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Abstract. This study proposes an algorithm designed to
model convective cell life cycles, for the purpose of improv-
ing the representation of convective storms in rainfall mod-
elling and forecasting. We propose to explicitly model cell
property inter-dependence and temporal evolution. To de-
velop the algorithm, 165 effective convective storm events
occurring between 2005 and 2017 in Birmingham, UK, were
selected. A state-of-the-art storm tracking algorithm was em-
ployed to reconstruct convective cell life cycles within each
selected event. The investigation of these cell life cycles pro-
ceeded in three stages. The initial stage involved statistically
characterising individual properties of convective cells, in-
cluding rainfall intensity, spatial extent at peaks and lifes-
pan. Subsequently, an examination of the inter-correlations
amongst these properties was conducted. In the final stage,
the focus was on examining the evolution of these cell prop-
erties during their lifetimes. We found that the growth and de-
cay rates of cell properties are correlated with the cell proper-
ties themselves, hence the need to incorporate this correlation
structure into the process of sampling convective cells. To re-
solve the dependence structures within convective cell evolu-
tion, a novel algorithm based on vine copulas is proposed. We
show the proposed algorithm’s ability to sample cell life cy-
cles, preserving both observed individual cell properties and
their dependence structures. To enhance the algorithm’s ap-
plicability, it is linked to an exponential shape model to syn-
thesise spatial fields for each individual convective cell. This
defines a model that can readily be incorporated into rainfall
generators and forecasting tools.

1 Introduction

Climate change has emerged as an urgent environmental con-
cern, driving non-negligible changes in global weather pat-
terns, particularly the frequency and intensity of extreme
events (Trenberth et al., 2003; Liu et al., 2009; Guhathakurta
et al., 2011). A notable trend linked to this phenomenon
is the intensification of localised, short-duration rainfall ex-
tremes, often attributed to severe convective systems (Guer-
reiro et al., 2018; Fowler et al., 2021b, a; Lenderink et al.,
2021). This trend highlights the need to enhance the mod-
elling of convective storms within climate models and to
better account for their impacts on the subsequent hydro-
logical applications. Accordingly, there has been a growing
incorporation of convection-permitting (CP) models in cli-
mate research (Trapp et al., 2019; Coppola et al., 2020; Prein
et al., 2020; Halladay et al., 2023; Archer et al., 2024). De-
spite the demonstrated capability to enhance the simulation
of extreme precipitation events, there are still deficiencies in
CP models. For example, these models often tend to produce
overly intense heavy rainfall, and their reliability is heavily
influenced by the quality of lateral boundary forcing (Prein
et al., 2017; Kendon et al., 2021). Moreover, their exten-
sive computational requirements, particularly when a large
number of ensemble members are needed, may have hin-
dered their widespread adoption (Kendon et al., 2021; Lucas-
Picher et al., 2021a).

A suitable alternative to the generation of high-resolution
rainfall simulations is stochastic rainfall/weather generators.
These generators are mostly data-driven, constructed with
historical data over the area of the interest. Since they can
reflect the regional statistical features well, they have been
increasingly utilised in many hydrological applications, such
as urban drainage design (Willems, 2001; Thorndahl and An-
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dersen, 2021) and flood risk assessment (Simões et al., 2015;
Diederen and Liu, 2020; Wright et al., 2020).

Based on the data used for model construction, these
generators can be roughly categorised into two types. The
first type relies solely on rainfall data, including measure-
ments from rain gauges and weather radars over the study
area. Amongst these, point-process-based models are widely
used. These models simulate the rainfall process using two
Poisson-cluster processes: the first models storm arrivals,
and within each storm, the second process models the ar-
rivals of rain cells (Rodriguez-Iturbe et al., 1987, 1988).
Initially, point-process-based models were employed mainly
for generating rainfall time series (Cowpertwait, 1994; Onof
and Wheater, 1994, 1993). They were subsequently ex-
tended to spatial–temporal rainfall modelling, utilising ei-
ther rain gauge data from dense networks (Wheater et al.,
2000; Willems, 2001; Koutsoyiannis et al., 2003; Burton
et al.; Segond and Onof, 2009) or rainfall properties derived
from radar data (Féral et al., 2003; Luini and Capsoni, 2011;
McRobie et al., 2013; Muñoz Lopez et al., 2023). Corre-
lated random field generators are another increasingly popu-
lar category within the first type. These models typically con-
duct continuous simulations of space–time-correlated rain-
fall fields, preserving key features of the rainfall process
observed in radar data across various spatial and temporal
scales. This category includes models that generate rainfall
as a nonlinear transformation of Gaussian random fields with
parametric covariance forms (Ferraris et al., 2003; Paschalis
et al., 2013; Benoit et al., 2018; Wilcox et al., 2021; Pa-
palexiou et al., 2021; Green et al., 2024), as well as mod-
els based on multifractal processes (Schertzer and Lovejoy,
1987; Gires et al., 2020).

The second type of generators can be technically similar
to or extended from the first type. However, instead of us-
ing solely rainfall data, they further incorporate additional
weather variables, such as temperature, humidity and wind,
to generate more comprehensive simulations of weather con-
ditions (Wilks and Wilby, 1999; Ivanov et al., 2007; Jones
et al., 2010; Fatichi et al., 2011; Peleg and Morin, 2014;
Peleg et al., 2017; Papalexiou, 2018). These models aim
to capture the dependencies between rainfall processes and
other weather variables, enabling the generation of internally
consistent weather scenarios for impact studies and climate-
related assessments (Sparks et al.; Ahn, 2020; Van De Velde
et al., 2023).

