceptual rainfall–runoff models but should be supported by perceptualisation of IGF processes and connectivities.
Carolin Winter, Tam V. Nguyen, Andreas Musolff, Stefanie R. Lutz, Michael Rode, Rohini Kumar, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 27, 303–318, https://doi.org/10.5194/hess-27-303-2023, https://doi.org/10.5194/hess-27-303-2023, 2023
Short summary
Short summary
The increasing frequency of severe and prolonged droughts threatens our freshwater resources. While we understand drought impacts on water quantity, its effects on water quality remain largely unknown. Here, we studied the impact of the unprecedented 2018–2019 drought in Central Europe on nitrate export in a heterogeneous mesoscale catchment in Germany. We show that severe drought can reduce a catchment's capacity to retain nitrogen, intensifying the internal pollution and export of nitrate.
Keirnan Fowler, Murray Peel, Margarita Saft, Tim J. Peterson, Andrew Western, Lawrence Band, Cuan Petheram, Sandra Dharmadi, Kim Seong Tan, Lu Zhang, Patrick Lane, Anthony Kiem, Lucy Marshall, Anne Griebel, Belinda E. Medlyn, Dongryeol Ryu, Giancarlo Bonotto, Conrad Wasko, Anna Ukkola, Clare Stephens, Andrew Frost, Hansini Gardiya Weligamage, Patricia Saco, Hongxing Zheng, Francis Chiew, Edoardo Daly, Glen Walker, R. Willem Vervoort, Justin Hughes, Luca Trotter, Brad Neal, Ian Cartwright, and Rory Nathan
Hydrol. Earth Syst. Sci., 26, 6073–6120, https://doi.org/10.5194/hess-26-6073-2022, https://doi.org/10.5194/hess-26-6073-2022, 2022
Short summary
Short summary
Recently, we have seen multi-year droughts tending to cause shifts in the relationship between rainfall and streamflow. In shifted catchments that have not recovered, an average rainfall year produces less streamflow today than it did pre-drought. We take a multi-disciplinary approach to understand why these shifts occur, focusing on Australia's over-10-year Millennium Drought. We evaluate multiple hypotheses against evidence, with particular focus on the key role of groundwater processes.
Günter Blöschl
Hydrol. Earth Syst. Sci., 26, 5015–5033, https://doi.org/10.5194/hess-26-5015-2022, https://doi.org/10.5194/hess-26-5015-2022, 2022
Short summary
Short summary
There is serious concern that river floods are increasing. Starting from explanations discussed in public, the article addresses three hypotheses: land-use change, hydraulic structures, and climate change increase floods. This review finds that all three changes have the potential to not only increase floods, but also to reduce them. It is crucial to consider all three factors of change in flood risk management and communicate them to the general public in a nuanced way.
Amar Halifa-Marín, Miguel A. Torres-Vázquez, Enrique Pravia-Sarabia, Marc Lemus-Canovas, Pedro Jiménez-Guerrero, and Juan Pedro Montávez
Hydrol. Earth Syst. Sci., 26, 4251–4263, https://doi.org/10.5194/hess-26-4251-2022, https://doi.org/10.5194/hess-26-4251-2022, 2022
Short summary
Short summary
Near-natural Iberian water resources have suddenly decreased since the 1980s. These declines have been promoted by the weakening (enhancement) of wintertime precipitation (the NAOi) in the most humid areas, whereas afforestation and drought intensification have played a crucial role in semi-arid areas. Future water management would benefit from greater knowledge of North Atlantic climate variability and reforestation/afforestation processes in semi-arid catchments.
José L. J. Ledesma, Anna Lupon, Eugènia Martí, and Susana Bernal
Hydrol. Earth Syst. Sci., 26, 4209–4232, https://doi.org/10.5194/hess-26-4209-2022, https://doi.org/10.5194/hess-26-4209-2022, 2022
Short summary
Short summary
We studied a small stream located in a Mediterranean forest. Our goal was to understand how stream flow and the presence of riparian forests, which grow in flat banks near the stream, influence the availability of food for aquatic microorganisms. High flows were associated with higher amounts of food because rainfall episodes transfer it from the surrounding sources, particularly riparian forests, to the stream. Understanding how ecosystems work is essential to better manage natural resources.
Nils Hinrich Kaplan, Theresa Blume, and Markus Weiler
Hydrol. Earth Syst. Sci., 26, 2671–2696, https://doi.org/10.5194/hess-26-2671-2022, https://doi.org/10.5194/hess-26-2671-2022, 2022
Short summary
Short summary
This study is analyses how characteristics of precipitation events and soil moisture and temperature dynamics during these events can be used to model the associated streamflow responses in intermittent streams. The models are used to identify differences between the dominant controls of streamflow intermittency in three distinct geologies of the Attert catchment, Luxembourg. Overall, soil moisture was found to be the most important control of intermittent streamflow in all geologies.
Saritha Padiyedath Gopalan, Adisorn Champathong, Thada Sukhapunnaphan, Shinichiro Nakamura, and Naota Hanasaki
Hydrol. Earth Syst. Sci., 26, 2541–2560, https://doi.org/10.5194/hess-26-2541-2022, https://doi.org/10.5194/hess-26-2541-2022, 2022
Short summary
Short summary
The modelling of diversion canals using hydrological models is important because they play crucial roles in water management. Therefore, we developed a simplified canal diversion scheme and implemented it into the H08 global hydrological model. The developed diversion scheme was validated in the Chao Phraya River basin, Thailand. Region-specific validation results revealed that the H08 model with the diversion scheme could effectively simulate the observed flood diversion pattern in the basin.
Günter Blöschl
Hydrol. Earth Syst. Sci., 26, 2469–2480, https://doi.org/10.5194/hess-26-2469-2022, https://doi.org/10.5194/hess-26-2469-2022, 2022
Short summary
Short summary
Sound understanding of how floods come about allows for the development of more reliable flood management tools that assist in mitigating their negative impacts. This article reviews river flood generation processes and flow paths across space scales, starting from water movement in the soil pores and moving up to hillslopes, catchments, regions and entire continents. To assist model development, there is a need to learn from observed patterns of flood generation processes at all spatial scales.
Jeenu Mathai and Pradeep P. Mujumdar
Hydrol. Earth Syst. Sci., 26, 2019–2033, https://doi.org/10.5194/hess-26-2019-2022, https://doi.org/10.5194/hess-26-2019-2022, 2022
Short summary
Short summary
With availability of large samples of data in catchments, it is necessary to develop indices that describe the streamflow processes. This paper describes new indices applicable for the rising and falling limbs of streamflow hydrographs. The indices provide insights into the drivers of the hydrographs. The novelty of the work is on differentiating hydrographs by their time irreversibility property and offering an alternative way to recognize primary drivers of streamflow hydrographs.
