Articles | Volume 29, issue 1
https://doi.org/10.5194/hess-29-1-2025
https://doi.org/10.5194/hess-29-1-2025
Research article
 | 
03 Jan 2025
Research article |  | 03 Jan 2025

Modelling convective cell life cycles with a copula-based approach

Chien-Yu Tseng, Li-Pen Wang, and Christian Onof

Related authors

Exploring the applicability of Censored Shifted Gamma Distribution (CSGD) error model to radar based rainfall nowcasts: A UK case study
Hung-Ming Lin, Li-Pen Wang, and Jen-Yu Han
EGUsphere, https://doi.org/10.5194/egusphere-2025-4590,https://doi.org/10.5194/egusphere-2025-4590, 2026
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Modelling rainfall with a Bartlett–Lewis process: pyBL (v1.0.0), a Python software package and an application with short records
Chi-Ling Wei, Pei-Chun Chen, Chien-Yu Tseng, Ting-Yu Dai, Yun-Ting Ho, Ching-Chun Chou, Christian Onof, and Li-Pen Wang
Geosci. Model Dev., 18, 1357–1373, https://doi.org/10.5194/gmd-18-1357-2025,https://doi.org/10.5194/gmd-18-1357-2025, 2025
Short summary
Study of the effect of local forcing on the fractal behavior of shallow groundwater levels in a riparian aquifer
Abrar Habib, Athanasios Paschalis, Adrian P. Butler, Christian Onof, John P. Bloomfield, and James P. R. Sorensen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-27,https://doi.org/10.5194/hess-2023-27, 2023
Preprint withdrawn
Short summary
INTEGRATING INSAR INFORMATION AND SPATIAL-TEMPORAL FACTORS IN MACHINE LEARNING ANALYSIS FOR LANDSLIDE PREDICTION – A CASE STUDY FOR PROVINCIAL HIGHWAY 18 AREA IN TAIWAN
Y. K. Chen, Y. T. Lin, H. Y. Yen, N. H. Chang, H. M. Lin, K. H. Yang, C. S. Chen, L. P. Wang, H. K. Cheng, H. H. Wu, and J. Y. Han
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 1091–1096, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1091-2022,https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1091-2022, 2022

Cited articles

Aas, K., Nagler, T., Jullum, M., and Løland, A.: Explaining Predictive Models Using Shapley Values and Non-Parametric Vine Copulas, Depend. Model., 9, 62–81, https://doi.org/10.1515/demo-2021-0103, 2021. a
Ahn, K.-H.: Coupled Annual and Daily Multivariate and Multisite Stochastic Weather Generator to Preserve Low- and High-Frequency Variability to Assess Climate Vulnerability, J. Hydrol., 581, 124443, https://doi.org/10.1016/j.jhydrol.2019.124443, 2020. a
Archer, L., Hatchard, S., Devitt, L., Neal, J. C., Coxon, G., Bates, P. D., Kendon, E. J., and Savage, J.: Future Change in Urban Flooding Using New Convection-Permitting Climate Projections, Water Resour. Res., 60, e2023WR035533, https://doi.org/10.1029/2023WR035533, 2024. a
Benoit, L., Allard, D., and Mariethoz, G.: Stochastic Rainfall Modeling at Sub-kilometer Scale, Water Resour. Res., 54, 4108–4130, https://doi.org/10.1029/2018WR022817, 2018. a
Birmingham City Council: Birmingham Surface Water Management Plan, Final Report, https://www.birmingham.gov.uk/downloads/file/2561/surface_water_management_plan_for_birmingham_-_final_report (last access: 17 February 2024), 2015. a
Download
Short summary
This study presents a new algorithm to model convective storms. We used advanced tracking methods to analyse 165 storm events in Birmingham (UK) and reconstruct storm cell life cycles. We found that cell properties like intensity and size are interrelated and vary over time. The new algorithm, based on vine copulas, accurately simulates these properties and their evolution. It also integrates an exponential shape function for realistic rainfall patterns, enhancing its hydrological applicability.
Share