In spite of significant advancements in the develop-
ment of storm and weather generators, with the increas-
ing demand for high-resolution rainfall modelling (Ochoa-
Rodriguez et al., 2015; Eggimann et al., 2017) – whether
the purpose is for subsequent hydrological applications or
for accurately representing intense, short-duration convec-
tive storms – it is still an open challenge to integrate the
modelling of convective storms into these generators. Vari-
ous efforts and strategies have been proposed in the literature
to address this issue. Some approaches adopt the concept of

typical point-process-based models but calibrate the model
parameters exclusively with rain gauge or radar data only
from pre-identified convective storm events (Willems, 2001;
McRobie et al., 2013; Wilcox et al., 2021).

Alternatively, instead of pre-filtering input data, some ap-
proaches modify the model structure to explicitly account
for the correlation between storm properties or to differen-
tiate between convective and stratiform rainfall types within
stochastic rainfall generators (Kaczmarska et al., 2014; Peleg
and Morin, 2014; Zhao et al., 2019; Onof and Wang, 2020;
Muñoz Lopez et al., 2023). For example, Kaczmarska et al.
(2014) and Onof and Wang (2020) introduced an additional
parameter to a randomised Bartlett–Lewis rectangular pulse
model to associate rain cell intensity with storm duration.
This adjustment has significantly improved the model’s abil-
ity to reproduce extreme rainfall properties at sub-hourly and
hourly timescales. Similarly, Peleg and Morin (2014) incor-
porated a convective rain cell generator module into the pro-
cess of rainfall generation. This module, based on HYCELL
– a Gaussian–exponential hybrid rain cell shape model (Féral
et al., 2003) – is specifically responsible for sampling con-
vective rain cells. This incorporation enables the proposed
weather generator to effectively reproduce the observed spa-
tial structure of rainfall over the study area.

Despite the progress made in modelling convective storms,
most convective generators do not explicitly account for
cell evolution. For example, the generators proposed by
McRobie et al. (2013) and Peleg and Morin (2014) only
model the occurrence frequency and advection of convec-
tive cells, neglecting the evolution – an important charac-
teristic of convective cells highlighted by Rigo and Llasat
(2016). Ignoring this evolution may lead to misrepresenta-
tions of rainfall extremes and subsequent hydrological re-
sponses (Muñoz Lopez et al., 2023). Although it is criti-
cal to model cell evolution, to the authors’ knowledge, only
a limited number of generators in the literature explicitly
model this process (Paschalis et al., 2013; Ghirardin et al.,
2016; Wilcox et al., 2021). For example, Wilcox et al. (2021)
proposed temporally disaggregating convective rainfall using
a predefined hyetograph pattern, consisting of a symmetri-
cal triangular peak representing the convective front of the
storm, followed by a stratiform tail of lower intensity. Like-
wise, Ghirardin et al. (2016) represented convective cell evo-
lution with a predefined exponential function, associating the
size of a rain cell with its peak intensity.

As can be seen, in most existing evolution methods, the
modelling of a cell’s temporal profile (or life cycle) is
largely simplified, and inter-correlation amongst cell prop-
erties throughout the life cycle is not satisfactorily accounted
for. To properly address these deficiencies, in this work, we
propose to develop an algorithm that enables the stochastic
generation of not only convective cells but also their life cy-
cles, allowing for explicit modelling of cell evolution.

This paper is organised as follows. In Sect. 2, we provide
descriptions of the pilot domain and rainfall datasets utilised
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in this study. Section 3 explains the proposed methodology
for developing a stochastic convective cell life cycle algo-
rithm, including techniques for extracting convective cell life
cycles from high-resolution radar data, statistical character-
isation of the properties of cell life cycles and their inter-
dependence, and the copula models employed to model these
properties and inter-dependence. Section 4 evaluates the ca-
pacity of the proposed algorithm to preserve the statistical
properties of observed convective cells. Finally, in Sect. 5,
we summarise the key findings from this work and discuss
potential further developments and applications of the pro-
posed algorithm.

2 Dataset

2.1 Pilot domain

The pilot site under study in this paper is located near Min-
worth (see the area with dark-purple shading in Fig. 1 (right),
approximately 30× 34 km2), a highly urbanised catchment
located in the West Midlands region in England. This catch-
ment covers the entire city of Birmingham (the area with
light-pink shading in Fig. 1, right) and a significant portion
of the industrial Black Country area. With a population of
around 1.5 million people, it spans an area of 431 km2. Min-
worth was selected as the pilot site due to its extensive history
of surface water flooding, primarily attributed to localised,
high-intensity convective storms during the summer months.
A recent assessment conducted by Birmingham City Coun-
cil estimated that approximately 22 900 homes in the area are
susceptible to this type of flooding (Birmingham City Coun-
cil, 2015).

Centred at the Minworth catchment, two domains with dif-
ferent sizes were used in this study to perform storm cell
tracking and the storm cell properties’ analysis, respectively.
These domains are as follows:

– Tracking domain. This is a 500× 500 km2 region cen-
tred at Minworth (the squared area with a dashed black
border line in Fig. 1, left). The storm tracking was con-
ducted using radar images over this domain. The size of
this domain was chosen to ensure a reliable estimate of
storm motion (Wang et al., 2015).

– Analysing domain. This is a 250× 250 km2 region cen-
tred at Minworth. After the storm tracking process, only
rain cells with centroids located within this domain were
used for further analyses. There are two main reasons
for choosing this domain. Firstly, as shown in Fig. 1
(left), this domain has a higher density of radar data
sites, resulting in better data quality. Secondly, select-
ing this domain helps reduce the impact of boundary
effects on the extracted rain cell data. In some cases,
storm cells may only partially enter the tracking domain
during a given event period. Including the properties of

these partially tracked cells in the analysis may lead to
a faulty estimate of their statistical behaviours.