Nathan G. F. Reaver, David A. Kaplan, Harald Klammler, and James W. Jawitz
Hydrol. Earth Syst. Sci., 26, 1507–1525, https://doi.org/10.5194/hess-26-1507-2022, https://doi.org/10.5194/hess-26-1507-2022, 2022
Short summary
Short summary
The Budyko curve emerges globally from the behavior of multiple catchments. Single-parameter Budyko equations extrapolate the curve concept to individual catchments, interpreting curves and parameters as representing climatic and biophysical impacts on water availability, respectively. We tested these two key components theoretically and empirically, finding that catchments are not required to follow Budyko curves and usually do not, implying the parametric framework lacks predictive ability.
Clemens Messerschmid and Amjad Aliewi
Hydrol. Earth Syst. Sci., 26, 1043–1061, https://doi.org/10.5194/hess-26-1043-2022, https://doi.org/10.5194/hess-26-1043-2022, 2022
Short summary
Short summary
Temporal distribution of groundwater recharge has been widely studied; yet, much less attention has been paid to its spatial distribution. Based on a previous study of field-measured and modelled formation-specific recharge in the Mediterranean, this paper differentiates annual recharge coefficients in a novel approach and basin classification framework for physical features such as lithology, soil and LU/LC characteristics, applicable also in other previously ungauged basins around the world.
Thea Wingfield, Neil Macdonald, Kimberley Peters, and Jack Spees
Hydrol. Earth Syst. Sci., 25, 6239–6259, https://doi.org/10.5194/hess-25-6239-2021, https://doi.org/10.5194/hess-25-6239-2021, 2021
Short summary
Short summary
Human activities are causing greater and more frequent floods. Natural flood management (NFM) uses processes of the water cycle to slow the flow of rainwater, bringing together land and water management. Despite NFM's environmental and social benefits, it is yet to be widely adopted. Two environmental practitioner groups collaborated to produce a picture of the barriers to delivery, showing that there is a perceived lack of support from government and the public for NFM.
Katharina Blaurock, Burkhard Beudert, Benjamin S. Gilfedder, Jan H. Fleckenstein, Stefan Peiffer, and Luisa Hopp
Hydrol. Earth Syst. Sci., 25, 5133–5151, https://doi.org/10.5194/hess-25-5133-2021, https://doi.org/10.5194/hess-25-5133-2021, 2021
Short summary
Short summary
Dissolved organic carbon (DOC) is an important part of the global carbon cycle with regards to carbon storage, greenhouse gas emissions and drinking water treatment. In this study, we compared DOC export of a small, forested catchment during precipitation events after dry and wet preconditions. We found that the DOC export from areas that are usually important for DOC export was inhibited after long drought periods.
Michael Stoelzle and Lina Stein
Hydrol. Earth Syst. Sci., 25, 4549–4565, https://doi.org/10.5194/hess-25-4549-2021, https://doi.org/10.5194/hess-25-4549-2021, 2021
Short summary
Short summary
We found with a scientific paper survey (~ 1000 papers) that 45 % of the papers used rainbow color maps or red–green visualizations. Those rainbow visualizations, although attracting the media's attention, will not be accessible for up to 10 % of people due to color vision deficiency. The rainbow color map distorts and misleads scientific communication. The study gives guidance on how to avoid, improve and trust color and how the flaws of the rainbow color map should be communicated in science.
Tingting Ning, Zhi Li, Qi Feng, Zongxing Li, and Yanyan Qin
Hydrol. Earth Syst. Sci., 25, 3455–3469, https://doi.org/10.5194/hess-25-3455-2021, https://doi.org/10.5194/hess-25-3455-2021, 2021
Short summary
Short summary
Previous studies decomposed ET variance in precipitation, potential ET, and total water storage changes based on Budyko equations. However, the effects of snowmelt and vegetation changes have not been incorporated in snow-dependent basins. We thus extended this method in arid alpine basins of northwest China and found that ET variance is primarily controlled by rainfall, followed by coupled rainfall and vegetation. The out-of-phase seasonality between rainfall and snowmelt weaken ET variance.
Lovrenc Pavlin, Borbála Széles, Peter Strauss, Alfred Paul Blaschke, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 2327–2352, https://doi.org/10.5194/hess-25-2327-2021, https://doi.org/10.5194/hess-25-2327-2021, 2021
Short summary
Short summary
We compared the dynamics of streamflow, groundwater and soil moisture to investigate how different parts of an agricultural catchment in Lower Austria are connected. Groundwater is best connected around the stream and worse uphill, where groundwater is deeper. Soil moisture connectivity increases with increasing catchment wetness but is not influenced by spatial position in the catchment. Groundwater is more connected to the stream on the seasonal scale compared to the event scale.
William Rust, Mark Cuthbert, John Bloomfield, Ron Corstanje, Nicholas Howden, and Ian Holman
Hydrol. Earth Syst. Sci., 25, 2223–2237, https://doi.org/10.5194/hess-25-2223-2021, https://doi.org/10.5194/hess-25-2223-2021, 2021
Short summary
Short summary
In this paper, we find evidence for the cyclical behaviour (on a 7-year basis) in UK streamflow records that match the main cycle of the North Atlantic Oscillation. Furthermore, we find that the strength of these 7-year cycles in streamflow is dependent on proportional contributions from groundwater and the response times of the underlying groundwater systems. This may allow for improvements to water management practices through better understanding of long-term streamflow behaviour.
Elnaz Azmi, Uwe Ehret, Steven V. Weijs, Benjamin L. Ruddell, and Rui A. P. Perdigão
Hydrol. Earth Syst. Sci., 25, 1103–1115, https://doi.org/10.5194/hess-25-1103-2021, https://doi.org/10.5194/hess-25-1103-2021, 2021
Short summary
Short summary
Computer models should be as simple as possible but not simpler. Simplicity refers to the length of the model and the effort it takes the model to generate its output. Here we present a practical technique for measuring the latter by the number of memory visits during model execution by
Strace, a troubleshooting and monitoring program. The advantage of this approach is that it can be applied to any computer-based model, which facilitates model intercomparison.
Sheena A. Spencer, Axel E. Anderson, Uldis Silins, and Adrian L. Collins
Hydrol. Earth Syst. Sci., 25, 237–255, https://doi.org/10.5194/hess-25-237-2021, https://doi.org/10.5194/hess-25-237-2021, 2021
Short summary
Short summary
We used unique chemical signatures of precipitation, hillslope soil water, and groundwater sources of streamflow to explore seasonal variation in runoff generation in a snow-dominated mountain watershed underlain by glacial till and permeable bedrock. Reacted hillslope water reached the stream first at the onset of snowmelt, followed by a dilution effect by snowmelt from May to June. Groundwater and riparian water were important sources later in the summer. Till created complex subsurface flow.
Tian Lan, Kairong Lin, Chong-Yu Xu, Zhiyong Liu, and Huayang Cai
Hydrol. Earth Syst. Sci., 24, 5859–5874, https://doi.org/10.5194/hess-24-5859-2020, https://doi.org/10.5194/hess-24-5859-2020, 2020
Dan Rosbjerg
Hydrol. Earth Syst. Sci., 24, 4575–4585, https://doi.org/10.5194/hess-24-4575-2020, https://doi.org/10.5194/hess-24-4575-2020, 2020
Short summary
Short summary
August Colding contributed the first law of thermodynamics, evaporation from water and grass, steady free surfaces in conduits, the cross-sectional velocity distribution in conduits, a complete theory for the Gulf Stream, air speed in cyclones, the piezometric surface in confined aquifers, the unconfined elliptic water table in soil between drain pipes, and the wind-induced set-up in the sea during storms.
Zhengke Pan, Pan Liu, Chong-Yu Xu, Lei Cheng, Jing Tian, Shujie Cheng, and Kang Xie
Hydrol. Earth Syst. Sci., 24, 4369–4387, https://doi.org/10.5194/hess-24-4369-2020, https://doi.org/10.5194/hess-24-4369-2020, 2020
Short summary
Short summary
This study aims to identify the response of catchment water storage capacity (CWSC) to meteorological drought by examining the changes of hydrological-model parameters after drought events. This study improves our understanding of possible changes in the CWSC induced by a prolonged meteorological drought, which will help improve our ability to simulate the hydrological system under climate change.
Zong-Jie Li, Zong-Xing Li, Ling-Ling Song, Juan Gui, Jian Xue, Bai Juan Zhang, and Wen De Gao
Hydrol. Earth Syst. Sci., 24, 4169–4187, https://doi.org/10.5194/hess-24-4169-2020, https://doi.org/10.5194/hess-24-4169-2020, 2020
Short summary
Short summary
This study mainly explores the hydraulic relations, recharge–drainage relations and their transformation paths, and the processes of each water body. It determines the composition of runoff, quantifies the contribution of each runoff component to different types of tributaries, and analyzes the hydrological effects of the temporal and spatial variation in runoff components. More importantly, we discuss the hydrological significance of permafrost and hydrological processes.
Michal Jenicek and Ondrej Ledvinka
Hydrol. Earth Syst. Sci., 24, 3475–3491, https://doi.org/10.5194/hess-24-3475-2020, https://doi.org/10.5194/hess-24-3475-2020, 2020
Short summary
Short summary
Changes in snow affect the runoff seasonality, including summer low flows. Here we analyse this effect in 59 mountain catchments in Czechia. We show that snow is more effective in generating runoff compared to rain. Snow-poor years generated lower groundwater recharge than snow-rich years, which resulted in higher deficit volumes in summer. The lower recharge and runoff in the case of a snowfall-to-rain transition due to air temperature increase might be critical for water supply in the future.
Julia L. A. Knapp, Jana von Freyberg, Bjørn Studer, Leonie Kiewiet, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 2561–2576, https://doi.org/10.5194/hess-24-2561-2020, https://doi.org/10.5194/hess-24-2561-2020, 2020
Short summary
Short summary
Changes of stream water chemistry in response to discharge changes provide important insights into the storage and release of water from the catchment. Here we investigate the variability in concentration–discharge relationships among different solutes and hydrologic events and relate it to catchment conditions and dominant water sources.
Elizabeth R. Jachens, David E. Rupp, Clément Roques, and John S. Selker
Hydrol. Earth Syst. Sci., 24, 1159–1170, https://doi.org/10.5194/hess-24-1159-2020, https://doi.org/10.5194/hess-24-1159-2020, 2020
Short summary
Short summary
Recession analysis uses the receding streamflow following precipitation events to estimate watershed-average properties. Two methods for recession analysis use recession events individually or all events collectively. Using synthetic case studies, this paper shows that analyzing recessions collectively produces flawed interpretations. Moving forward, recession analysis using individual recessions should be used to describe the average and variability of watershed behavior.
Lu Lin, Man Gao, Jintao Liu, Jiarong Wang, Shuhong Wang, Xi Chen, and Hu Liu
Hydrol. Earth Syst. Sci., 24, 1145–1157, https://doi.org/10.5194/hess-24-1145-2020, https://doi.org/10.5194/hess-24-1145-2020, 2020
Short summary
Short summary
In this paper, recession flow analysis – assuming nonlinearized outflow from aquifers into streams – was used to quantify active groundwater storage in a headwater catchment with high glacierization and large-scale frozen ground on the Tibetan Plateau. Hence, this work provides a perspective to clarify the impact of glacial retreat and frozen ground degradation due to climate change on hydrological processes.
Francesc Gallart, Jana von Freyberg, María Valiente, James W. Kirchner, Pilar Llorens, and Jérôme Latron
Hydrol. Earth Syst. Sci., 24, 1101–1107, https://doi.org/10.5194/hess-24-1101-2020, https://doi.org/10.5194/hess-24-1101-2020, 2020
Short summary
Short summary
How catchments store and release rain or melting water is still not well known. Now, it is broadly accepted that most of the water in streams is older than several months, and a relevant part may be many years old. But the age of water depends on the stream regime, being usually younger during high flows. This paper tries to provide tools for better analysing how the age of waters varies with flow in a catchment and for comparing the behaviour of catchments diverging in climate, size and regime.
Sebastian J. Gnann, Nicholas J. K. Howden, and Ross A. Woods
Hydrol. Earth Syst. Sci., 24, 561–580, https://doi.org/10.5194/hess-24-561-2020, https://doi.org/10.5194/hess-24-561-2020, 2020
Short summary
Short summary
In many places, seasonal variability in precipitation and evapotranspiration (climate) leads to seasonal variability in river flow (streamflow). In this work, we explore how climate seasonality is transformed into streamflow seasonality and what controls this transformation (e.g. climate aridity and geology). The results might be used in grouping catchments, predicting the seasonal streamflow regime in ungauged catchments, and building hydrological simulation models.
Adam S. Ward, Steven M. Wondzell, Noah M. Schmadel, Skuyler Herzog, Jay P. Zarnetske, Viktor Baranov, Phillip J. Blaen, Nicolai Brekenfeld, Rosalie Chu, Romain Derelle, Jennifer Drummond, Jan H. Fleckenstein, Vanessa Garayburu-Caruso, Emily Graham, David Hannah, Ciaran J. Harman, Jase Hixson, Julia L. A. Knapp, Stefan Krause, Marie J. Kurz, Jörg Lewandowski, Angang Li, Eugènia Martí, Melinda Miller, Alexander M. Milner, Kerry Neil, Luisa Orsini, Aaron I. Packman, Stephen Plont, Lupita Renteria, Kevin Roche, Todd Royer, Catalina Segura, James Stegen, Jason Toyoda, Jacqueline Hager, and Nathan I. Wisnoski
Hydrol. Earth Syst. Sci., 23, 5199–5225, https://doi.org/10.5194/hess-23-5199-2019, https://doi.org/10.5194/hess-23-5199-2019, 2019
Short summary
Short summary
The movement of water and solutes between streams and their shallow, connected subsurface is important to many ecosystem functions. These exchanges are widely expected to vary with stream flow across space and time, but these assumptions are seldom tested across basin scales. We completed more than 60 experiments across a 5th-order river basin to document these changes, finding patterns in space but not time. We conclude space-for-time and time-for-space substitutions are not good assumptions.