2.2 Radar rainfall data

The pilot domain falls within the coverage area of C-band
radars operated by the Met Office (UKMO) (see Fig. 1, left).
These radars operate at a frequency of 5.6–5.65 GHz, with an
operational range of approximately 200 km, a range resolu-
tion of 600 m, and a beam width of 1°. Considering the dis-
tances of the pilot catchments from the radar (approximately
50 km), the 1° beam width results in an angular resolution
of approximately 870 m. The UKMO radars conduct scans at
five different elevations (0.5, 1.0, 2.0, 3.0, and 4.0°) within
a scan repeat cycle of 5 min. During the period of 2005–
2017, the radar covering the pilot catchment primarily had
single-polarisation capabilities. Although the UKMO radars
are being upgraded to include dual-polarisation and Doppler
capabilities (Darlington et al., 2016), radar quantitative pre-
cipitation estimates (QPEs) at the UKMO are still derived
based on single-polarisation data.

Radar QPEs for the pilot catchment were obtained from
the British Atmospheric Data Centre (BADC). These esti-
mates were provided at spatial and temporal resolutions of
1 km and 5 min, respectively. They correspond to a quality-
controlled multi-radar composite product generated using the
UK Met Office Nimrod system (Golding, 1998). This Nim-
rod product incorporates various corrections to address in-
herent errors in radar rainfall measurements. These correc-
tions include identification and removal of anomalous prop-
agation (e.g. beam blockage and clutter interference), atten-
uation correction, vertical profile correction, and an hourly
based nationwide mean field bias correction (Harrison et al.,
2000, 2009; Sandford, 2015).

2.3 Event selection

The event selection in this study was first conducted using
ground rain gauge records over the Minworth catchment to
determine durations for storm events. Based on these dura-
tions, the Met Office C-band Nimrod radar rainfall data were
then used for convective cell extraction. The event selection
criteria were designed based on the WaPUG (Wastewater
Planning Users Group) standard. This has provided guidance
for best practice in urban drainage management in the UK
since 1984. Though WaPUG has now been replaced by the
CIWEM (Chartered Institution of Water and Environmental
Management) Urban Drainage Group (UDG), its guidelines
for selecting storm events for the calibration and verification
of urban drainage models remain relevant. Specifically, we
referred to User Note 06 (Use of Rainfall Data from Flow
Surveys) produced by WaPUG in 2009 (Gooch, 2009). While
a new rainfall modelling guide was published in 2016 (CI-
WEN, 2016), the principles for event selection are similar.
These principles include criteria for event durations, cumu-
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Figure 1. Pilot catchment, study domains and rainfall monitoring networks. (a) The Minworth catchment (in the very middle of the map),
the neighbouring UKMO radar sites and their effective coverages, and the tracking and analysing domains are illustrated. (b) A close view of
the Minworth catchment (and its relative location to the city of Birmingham) and the neighbouring Environment Agency (EA) rain gauges.

lative rainfall, instantaneous rainfall rates and the quality of
rainfall data.

For our study area, the general criteria are instantaneous
rainfall rates greater than 5 mm h−1 and cumulative rain-
fall greater than 5 mm, ensuring effective rainfall and subse-
quent runoff. Since our focus is on convective cell life cy-
cle modelling, we specifically chose events between May
and July, filtering out those without any 5 min rainfall in-
tensity greater than 5.6 mm h−1 (equivalent to a reflectivity
of 35 dBZ – a threshold commonly used to identify convec-
tive regions according to the Marshall–Palmer relationship
(Marshall and Palmer, 1948)), as well as those with dura-
tions shorter than 15 min. In addition, we excluded events
with consecutive periods of missing radar data, resulting in a
total of 165 events between 2005 and 2017 summer months
(on average 12.7 events per year).

A summary of these events is given in Table 1. This in-
cludes the number of selected events, as well as statistics for
storm durations (in h), areal and maximum rainfall event to-
tals (in mm), and 5 min areal and maximum peak rainfall in-
tensities (in mm h−1) for each year of the study period. The
areal and maximum totals represent, respectively, the spatial
average and the highest individual pixel value of cumulative
rainfall over the catchment area for each storm event. Simi-
larly, the areal and maximum peaks denote the spatial aver-
age and the highest individual pixel value of instantaneous
rainfall intensity. As seen, the average durations of the se-
lected events are mostly shorter than 20 h, with the longest
ones exceeding 70 h, likely comprising several convective
systems separated by durations that are however shorter than
6 h.

3 Methodology

3.1 Overview

The life cycle of a convective cell typically consists of three
stages. These are developing, mature and dissipating (Kim
et al., 2012). In between these stages, cell merging and/or
splitting may occur, further complicating the cell evolution
process (Rigo and Llasat, 2016). In this study, we focus upon
developing an algorithm that samples single-core convective
cell life cycles, without considering cell merging and split-
ting events. The proposed methodology for developing such
an algorithm is illustrated in Fig. 2.

The process starts with the application of an object-based
storm tracking algorithm to high-resolution radar images,
which allows us to extract convective cells and their tem-
poral associations (tracks). Next, individual cell life cycles
are reconstructed from the extracted cells and tracks. A con-
ceptual model representing the convective cell life cycle is
then proposed, and relevant properties are computed and sta-
tistically characterised from the extracted life cycle data. It is
important to note that, to better characterise the cell evolution
process, we not only characterise the distributions of individ-
ual properties (e.g. major and minor axes and peak intensity
of cells) but also analyse their inter-dependence.

Finally, based on the statistical features of the life cycles,
a copula-based algorithm is developed to stochastically gen-
erate convective cell life cycles. This algorithm enables the
generation of synthetic life cycles that preserve the observed
statistical properties and inter-dependence of convective cell
properties.
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Table 1. Statistical summary of the selected convective storm events between 2005 and 2017 summer months (May to July).

Year No. of Avg. Max. Min. Avg. Avg. 5 min 5 min
events duration duration duration areal total avg. avg.