Lucy J. Barker, Jamie Hannaford, Simon Parry, Katie A. Smith, Maliko Tanguy, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 23, 4583–4602, https://doi.org/10.5194/hess-23-4583-2019, https://doi.org/10.5194/hess-23-4583-2019, 2019
Short summary
Short summary
It is important to understand historic droughts in order to plan and prepare for possible future events. In this study we use the standardised streamflow index for 1891–2015 to systematically identify, characterise and rank hydrological drought events for 108 near-natural UK catchments. Results show when and where the most severe events occurred and describe events of the early 20th century, providing catchment-scale detail important for both science and planning applications of the future.
Ralf Loritz, Axel Kleidon, Conrad Jackisch, Martijn Westhoff, Uwe Ehret, Hoshin Gupta, and Erwin Zehe
Hydrol. Earth Syst. Sci., 23, 3807–3821, https://doi.org/10.5194/hess-23-3807-2019, https://doi.org/10.5194/hess-23-3807-2019, 2019
Short summary
Short summary
In this study, we develop a topographic index explaining hydrological similarity within a energy-centered framework, with the observation that the majority of potential energy is dissipated when rainfall becomes runoff.
Sophie Ehrhardt, Rohini Kumar, Jan H. Fleckenstein, Sabine Attinger, and Andreas Musolff
Hydrol. Earth Syst. Sci., 23, 3503–3524, https://doi.org/10.5194/hess-23-3503-2019, https://doi.org/10.5194/hess-23-3503-2019, 2019
Short summary
Short summary
This study shows quantitative and temporal offsets between nitrogen input and riverine output, using time series of three nested catchments in central Germany. The riverine concentrations show lagged reactions to the input, but at the same time exhibit strong inter-annual changes in the relationship between riverine discharge and concentration. The study found a strong retention of nitrogen that is dominantly assigned to a hydrological N legacy, which will affect future stream concentrations.
Cited articles
Bai, Y., Langarudi, S. P., and Fernald, A. G.: System dynamics modeling for evaluating regional hydrologic and economic effects of irrigation efficiency policy, Hydrology, 8, 61, https://doi.org/10.3390/hydrology8020061, 2021.
Bailey, V. L., Pries, C. H., and Lajtha, K.: What do we know about soil carbon destabilization?, Environ. Res. Lett., 14, 083004, https://iopscience.iop.org/article/10.1088/1748-9326/ab2c11 (last access: 9 January 2025), 2019.
Banerjee, A., Chandra, S., and Ott, E.: Network inference from short, noisy, low time-resolution, partial measurements: Application to C. elegans neuronal calcium dynamics, P. Natl. Acad. Sci. USA, 120, e2216030120, https://doi.org/10.1073/pnas.2216030120, 2023.
Bouaziz, L., Weerts, A., Schellekens, J., Sprokkereef, E., Stam, J., Savenije, H., and Hrachowitz, M.: Redressing the balance: quantifying net intercatchment groundwater flows, Hydrol. Earth Syst. Sci., 22, 6415–6434, https://doi.org/10.5194/hess-22-6415-2018, 2018.
Bouaziz, L. J. E., Fenicia, F., Thirel, G., de Boer-Euser, T., Buitink, J., Brauer, C. C., De Niel, J., Dewals, B. J., Drogue, G., Grelier, B., Melsen, L. A., Moustakas, S., Nossent, J., Pereira, F., Sprokkereef, E., Stam, J., Weerts, A. H., Willems, P., Savenije, H. H. G., and Hrachowitz, M.: Behind the scenes of streamflow model performance, Hydrol. Earth Syst. Sci., 25, 1069–1095, https://doi.org/10.5194/hess-25-1069-2021, 2021.
Cao, J., Yang, H., and Zhao, Y.: Experimental analysis of infiltration process and hydraulic properties in soil and rock profile in the Taihang Mountain, North China, Water Supply, 22, 1691–1703, https://doi.org/10.2166/ws.2021.321, 2022.
Chaffaut, Q., Hinderer, J., Masson, F., Viville, D., Pasquet, S., Boy, J. P., Bernard, J. D., Lesparre, N., and Pierret, M. C.: New insights on water storage dynamics in a mountainous catchment from superconducting gravimetry, Geophys. J. Int., 228, 432–446, https://doi.org/10.1093/gji/ggab328, 2022.
Chang, L. and Niu, G.: The impacts of interannual climate variability on the declining trend in terrestrial water storage over the Tigris-Euphrates River Basins, J. Hydrometeorol., 24, 549–560, https://doi.org/10.1175/JHM-D-22-0026.1, 2023.
Chen, H., Huang, J. J., Dash, S. S., Wei, Y., and Li, H.: A hybrid deep learning framework with physical process description for simulation of evapotranspiration, J. Hydrol., 606, 127422, https://doi.org/10.1016/j.jhydrol.2021.127422, 2022.
Chen, J., Wilson, C. R., Tapley, B. D., Scanlon, B., and Güntner, A.: Long-term groundwater storage change in Victoria, Australia from satellite gravity and in situ observations, Global Planet. Change, 139, 56–65, https://doi.org/10.1016/j.gloplacha.2016.01.002, 2016.
Chiew, F. H. S., Peel, M. C., and Western, A. W.: Application and testing of the simple rainfall-runoff model SIMHYD, edited by: Singh, V. P., and Frevert, D. K., Mathematical Models of Small Watershed Hydrology and Applications, Water Resources Publication, Littleton, Colorado, 335–367, ISBN 1-887201-35-1, 2002.
Craine, J. M. and Dybzinski, R.: Mechanisms of plant competition for nutrients, water and light, Funct. Ecol., 27, 833–840, https://doi.org/10.1111/1365-2435.12081, 2013.
Creutzfeldt, B., Ferré, T., Troch, P., Merz, B., Wziontek, H., and Güntner, A.: Total water storage dynamics in response to climate variability and extremes: Inference from long-term terrestrial gravity measurement, J. Geophys. Res., 117, D08112, https://doi.org/10.1029/2011JD016472, 2012.
Cui, H., Xiao, W., Zhou, Y., Chen, Y., and Lu, F.: Runoff responses to climate change and human activities in the upper Daqing River Basin, South-to-North Water Transfers and Water Science & Technology, 17, 54–62, https://doi.org/10.13476/j.cnki.nsbdqk.2019.0084, 2019 (in Chinese).
Davis, G. B.: Systems Approach, Encyclopedia of Information Systems, 2003, 351–360, https://doi.org/10.1016/B0-12-227240-4/00178-7, 2003.
Delgado, A. and Gómez, J. A.: The soil. Physical, chemical and biological properties, in: Principles of Agronomy for Sustainable Agriculture, edited by: Villalobos, F. J. and Fereres, E., Springer Cham, Cordoba, Spain, 15–26, https://doi.org/10.1007/978-3-319-46116-8_2, 2016.
Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer,P.D., Hirschi, M., Ikonen, J., de Jeu, R., Kidd, R., Lahoz, W., Liu, Y.Y., Miralles, D., Mistelbauer, T., Nicolai-Shaw, N., Parinussa, R., Pratola, C., Reimer, C., van der Schalie, R., Seneviratne, S.I., Smolander, T., and Lecomte, P.: ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions, Remote Sens. Environ., 203, 185–215, https://doi.org/10.1016/j.rse.2017.07.001, 2017.
DRYAD: Data from: Long-term (1979-present) total water storage anomalies over the global land derived by reconstructing GRACE data, DRYAD [data set], https://doi.org/10.5061/dryad.z612jm6bt, 2021.
ESA CCI: ESA soil moisture climate change initiative (soil_moisture_cci): combined prodect, version 06.1, ESA Climate Office [data set], https://climate.esa.int/en/data/#/dashboard, last access: 9 January 2025.
ESGF MetaGrid: CMIP6, ESGF [data set], https://esgf-node.llnl.gov/search/cmip6/, last access: 9 January 2025.
ETWatch: Haihe Basin ET Dataset, ETWatch [data set], http://etwatch.cn/html/datasetdatail.html?id=33333a2bee794dac99bc22ec626f430d, last access: 9 January 2025a.
ETWatch: Haihe Basin Landuse, ETWatch [data set], http://etwatch.cn/html/datasetdatail.html?id=79f37dea8d0c42cf82390bf0a94a59e7, last access: 9 January 2025b.
Fowler, K., Peel, M., Western, A., Zhang, L., and Peterson, T. J.: Simulating runoff under changing climatic conditions: Revisiting an apparent deficiency of conceptual rainfall-runoff models, Water Resour. Res., 52, 1820–1846, https://doi.org/10.1002/2015WR018068, 2016.
Fowler, K., Pell, M., Western, A., and Zhang, L: Improved rainfall-runoff calibration for drying climate: Choice of objective function, Water Resour. Res., 54, 3392–3408, https://doi.org/10.1029/2017WR022466, 2018.
Fowler, K., Knoben, W., Peel, M., Peterson, T., Ryu, D., Saft, M., Seo, K.-W., and Western, A.: Many commonly used rainfall-runoff models lack long, slow dynamics: Implications for runoff projections, Water Resour. Res., 56, e2019WR025286, https://doi.org/10.1029/2019WR025286, 2020.
Fowler, K. J. A., Coxon, G., Freer, J. E., Knoben, W. J. M., Peel, M. C., Wagener, T., Western, A. W., Woods, R. A., and Zhang, L.: Towards more realistic runoff projections by removing limits on simulated soil moisture deficit, J. Hydrol., 600, 126505, https://doi.org/10.1016/j.jhydrol.2021.126505, 2021.
Forrester, J. W. (Eds.): Principles of Systems, Pegasus Communications Publications, Waltham, MA, ISBN 1883823412, 1968.
Fu, J. and Wang, W.: Global PEW Land Evapotranspiration Data Set (1982–2018), National Tibetan Plateau/Third Pole Environment Data Center [data set], https://doi.org/10.11888/Terre.tpdc.272874, 2022.
Fu, J., Wang, W., Shao, Q., Xing, W., Cao, M., Wei, J., Chen Z., and Nie, W.: Improved global evapotranspiration estimates using proportionality hypothesis-based water balance constraints, Remote Sensing Environ., 279, 113140, https://doi.org/10.1016/j.rse.2022.113140, 2022.
Fu, T., Gao, H., Liang, H., and Liu, J.: Controlling factors of soil saturated hydraulic conductivity in Taihang Mountain Region, northern China, Geoderma Reg., 26, e00417, https://doi.org/10.1016/j.geodrs.2021.e00417, 2021.
Fu, T., Liu, J., Gao, H., Qi, F., Wang, F., and Zhang, M.: Surface and subsurface runoff generation processes and their influencing factors on a hillslope in northern China, Sci. Total Environ., 906, 167372, https://doi.org/10.1016/j.scitotenv.2023.167372, 2024.
Georgescu, I.: Toy model, Nat. Phys., 8, 444, https://doi.org/10.1038/nphys2340, 2012.
Gong, H., Pan, Y., Zheng, L., Li, X., Zhu, L., Zhang, C., Huang, Z., Li, Z., Wang, H., and Zhou, C.: Long-term groundwater storage changes and land subsidence development in the North China Plain, Hydrogeol. J., 26, 1417–1427, https://doi.org/10.1007/s10040-018-1768-4, 2018.
Good, S. P., Noone, D., and Bowen, G.: Hydrologic connectivity constrains partitioning of global terrestrial water fluxes, Science, 349, 175–177, https://doi.org/10.1126/science.aaa5931, 2015.
Han, Q., Tong, R., Sun, W., Zhao, Y., Yu, J., Wang, G., Shrestha, S., and Jin, Y.: Anthropogenic influences on the water quality of the Baiyangdian Lake in North China over the last decade, Sci. Total Environ., 701, 134929, https://doi.org/10.1016/j.scitotenv.2019.134929, 2020.
Hofkirchner, W. and Schafranek, M.: General System Theory, in: Volume 10 in Handbook of the Philosophy of Science, Philosophy of complex systems, edited by: Cliff Hooker, North-Holland, 177–194, https://doi.org/10.1016/B978-0-444-52076-0.50006-7, 2011.
Hou, Y., Guo, H., Yang, Y., and Liu, W.: Global evaluation of runoff simulation from climate, hydrological and land surface models, Water Resour. Res., 59, e2021WR031817, https://doi.org/10.1029/2021WR031817, 2023.
Hu, S., Liu, C., Zheng, H., Wang, Z., and Yu, J.: Assessing the impacts of climate variability and human activities on streamflow in the water source area of Baiyangdian Lake, J. Geogr. Sci., 22, 895–905, https://doi.org/10.1007/s11442-012-0971-9, 2012.
Hu, S., Wang, F., Zhan, C., Zhao, R., Mo, X., and Liu, L.: Detecting and attributing vegetation changes in Taihang Mountain, China, J. Mt. Sci., 16, 337–350, https://doi.org/10.1007/s11629-018-4995-1, 2019.
Hu, Y., Zhai, H., and Tian, Y.: Analysis on sustainability of Taihang Mountain Greening Program construction, Forestry Economics, 2017, 48–52, https://doi.org/10.13843/j.cnki.lyjj.2017.09.009, 2017 (in Chinese).
Huang, C.-C. and Yeh, H.-F.: Evaluation of seasonal catchment dynamic storage components using an analytical streamflow duration curve model, Sustain. Environ. Res., 32, 49, https://doi.org/10.1186/s42834-022-00161-8, 2022.