(h) (h) (h) total max. areal max.
(mm) (mm) peak peak

(mm h−1) (mm h−1)

2005 10 17.85 29.33 3.58 13.42 21.92 8.49 36.44
2006 8 21.84 54.75 2.58 7.69 12.90 5.87 27.12
2007 18 20.62 52.08 1.50 16.23 24.53 7.02 29.43
2008 9 23.23 70.58 0.33 10.78 16.89 10.10 56.00
2009 23 16.77 50.50 3.08 9.98 16.07 5.97 29.16
2010 11 12.77 38.17 1.92 7.72 14.05 5.42 25.66
2011 12 14.60 37.92 3.58 5.88 10.00 5.47 22.38
2012 14 19.23 61.92 3.25 14.04 22.10 8.35 27.47
2013 9 12.48 30.83 3.17 12.13 17.13 9.91 32.15
2014 12 13.47 31.75 1.42 12.13 18.03 9.99 31.30
2015 15 17.03 84.83 0.58 8.15 15.07 8.39 40.36
2016 12 14.71 75.83 2.67 9.75 20.88 6.63 36.19
2017 12 22.26 36.08 4.42 8.57 12.53 4.53 17.94

The proposed methodology comprises three main steps.
These are as follows:

– Cell life cycle extraction. Initially, high-resolution radar
images are processed using enhanced TITAN, a state-
of-the-art convective cell tracking algorithm proposed
by Muñoz et al. (2018). This algorithm identifies con-
vective cells and establishes temporal associations be-
tween cells across successive time steps. Then, the al-
gorithm proposed by Cheng et al. (2024) is applied to
the output of the enhanced TITAN cell tracking to ex-
tract individual cell life cycles.

– Statistical characterisation of cell life cycles. This step
involves a comprehensive examination of selected life
cycle properties. Not only individual cell characteris-
tics such as intensities, lifespans, and spatial extents
but also the temporal evolution of these properties, in
terms of growth and decay rates over their lifespans,
are investigated. Moreover, the dependence structures
amongst these properties are assessed, and the possibil-
ity of modelling these structures using copulas is ex-
plored.

– Copula-based stochastic convective cell generation. Fi-
nally, a copula-based algorithm is proposed for gener-
ating stochastic convective cell life cycles. This algo-
rithm reproduces cell life cycles while preserving their
observed characteristics and interdependencies. More-
over, it can be enhanced by incorporating an exponential
rain cell shape model known as MultiEXCELL (Luini
and Capsoni, 2011), enabling the generation of convec-
tive cell life cycles with spatially distributed convective
cells.

A detailed explanation of each of these steps is given in
the following sections.

3.2 Cell life cycle extraction

A two-stage approach, adopted from the method proposed by
Cheng et al. (2024), was utilised here to extract and to con-
struct convective cell life cycles from high-resolution radar
images. The first stage of this approach is to identify convec-
tive cells and to establish their temporal associations (here-
after, “tracks”) between any two successive time steps. Here,
a state-of-the-art storm cell tracking algorithm, named en-
hanced TITAN, was employed (Muñoz et al., 2018). The sec-
ond stage is to post-process the extracted cells and tracks,
such that individual cell life cycles can be further isolated
from the outcome of the first stage. Here, an algorithm, based
upon the graph theory, was utilised. The details of the key
techniques of these two stages are explained as follows.

3.2.1 Stage 1: convective cell tracking over
high-resolution radar images

The enhanced TITAN storm tracking algorithm, proposed
by Muñoz et al. (2018), was employed here to facilitate the
identification and tracking of convective cells from high-
resolution radar images. This algorithm was developed based
upon the widely used TITAN (Thunderstorm Identification,
Tracking, Analysis and Nowcasting; see Dixon and Wiener,
1993) algorithm and was specifically tailored to work with
high-resolution radar images. Similarly to TITAN, the en-
hanced TITAN comprises two main steps: (1) cell identifi-
cation and (2) temporal association. The former identifies
individual convective cells from each radar image, and the
latter establishes temporal relationships between cells from
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Figure 2. Overview of the proposed methodology. It comprises three main steps: (1) cell property extraction from high-resolution radar im-
ages, (2) statistical characterisation of cells’ individual properties and their dependence structure, and (3) an algorithm that enables stochastic
generation of convective cell life cycles.

successive time steps. There are however some noticeable
deficiencies in the original TITAN, which hinder its appli-
cability to track, for example, in the case of small-sized but
high-intensity or fast-moving cells. Specific treatments are
thus introduced in the enhanced TITAN to improve these de-
ficiencies. These include the following:

– A multi-threshold segmentation (MTS) method. This
method is inspired by the hierarchical threshold seg-
mentation (HTS) method proposed by Peak and Tag
(1994). Whereas the original TITAN used a single
threshold for cell identification, enhanced TITAN ap-
plied a range of threshold values (e.g. ranging from
35 to 40 dBZ) to the separation of storm cells from
each radar image. This results in a number of cell clus-
ters with different sizes from each radar image. Each of
these clusters is then modelled as a tree-like data struc-
ture with a given number of hierarchies, of which each

node at a given tree level represents an isolated rainfall
region filtered by a given threshold. A heuristic pruning
process, which considers cell sizes and shapes, is then
performed to “trim” cells from the tree, such that indi-
vidual cells from each radar image can be identified. For
the details of the pruning algorithm, readers are referred
to Appendix 1 of Muñoz et al. (2018).

– Incorporation of a field motion tracker. One of the main
challenges in object-based storm tracking is to (tempo-
rally) associate those cells identified between succes-
sive time steps. The original TITAN, as well as many
of its variants, relies on a “matching” process that min-
imises an objective function, quantifying the level of
similarity between any two cells. This optimisation pro-
cess however does not account for the spatial consis-
tency of the movements between neighbouring cells.
In contrast, field-based storm tracking works with en-
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tire rainfall fields and tends to derive spatially consis-
tent (or smoother) motion fields. The resulting motion
fields however could be overly smooth, failing to cap-
ture the deviation of movements of individual (convec-
tive) cells from those of neighbouring cells. To over-
come the inherent limitations of each type of tracking
method, Muñoz et al. (2018) employed a “hybrid” ap-
proach. First, field-based tracking is conducted to ob-
tain a spatially consistent motion field, which provides
an initial guess of the movements of each convective
cell. Then, the typical “matching” process in object-
based tracking is conducted. With help from field-based
tracking, the solution space for the optimisation prob-
lem can be effectively reduced, and consequently, the
accuracy and efficiency of convective cell tracking can
be improved.

This tracking stage yields sets of convective cells and
tracks the link cells between successive time steps. These en-
tities however do not conform to a simple list-like structure;
instead, the links between cells form a graph-like structure
due to the dynamic nature of convective systems, involving
frequent merging and splitting of cells. While this graph-like
structure is not suitable for extracting statistical properties of
individual life cycles, Cheng et al. (2024) addressed this is-
sue by adopting the method proposed by Liu et al. (2016)
to decompose each graph of convective cells and tracks into
several individual life cycles. Details of this method are pro-
vided in the following section.

3.2.2 Stage 2: extraction of individual cell life cycles

In graph theory, a graph data structure is made of sets of ver-
tices (or nodes) connected by edges (or links). By specifying
the starting and termination vertices, one can identify a path
that meets specific criteria (e.g. the shortest distance). Build-
ing upon the approach introduced by Liu et al. (2016), Cheng
et al. (2024) applied this graph theory concept to extract the
“most representative” life cycle from a cluster of intercon-
nected rain cells. Initially, they modelled each cell cluster as
a directed spatial–temporal graph, where vertices represented
cells and directed edges depicted tracks linking successive
cells. Then, Cheng et al. (2024) specified those cells lacking
previous cells as starting vertices and those lacking subse-
quent cells as termination vertices. Paths with the minimal
variation in mean intensities between each pair of starting
and termination vertices can be identified.

To achieve this, a weightWij was assigned to a track asso-
ciating cells i and j , formulated based on an estimate derived
from mean reflectivity values of cells i and j . Specifically,

Wij = |Ri −Rj |, (1)

where Ri is the normalised mean reflectivity of a given cell i,
computed as

Ri =
Ii − Imin

Imax− Imin
. (2)

Here, Imin and Imax denote the minimum and maximum
mean reflectivity of the cell cluster to which cells i and j
belong.

The weight Wij thus indicates the level of difference in
mean reflectivity estimates between two successive cells.
Utilising these weights, Dijkstra’s shortest-path algorithm
was applied to identify all possible shortest paths between
any two starting and termination vertices (Dijkstra, 1959).
Finally, the path with the longest length among these iden-
tified paths was extracted as the most representative life cy-
cle from the cell cluster under analysis. For a comprehensive
understanding of the above life cycle extraction algorithm,
readers are referred to Appendix A in Cheng et al. (2024).

3.3 Conceptualising convective cell life cycles

A conceptual model, based on the patterns observed in our
extracted cell life cycles and those in the literature (Kim
et al., 2012; Shusse et al., 2015; Rigo and Llasat, 2016),
is proposed to model essential cell properties (e.g. intensity
and size) as they evolve over time. As illustrated in Fig. 3,
each cycle undergoes growth, peak and decay stages (also
known as development, maturity and dissipation stages, re-
spectively), characterised by three key attributes. These are
as follows:

– Lifespan. This is computed as the duration (DL) from
the initial to the last available cell.

– Peak. This consists of maximum reflectivity (Imax,peak,
in dBZ) and lengths of major and minor axes (Smaj,peak
and Smin,peak, in km) at the peak time step.

– Temporal variation. This includes the growth and decay
rates (R.,growth and R.,decay) of the selected properties
(e.g. maximum reflectivity and major and minor axes).
These rates are calculated as the ratios of peak values
to initial (or last) values. This estimation indicates a lin-
ear variation in property values during growth and de-
cay periods. This estimation assumes a linear progres-
sion of property values during growth and decay peri-
ods, a trend supported by previous research (Capsoni
and Luini, 2009; Rigo and Llasat, 2016).

Subsequently, 10 cell properties are required to model the ge-
ometric and intensity variations throughout life cycles (see
Table 2 for a summary). To comply with the requirement
of the proposed conceptual model, we further filtered out
those life cycles shorter than three time steps and those with
multiple-peak patterns from the life cycles obtained from
the extraction process (detailed in Sect. 3.2) since no clear
growth, peak and decay stages could be identified. This en-
ables us to focus analysis on distinct evolutionary trends.
Subsequently, a total of 27 731 cell life cycles will be used
for further statistical analysis of their characteristics.
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Figure 3. Schematic for conceptualising the convective cell life cycle.

Table 2. Summary of key properties to conceptualise the life cycle model and the corresponding optimal probability distribution and param-
eters.

Property Description Fitted Distribution parameters AIC
distribution

Duration

DL Total time duration of the cycle (5 min intervals) Exponential λ= 0.239, γ = 3.000 1.33× 10+5

Peak

Imax,peak Maximum intensity at peak (dBZ) Weibull α = 12.029, β = 1.972, γ = 35.528 1.71× 10+5

Smaj,peak Major axis length at peak (km) Log-logistic α = 9.807, β = 2.261, γ = 3.216 1.93× 10+5

Smin,peak Minor axis length at peak (km) Log-logistic α = 4.524, β = 2.599, γ = 1.915 1.43× 10+5

Temporal variation

RImax,growth Ratio of the initial to the peak maximum intensity (dBZ dBZ−1) Beta α = 13.373, β = 1.329 −7.93× 10+4

RImax,decay Ratio of the last to the peak maximum intensity (dBZ dBZ−1) Beta α = 10.636, β = 1.44 −6.53× 10+4

RSmaj,growth Ratio of the initial to peak major axis length (km km−1) Gamma α = 0.255, β = 3.074, γ = 0 2.75× 10+4

RSmaj,decay Ratio of the last to peak major axis length (km km−1) Weibull α = 0.830, β = 1.654, γ = 0.016 2.95× 10+4

RSmin,growth Ratio of the initial to peak minor axis length (km km−1) Weibull α = 0.901, β = 2.374, γ = 0 1.94× 10+4

RSmin,decay Ratio of the last to peak minor axis length (km km−1) Weibull α = 0.857, β = 2.132, γ = 0 2.19× 10+4

3.4 Statistical characterisation of cell life cycles

To analyse the statistical features of life cycles, here we first
focus on characterising cell properties individually and then
on the inter-dependence between them. The details of the
characterisation are explained as follows.