Huang, Z., Yuan, X., Sun, S., Leng, G., and Tang, Q.: Groundwater depletion rate over China during 1965–2016: The long-term trend and inter-annual variation, J. Geophys. Res-Atmos., 128, e2022JD038109, https://doi.org/10.1029/2022JD038109, 2023.
Hughes, J. D., Petrone, K. C., and Silberstein, R. P.: Drought, groundwater storage and stream flow decline in southwestern Australia, Geophys. Res. Lett., 39, L03408, https://doi.org/10.1029/2011GL050797, 2012.
Hulsman, P., Hrachowitz, M., and Savenije, H. H. G.: Improving the representation of long-term storage variations with conceptual hydrological models in data-scarce regions, Water Resour. Res., 57, e2020WR028837, https://doi.org/10.1029/2020WR028837, 2021.
Jha, A., Bonetti, S., Smith, A. P., Souza, R., and Calabrese, S.: Linking soil structure, hydraulic properties, and organic carbon dynamics: A holistic framework to study the impact of climate change and land management, J. Geophys. Res.-Biogeo., 128, e2023JG007389, https://doi.org/10.1029/2023JG007389, 2023.
Jutebring Sterte, E., Lidman, F., Lindborg, E., Sjöberg, Y., and Laudon, H.: How catchment characteristics influence hydrological pathways and travel times in a boreal landscape, Hydrol. Earth Syst. Sci., 25, 2133–2158, https://doi.org/10.5194/hess-25-2133-2021, 2021.
Kaiser, M., Kleber, M., and Berhe, A. A.: How air-drying and rewetting modify soil organic matter characteristics: an assessment to improve data interpretation and inference, Soil Biol. Biochem., 80, 324–340, https://doi.org/10.1016/j.soilbio.2014.10.018, 2015.
Kuczera, G., Renard, B., Thyer, M., and Kavetski, D.: There are no hydrological monsters, just models and observations with large uncertainties!, Hydrol. Sci. J., 55, 980–991, https://doi.org/10.1080/02626667.2010.504677, 2010.
Lancia, M., Yao, Y., Andrews, C. B., Wang, W., Kuang, X., Ni, J., Gorelick, S. M., Scanlon, B. R., Wang, Y., and Zheng, C.: The China groundwater crisis: A mechanistic analysis with implications for global sustainability, Sustainable Horizons, 4, 100042, https://doi.org/10.1016/j.horiz.2022.100042, 2022.
Lauf, S., Haase, D., Hostert, P., Lakes, T., and Kleinschmit, B.: Uncovering land-use dynamics driven by human decision-making – A combined model approach using cellular automata and system dynamics, Environ. Modell. Softw., 27–28, 71–72, https://doi.org/10.1016/j.envsoft.2011.09.005, 2012.
Li, F., Kusche, J., Chao, N., Wang, Z., and Löcher, A.: Long-term (1979–present) total water storage anomalies over the global land derived by reconstructing GRACE data, Geophys. Res. Lett., 48, e2021GL093492, https://doi.org/10.1029/2021GL093492, 2021.
Li, W., Pacheco-Labrador, J., Migliavacca, M., Miralles, D., van Dijke, A. H., Reichstein, M., Forkel, M., Zhang, W., Frankenberg, C., Panwar, A., Zhang, Q., Weber, U., Gentine, P., and Orth, R.: Widespread and complex drought effects on vegetation physiology inferred from space, Nat. Commun., 14, 4640, https://doi.org/10.1038/s41467-023-40226-9, 2023.
Lian, X., Piao, S., Chen, A., Wang, K., Li, X., Buermann, W., Huntingford, C., Peñuelas, J., Xu, H., and Myneni, R. B.: Seasonal biological carryover dominates northern vegetation growth, Nat. Commun., 12, 983, https://doi.org/10.1038/s41467-021-21223-2, 2021.
Liu, X., Zhang, W., Liu, Z., Qu, F., and Tang, X.: Changes in species diversity and above-ground biomass of shrubland over long-term natural restoration process in the Taihang Mountain in North China, Plant Soil Environ., 57, 505–512, https://doi.org/10.17221/216/2011-PSE, 2011.
Liu, X. P., Zhang, W. J., Hu, C. S., and Tang, X. G.: Soil greenhouse gas fluxes from different tree species on Taihang Mountain, North China, Biogeosciences, 11, 1649–1666, https://doi.org/10.5194/bg-11-1649-2014, 2014.
Luczak, J.: Talk about toy models, Stud. Hist. Philos. Sci., 57, 1–7, https://doi.org/10.1016/j.shpsb.2016.11.002, 2017.
Ma, H., Zeng, J., Chen, N., Zhang, X., Cosh, M. H., and Wang, W.: Satellite surface soil moisture from SMAP, SMOS, AMSR2 and ESA CCI: A comprehensive assessment using global ground-based observations, Remote Sens. Environ., 231, 111215, https://doi.org/10.1016/j.rse.2019.111215, 2019c.
Ma, N., Jozsef, S., Zhang, Y., and Liu, W.: Terrestrial evapotranspiration dataset across China (1982–2017), National Tibetan Plateau/Third Pole Environment Data Center [data set], https://doi.org/10.11888/AtmosPhys.tpe.249493.file, 2019a.
Ma, N., Szilagyi, J., Zhang, Y. S., and Liu, W. B.: Complementary-relationship-based modeling of terrestrial evapotranspiration across China during 1982–2012: Validations and spatiotemporal analyses, J. Geophys. Res-Atmos., 124, 4326–4351, https://doi.org/10.1029/2018JD029850, 2019b.
Manzoni, S., Chakrawal, A., Fischer, T., Schimel, J. P., Porporato, A., and Vico, G.: Rainfall intensification increases the contribution of rewetting pulses to soil heterotrophic respiration, Biogeosciences, 17, 4007–4023, https://doi.org/10.5194/bg-17-4007-2020, 2020.
Markovich, K. H., Maxwell, R. M., and Fogg, G. E.: Hydrogeological response to climate change in alpine hillslopes, Hydrol. Process., 30, 3126–3138, https://doi.org/10.1002/hyp.10851, 2016.
McDonnell, J. J., Spence, C., Karran, D. J., van Meerveld, H. J., and Harman, C. J.: Fill-and Spill: A process description of runoff generation at the scale of the beholder, Water Resour. Res., 57, e2020WR027514, https://doi.org/10.1029/2020WR027514, 2021.
Meadows, D. H. (Eds.): Thinking in Systems: A Primer, Chelsea Green Publishing, ISBN 9781603581486, 2008.
Moiwo, J. P., Yang, Y., Yan, N., and Wu, B.: Comparison of evapotranspiration estimated by ETWatch with that derived from combined GRACE and measured precipitation data in Hai River Basin, North China, Hydrol. Sci. J., 56, 249–267, https://doi.org/10.1080/02626667.2011.553617, 2011.
Morgan, S. L. and Winship, C. (Eds.): Counterfactuals and causal inference: Methods and Principles for social research, 2nd edn., Cambridge University Press, Cambridge, UK, ISBN 9781107694163, 2015.
Nalley, D., Adamowski, J., Khalil, B., and Biswas, A.: Inter-annual to inter-decadal streamflow variability in Quebec and Ontario in relation to dominant large-scale climate indices, J. Hydrol., 536, 426–446, https://doi.org/10.1016/j.jhydrol.2016.02.049, 2016.
Negassa, W. C., Guber, A. K., Kravchenko, A. N., Marsh, T. L., Hildebrandt, B., and Rivers, M. L.: Properties of soil pore space regulate pathways of plant residue decomposition and community structure of associated bacteria, PLoS ONE, 10, 1–22, https://doi.org/10.1371/journal.pone.0123999, 2015.
NTSG: Global ET, University of Montana [data set], https://www.umt.edu/numerical-terradynamic-simulation-group/project/global-et.php, last access: 9 January 2025.
O'Connell, P. E., Koutsoyiannis, D., Lins, H. F., Markonis, Y., Montanari, A., and Cohn, T. A.: The scientific legacy of Harold Edwin Hurst (1880–1978), Hydrol. Sci. J., 61, 1571–1590, https://doi.org/10.1080/02626667.2015.1125998, 2016.
Patel, K. F., Fansler, S. J., Compbell, T. P., Bond-Lamberty, B., Smith, A. P., RoyChowdhury, T., McCue, L. A., Varga, T., and Bailey, V. L.: Soil texture and environmental conditions influence the biogeochemical responses of soils to drought and flooding, Commun. Earth Environ., 2, 127, https://doi.org/10.1038/s43247-021-00198-4, 2021.
Pathak, R. S. (Eds.): The wavelet transform (Atlantis Studies in Mathematics for Engineering and Science), AP/World Scientific Publishing, Paris, France, 192 pp., ISBN 9078677260, 2009.
Pearl, J. (Eds.): Causality: Models, reasoning, and inference, 2nd edn., Cambridge University Press, Cambridge, UK, ISBN 052189560X, 2009.
Richardson, G. P.: Core of System Dynamics, in: System Dynamics. Envyclopedia of Complexity and System Science Series, edited by: Dangerfield, B., Springer, New York, NY, 11–20, https://doi.org/10.1007/978-1-4939-8790-0_536, 2020.
Rickles, D., Hawe, P., and Shiell, A.: A simple guide to chaos and complexity, J. Epidemiol. Commun. H., 61, 933–937, https://doi.org/10.1136/jech.2006.054254, 2007.
Peterson, T. J., Saft, M., Peel, M. C., and John, A.: Watersheds may not recover from drought, Science, 372, 745–749, https://doi.org/10.1126/science.abd5085, 2021.
Robert: Granger_Cause_1, MATLAB Central File Exchange [code], https://www.mathworks.com/matlabcentral/fileexchange/59390-granger_cause_1 (last access: 9 January 2025), 2023.
Sayood, K.: Wavelets, in: Introduction to Data Compression, the Morgan Kaufmann Series in Multimedia Information and Systems, Morgan Kaufmann, 497–528, https://doi.org/10.1016/B978-0-12-415796-5.00015-6, 2012.
Schymanski, S. J. and Or, D.: Leaf-scale experiments reveal an important omission in the Penman–Monteith equation, Hydrol. Earth Syst. Sci., 21, 685–706, https://doi.org/10.5194/hess-21-685-2017, 2017.
Seth, A. K. and Bayne, T.: Theories of consciousness, Nat. Rev. Neurosci., 23, 439–452, https://doi.org/10.1038/s41583-022-00587-4, 2022.
Shi, B., Delgado-Baquerizo, M., Knapp, A. K., Smith, M. D., Reed, S., Osborne, B., Carrillo, Y., Maestre, F. T., Zhu, Y., Chen, A., Wilkins, K., Holdrege, M. C., Kulmatiski, A., Picon-Cochard, C., Roscher, C., Power, S., Byrne, K. M., Churchill, A. C., Jentsch, A., Henry, H. A. L., Beard, K. H., Schuchardt, M. A., Elsenhauer, N., Otfinowski, R., Hautler, Y., Shen, H., Wang, Y., Wang, Z., Wang, C., Cusack, D. F., Petraglla, A., Carbognani, M., Forte, T. G. W., Flory, S., Hou, P., Zhang, T., Gao, W., and Sun, W.: Aridity drives the response of soil total and particulate organic carbon to drought in temperate grasslands and shrublands, Sci. Adv., 10, eadq2654, https://doi.org/10.1126/sciadv.adq2654, 2024.
Shi, H., Zhao, Y., Liu, S., Cai, H., and Zhou, Z.: A new perspective on drought propagation: causality, Geophys. Res. Lett., 49, e2021GL096758, https://doi.org/10.1029/2021GL096758, 2022.
Simonovic, S. P.: Application of the systems approach to the management of complex water systems, Water, 12, 2923, https://doi.org/10.3390/w12102923, 2020.
Snider, S. B. and Brimlow, J. N.: An introduction to population growth, Nature Education Knowledge, 4, 3, https://www.nature.com/scitable/knowledge/library/an-introduction-to-population-growth-84225544/ (last access: 9 January 2025), 2013.
Sterman, J. D. (Eds.): Business Dynamics: System thinking and modeling for a complex world, McGraw-Hill Education, ISBN 9780072389159, 2000.
Su, X., Su, X., Yang, S., Zhou, G., Ni, M., Wang, C., Qin, H., Zhou, X., and Deng, J.: Drought changed soil organic carbon composition and bacterial carbon metabolizing patterns in a subtropical evergreen forest, Sci. Total Environ., 76, 139568, https://doi.org/10.1016/j.scitotenv.2020.139568, 2020.
Sugihara, G., May, R., Ye, H., Hsieh, C., Deyle, E., Fogarty, M., and Munch, S.: Detecting causality in complex ecosystems, Science, 338, 496–500, https://doi.org/10.1126/science.1227079, 2012.
Stokes, P. A. and Purdon, P. L.: A study of problems encountered in Granger causality analysis from a neuroscience perspective, P. Natl. Acad. Sci. USA, 114, E7063–E7072, https://doi.org/10.1073/pnas.1704663114, 2017.
Stocker, B. D., Tumber-Dávlla, S. J., Konlngs, A. G., Anderson, M. C., Hain, C., and Jackson, R. B.: Global patterns of water storage in the rooting zones of vegetation, Nat. Geosci., 16, 250–256, https://doi.org/10.1038/s41561-023-01125-2, 2023.
TPDC: Terrestrial evapotranspiration dataset across China (1982–2017), TPDC [data set], https://doi.org/10.11888/AtmosPhys.tpe.249493.file, 2022.