3.4.1 Individual property characterisation

Our first step involves identifying the optimal distribution for
each property individually. This process is relatively straight-
forward. Firstly, we pre-selected a set of candidate distribu-
tions based on visual inspection and the existing literature.
Subsequently, we employed the maximum likelihood estima-
tion (MLE) method to fit the distribution parameters. The
AIC (Akaike information criterion) that accounts for both
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Figure 4. Histogram of selected cell properties at peaks (a) and the corresponding growth and decay rates and (b) fitted probability distri-
butions. Imax,peak – maximum intensity (in dBZ), DL – cell lifespans (in time step), Smaj,peak, Smin,peak – lengths of major and minor cell
extent (in km), R.,growth – growth rates of selected cell properties, and R.,decay – decay rates of selected cell properties.

fitting likelihood estimates and model complexity was then
used to determine the most appropriate distribution for each
property. The fitting results of the peak properties using pre-
selected distributions are shown in Fig. 4, where the corre-
sponding AICs obtained from each candidate distribution are
given. In addition, a summary in Table 2 highlights the most
suitable distribution for each cell property along with the as-
sociated parameters. Remarkably, the best-fit distribution for
each peak property generally aligns with distributions identi-
fied in prior research, such as McRobie et al. (2013).

3.4.2 Dependence structure characterisation

We then turn our attention to exploring the statistical depen-
dence amongst these cell properties. The importance of con-
sidering dependence between different storm properties has
been highlighted in numerous studies (e.g. Gyasi-Agyei and

Melching; Salvadori and De Michele, 2004, 2006). Partic-
ularly, it plays the key role of preserving fine-scale statisti-
cal features in the rainfall process (Kaczmarska et al., 2014;
Onof and Wang, 2020). Modelling this dependence however
poses a challenge, especially as it requires multivariate anal-
ysis, which becomes even more complex when the data do
not follow a Gaussian distribution.

To address this challenge, we propose to use copula the-
ory for the numerical modelling of the dependence between
storm properties. The key idea behind copula theory is to
transform the marginal distributions of individual variables
into a standard uniform distribution over the interval [0, 1]
(Genest and Favre, 2007; Jaworski et al., 2013; Czado, 2019;
Tootoonchi et al., 2022). This transformation maintains the
dependence structure between the variables while decoupling
it from the individual characteristics of the marginal distri-
butions. We then utilise Spearman and Kendall’s τ correla-
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Figure 5. Correlation analyses amongst selected cell properties: (a) between peak properties and (b–d) between each peak property and the
associated growth and decay rates. Kendall’s τ values are displayed in red when the correlation is greater than 0.2.

tion coefficients, which are better suited for capturing nonlin-
ear relationships as compared to Pearson’s correlation coeffi-
cient, to quantify the dependencies between the transformed
variables. As depicted in Fig. 5a, all selected properties ap-
pear to be correlated with each other, with varying levels
of dependence. Notably, the correlation coefficients between
major and minor axis lengths and those between peak inten-
sity and life cycle duration are higher than those between
other properties. This is consistent with findings in the lit-
erature (Willems, 2001; Luini and Capsoni, 2011; McRobie
et al., 2013; Muñoz Lopez et al., 2023). In addition, we in-
vestigate the dependence between each peak property and the
associated growth and decay rates (see Fig. 5b–d). To the
authors’ knowledge, this dependence is often overlooked in
the literature. Nevertheless, our analyses suggest a significant
dependence between them, with the estimated correlation co-
efficients statistically significant at a 0.05 level (95 % confi-

dence interval), with p values less than 0.05, which should
not be ignored.

To model these dependencies, we employ vine copulas,
known for their flexibility in capturing various dependence
structures. Originating from Joe (1994) and formally defined
by Cooke (1997), vine copulas decompose joint distributions
into a number of bivariate copulas arranged in a tree-like
structure. Each node represents a variable modelled as a uni-
variate random variable, while each edge captures the con-
ditional dependence between variables. However, applying
vine copulas to multivariate analysis becomes increasingly
complex as the number of variables grows, requiring careful
determination of the copula structure and dependence order
(Czado and Nagler, 2022). Here, we utilised the Python pack-
age pyvinecopulib to facilitate the determination of the
optimal vine copula model (Nagler and Vatter, 2023). This
process involves two key steps. First, it requires determin-
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Table 3. The vine structure of the fitted models with the related paired variables and the value of criteria.

Vine Paired variable Copula Parameter AIC Log-
structure family likelihood

Cpeak

Tree1
2,3

TLL –
−37362.08 18 893.49

3,1
2–3–1–4 1,4

(D-vine)
Tree2

2,1|3
3,4|1

Tree3 2,4|1,3 BB1 180° 0.037, 1.048

CImax 2–3–1
Tree1

2,1
TLL –

−45177.39 23 116.05
CSmaj (C-vine) 3,1 −40262.75 20 269.11
CSmin 2,3|1 −42427.90 21 352.89

Figure 6. Illustration of Cpeak as D-vine structure (a) and CImax as C-vine structure (b).

ing the aforementioned tree-like structure for the vine copula.
Second, it has to identify the most suitable bivariate copula
for each edge of the tree and estimate the model parame-
ters. In this study, following the general practice in the liter-
ature, similarly to the identification of optimal distributions
for individual properties, we employed AIC to determine the
optimal vine copula for the characterisation of the cell prop-
erty dependence (Tosunoglu et al.; Czado and Nagler, 2022;
Latif and Simonovic). A detailed explanation of the bivariate
copula family selection, parameter estimation and the three
fitting strategies employed is provided in Sect. S1 in the Sup-
plement.

Here, we summarise the selection result. The final selec-
tion of the copula structure, dependence order and the bivari-
ate copula for each edge and the associated AIC values are
summarised in Table 3. A 4-dimensional (4D) 2–3–1–4 D-
vine copula is used to model the dependence amongst cell du-
ration and peak properties (i.e. Cpeak), while 3D C-vine cop-
ulas are used to model that between each given peak prop-
erty and its corresponding growth and decay rates (i.e. CImax ,
CSmaj and CSmin ). The use of the D-vine copula for peak prop-
erties is due to the lack of a clear dominating variable in the
dependence structure amongst the four selected cell proper-
ties; thus, the dependence between most pairs of variables

has to be modelled. Our D-vine model comprises three lev-
els of connected trees, where the edges from a lower level
constitute the nodes at a higher level.

As illustrated in Fig. 6 (left), at the first level, cell
properties are modelled with three bivariate copulas (i.e.
2,3, between Smaj,peak and Smin,peak; 3,1, between Smin,peak
and Imax,peak; and 1,4, between Imax,peak and DL). Based on
our analysis, the non-parametric transformation local likeli-
hood kernel estimator (denoted TLL) appears to be the most
suitable model. At the second level, the dependence is fur-
ther modelled on the constraint sets formed by the union of
a given pair of variables at the first level (i.e. between 2,1
and 3,1 and between 3,1 and 1,4). Likewise, our analysis
suggests using the (non-parametric) TLL copula to charac-
terise these dependence structures. Finally, at the third level,
the dependence is modelled between two conditional con-
straint sets (i.e. 2,1|3 and 3,1|4); here, a parametric Clayton–
Gumbel (denoted BB1) copula is found to be the most suit-
able model.

Unlike the dependence amongst the four selected cell
properties, the relationship between each peak property and
its corresponding growth and decay rates is primarily influ-
enced by the peak properties themselves. Thus, a 3D C-vine
copula, which typically features a dominant variable condi-
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tioning the other variables, is employed to model their de-
pendence structures.

As illustrated in Fig. 6 (right), the peak property (indexed
as 1) serves as the dominant variable, and the bivariate de-
pendence structures between this variable and the associ-
ated growth (indexed as 2) and decay rates (indexed as 3)
are initially modelled individually at the first level. Subse-
quently, the dependence between two constraint sets (i.e. 2,1
and 3,1) is modelled. In all three dependence structures, the
(non-parametric) TLL copula is identified as the most suit-
able model.

3.5 Generating convective cell life cycle with copula

Based on the findings from the statistical characterisation, we
propose a copula-based algorithm for the stochastic genera-
tion of convective cell life cycles while preserving observed
statistical characteristics and interdependence. As illustrated
in Fig. 7, the proposed algorithm comprises three steps. First,
the four selected cell properties (i.e. three peak properties
and cell lifespan) are sampled using a 4D vine copula model.
Next, each sampled peak property is used to conditionally
sample the corresponding growth and decay rates using a
3D copula. The cell properties and their variations along the
lifespan can therefore be reconstructed. Finally, the EXCELL
model is employed to further generate spatially distributed
rainfall intensities for cells with the sampled properties. It is
important to note that this final step of linking to the EX-
CELL model is optional and serves to demonstrate the flex-
ibility of the proposed algorithm to integrate with existing
models.

There are two main technical challenges of implementing
this algorithm. Firstly, conditional sampling from a multi-
dimensional copula. Particularly, in step 2, we have to con-
duct conditional sampling from a 3D copula. This process re-
quires efficient algorithms due to the complexity of handling
dependencies. Secondly, constructing spatially distributed
rain cells in step 3 involves synthesising spatially distributed
patterns while ensuring consistency with the sampled prop-
erties.

For the former challenge, part of the conditional sim-
ulation method proposed by Aas et al. (2021) is utilised.
This method was originally developed to estimate individ-
ual contributions, in terms of Shapley values (Štrumbelj and
Kononenko, 2010), from a number of mutually correlated
features to the performance of a given machine learning
model, where the dependence between features was mod-
elled with vine copulas. Here, instead of features, we adjust
the algorithm to work with a given cell peak property and the
corresponding growth and decay rates.

Consider the conditional sampling of growth and decay
rates given a peak property q1 as an example. Here, q1 rep-
resents the quantile of a randomly sampled value u1, rang-
ing between 0 and 1, obtained from the 4D D-vine cop-
ula in step 1. Firstly, we construct a vector u containing u1

and two additional values randomly sampled from an inde-
pendent uniform distribution U [0,1]. Thus, u= (u1,u2,u3).
Next, we perform the inverse Rosenblatt transformation to
convert u into another vector v = (v1,v2,v3), where vj cor-
responds to uj (j = 1,2,3). In the case of the 3D C-vine
copulas utilised in this study, this inverse operation is termed

v1 = F
−1 (u1) , v2 = F

−1 (u2|u1) , v3 = F
−1 (u3|u1,u2) . (3)

Here, F represents the 3D C-vine copula modelling the de-
pendence structure between a given peak property (indexed
as 1) and the corresponding growth (indexed as 2) and decay
(indexed as 3) rates (see Fig. 6, right). According to Rosen-
blatt (1952), for any copula F , if u comprises independent
random variables, v will follow the distribution defined by
copula F . Finally, the growth and decay rates conditioned on
a given peak property value q1 can be derived via the corre-
sponding (empirical or theoretical) quantile functions. That
is, q2 = F

−1
2 (v2) and q3 = F

−1
3 (v3).