TPDC: Global PEW land evapotranspiration dataset (1982–2018), TPDC [data set], https://doi.org/10.11888/Terre.tpdc.272874, 2023.
Wang, H., Lv, X., and Zhang, M.: Sensitivity and attribution analysis based on the Budyko hypothesis for streamflow change in Baiyangdian catchment, China, Ecol. Indic., 121, 107221, https://doi.org/10.1016/j.ecolind.2020.107221, 2021.
Wankmüller, F. J. P., Delval, L., Lehmann, P., Baur, M. J., Cecere, A., Wolf, S., Or, D., Javaux, M., and Carminati, A.: Global influence of soil texture on ecosystem water limitation, Nature, 635, 631–638, https://doi.org/10.1038/s41586-024-08089-2, 2024.
Wei, C. and Wang, H.: Research of water supply strategies in Fuping county, Design of Water Resources & Hydroelectric Engineering, 38, 21–23, 2019 (in Chinese).
Wei, J. and Dirmeyer, P. A.: Sensitivity of land precipitation to surface evapotranspiration: a nonlocal perspective based on water vapor transport, Geophys. Res. Lett., 46, 12588–12597, https://doi.org/10.1029/2019GL085613, 2019.
Wiener, N. (Eds.): Cybernetics: or Control and Communication in the Animal and the Machine, John Wiley & Sons, New York, 194 pp., ISBN 9780262355902, 1948.
Wright, A. J. and Francia, R. M.: Plant traits, microclimate temperature and humidity: A research agenda for advancing nature-based solution to a warming and drying climate, J. Ecol., 112, 2462–2470, https://doi.org/10.1111/1365-2745.14313, 2024.
Wu, B., Xiong, J., and Yan, N., Yang, L., and Du, X.: ETWatch for monitor regional evapotranspiration with remote sensing, Advances in Water Science, 19, 671–678, 2008.
Wu, B., Yan, N., Xiong, J., Bastiaanssen, W. G. M., Zhu, W., and Stein, A.: Validation of ETWatch using field measurements at diverse landscapes: A case study in Hai Basin of China, J. Hydrol., 436–437, 67–80, https://doi.org/10.1016/j.jhydrol.2012.02.043, 2012.
Wu, F., Wu, B., Zhu, W., Yan, N., Ma, Z., Wang, L., Lu, Y., and Xu, J.: ETWatch cloud: APIs for regional actual evapotranspiration data generation, Environ. Modell. Softw., 145, 105174, https://doi.org/10.1016/j.envsoft.2021.105174, 2021.
Xiao, D., Shi, Y., Brantley, S. L., Forsythe, B., DiBiase, R., Davis, K., and Li, L.: Streamflow generation from catchments of contrasting lithologies: the role of soil properties, topography, and catchment size, Water Resour. Res., 55, 9234–9257, https://doi.org/10.1029/2018WR023736, 2019.
Xu, Q., Cheng, W., Sun, T., and Bo, Q.: The influence of climate factors on runoff of major rivers in upper reaches of Baiyangdian lake, Journal of Hebei Agricultural University, 42, 110–115, https://doi.org/10.13320/j.cnki.jauh.2019.0043, 2019 (in Chinese).
Yang, H. and Cao, J.: Analysis of basin morphologic characteristics and their influence on the water yield of mountain watersheds upstream of the Xiongan New Area, North China, Water, 13, 2903, https://doi.org/10.3390/w13202903, 2021.
Yang, Z. and Mao, X.: Wetland system network analysis for environmental flow allocations in the Baiyangdian Basin, China, Ecol. Model., 222, 3785–3794, https://doi.org/10.1016/j.ecolmodel.2011.09.013, 2011.
Yuan, Z., Yan, D. H., Xu, J. J., Wang, Y. Q., Yao, L. Q., and Yu, Z. Q.: Effects of the precipitation pattern and vegetation coverage variation on the surface runoff characteristics in the eastern Taihang Mountain, Appl. Ecol. Environ., 17, 5753–5764, https://doi.org/10.15666/aeer/1703_57535764, 2019.
Zera, D. A.: What is a system and a system perspective?, Educ. Horiz., 81, 18–20, http://www.jstor.org/stable/42925422 (last access: 9 January 2025), 2002.
Zeng, Y., Zhao Y., and Qi, Z.: Evaluating the ecological state of Chinese Lake Baiyangdian (BYD) based on ecological network analysis, Ecol. Indic., 127, 107788, https://doi.org/10.1016/j.ecolind.2021.107788, 2021.
Zhang, K., Kimball, J. S., Mu, Q., Jones, L. A., Goetz, S. J., and Running, S. W.: Satellite based analysis of northern ET trends and associated changes in the regional water balance from 1983 to 2005, J. Hydrol., 379, 92–110, https://doi.org/10.1016/j.jhydrol.2009.09.047, 2009.
Zhang, K., Kimbal, J. S., Nemani, R. R., and Running, S. W.: A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006, Water Resour. Res., 46, W09522, https://doi.org/10.1029/2009WR008800, 2010.
Zhang, Q., Shao, M., Jia, X., and Wei, X.: Changes in soil physical and chemical properties after short drought stress in semi-humid forests, Geoderma, 338, 170–177, https://doi.org/10.1016/j.geoderma.2018.11.051, 2019.
Zhao, H., Gao, G., An, W., Zou, X., Li, H., and Hou, M.: Timescale differences between SC-PDSI and SPEI for drought monitoring in China, Phys. Chem. Earth, 102, 48–58, https://doi.org/10.1016/j.pce.2015.10.022, 2017.
Zhou, X., Zhang, Y., Wang, Y., Zhang, H., Vaze, J., Zhang, L., Yang, Y., and Zhou, Y.: Benchmarking global land surface models against the observed mean annual runoff from 150 large basins, J. Hydrol., 470–471, 269–279, https://doi.org/10.1016/j.jhydrol.2012.09.002, 2012.
Zhu, Y., Wang, H., Ma, J., Wang, T., and Sun, J.: Contribution of the phase transition of Pacific Decadal Oscillation to the late 1990s' shift in East China summer rainfall, J. Geophys. Res.-Atmos., 120, 8817–8827, https://doi.org/10.1002/2015JD023545, 2015.
Zhuang, C., Ouyang, Z., Xu, W., Bai, Y., Zhou, W., Zheng, H., and Wang, X.: Impacts of human activities on the hydrology of Baiyangdian Lake, China, Environ. Earth Sci., 62, 1343–1350, https://doi.org/10.1007/s12665-010-0620-5, 2011.
Short summary
Conventional hydrological models erratically replicate slow hydrological dynamics, necessitating model modification and paradigm shift in hydrological science. The system dynamics approach successfully explains patterns of slow hydrological behaviors at inter-annual and decadal scales by dividing a hydrological system into different hierarchies and building endogenous linking structure among stocks. In spite of the simplicity, it holds potential to integrate hydrological behaviors across scales.
Conventional hydrological models erratically replicate slow hydrological dynamics, necessitating...