For the latter challenge of synthesising spatially dis-
tributed rainfall intensities (in mm h−1) within a cell, we
utilise a straightforward model called EXCELL (i.e. expo-
nential cell) to generate the spatial pattern with known cell
properties (Capsoni et al., 1987). This model employs an ex-
ponential decay function to simulate an elliptical rain cell,
with rainfall intensity decreasing from a maximum value at
the centre of the cell. The rain intensity field of a cell cen-
tred at the origin without any orientation is represented by
the equation:

I (i,j)= Imax,p exp

[
−

(
i2

a2 +
j2

b2

)0.5]
, (4)

where I (i,j) denotes the rain intensity at each point location
along the x–y plane over the cell’s domain, Imax,p represents
the “point” maximum rain intensity, and a and b are decay
rates along the cell’s major and minor axes, respectively. In
our setting, a and b are set to Smaj and Smin, respectively, and
the rainfall intensity decreases to Imax,p/e at the edge of the
cell area.

However, the Imax values used in this study are derived
from 1 km radar imagery, representing areal-averaged rain-
fall intensities over a 1× 1 km2 pixel, rather than point rain-
fall intensities. Therefore, a relationship must be established
to convert Imax (areal average) to Imax,p (point rainfall in-
tensity). To achieve this, we integrate Eq. (4) over a circular
domain with a 1 km diameter centred on the cell. This yields
the following approximate relationship:

Imax,p =
2Imax

πSmajSmin
[
1− (r1− 1)exp(−r1)

] , (5)

where r1 = 1/2Smaj. This formula enables the conversion of
the areal-averaged radar rainfall intensity, Imax, into the point
rainfall intensity, Imax,p.
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Figure 7. Overview of the proposed copula-based algorithm for generating convective cell life cycles.

Figure 8. Illustration of a convective cell life cycle generated using the EXCELL model, sampled from the proposed algorithm.

Here, we present an example of using the EXCELL model
to generate spatially distributed convective cells for a life
cycle randomly sampled from the proposed algorithm. Fig-
ure 8a shows the cell structures of this six-time-step life cycle
in a 3D view, with corresponding cell properties in each time
step. For this specific sample, the intensity peak occurs in the
third time step, and the growth and decay of maximum rain-
fall intensities throughout the life cycle are clearly visible. In
addition, we provide a plan view of the sampled life cycle in
Fig. 8b, highlighting the temporal variation in the major and
minor axes.

It is worth noting that the EXCELL model generates rather
idealised and simplistic spatial patterns for rain cells. Several
variants or similar (yet more complex) models have been pro-
posed in the literature to generate statistically more intricate
or visually realistic patterns (Féral et al., 2003; von Harden-
berg et al., 2003; Rebora and Ferraris, 2006; Luini and Cap-

soni, 2011; Peleg and Morin, 2014). However, common find-
ings from these works suggest that characterising rain cells
with an exponential model is adequate for many applications.

In addition to the technical challenges, there is a critical
consideration when conducting sampling from copulas. This
involves the method used for sampling, which can be em-
pirical or theoretical. Empirical sampling derives quantiles
from the empirical distribution formed by the original data,
while theoretical sampling derives quantiles from the fitted
probability distributions. The former can better preserve the
observed frequency, whilst the latter can infer unseen esti-
mates. This difference in sampling methods may impact the
sampled properties, an aspect we will discuss in Sect. 4.
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4 Results and discussion

4.1 Evaluation method and metrics

In this section, we will explore the results from evaluating the
proposed algorithm for generating convective cell life cycle
samples. Our primary focus is to assess whether the observed
dependence structure amongst peak properties and cell dura-
tion, as well as their individual statistical properties, can be
well preserved. In addition, we will infer the cell properties
for the first and the last time steps of each life cycle from the
sampled peak properties and their corresponding growth and
decay rates and then determine if the observed properties for
the first and the last time steps are maintained in the inferred
ones.

To evaluate the ability to replicate the observed depen-
dence, we employ Kendall’s τ to compute correlation co-
efficients amongst sampled (or simulated) properties and
compare them with the observed correlations. Note that
Kendall’s τ is a non-parametric measure of the strength and
direction of the correlation between two variables. It ranges
from −1 to 1, with values closer to −1 (or 1) indicating a
stronger negative (or positive) correlation.

Furthermore, to evaluate the similarity between observed
and sampled (or simulated) marginal distributions, we utilise
Perkins’ skill score. This score quantifies the common area
between any two probability density functions (PDFs), de-
fined as

Sscore =

n∑
i=1

min
(
Zsi ,Zoi

)
, (6)

where Sscore represents the skill score; Zs and Zo denote the
frequencies of the simulated and observed values in a given
bin, respectively; and n is the number of bins used to cal-
culate the corresponding PDF (Perkins et al.). The Perkins’
skill score, ranging from 0 to 1, is a measure of agreement be-
tween simulated and observed distributions, with 1 indicating
a perfect match and 0 suggesting no overlap. A higher skill
score implies a better agreement between the simulated and
observed marginal distributions of cell properties. In prac-
tice, a skill score greater than 0.8 is considered excellent, sug-
gesting a strong match between the simulated and observed
distributions.

In the following sections, we will discuss the findings de-
rived from 100 ensembles of 27 000 life cycle samples, where
the number of samples at each ensemble member is approxi-
mately equal to the number of extracted cell life cycles.

4.2 Preservation of statistical properties at peaks

Here, we begin by examining the statistical characteristics
of individual cell properties at peaks. We present results
from an arbitrary ensemble member of 27 000 samples in
Fig. 9a, demonstrating distributions derived from both em-
pirical (blue line, denoted Sim (Ce)) and theoretical (green

line, denoted Sim (Ct )) sampling processes. In the empiri-
cal approach, copula-space samples [0,1] are converted into
the property’s value space via empirical quantile functions.
In contrast, the theoretical method uses quantile functions
based on fitted probability distributions. As can be seen,
both processes exhibit Sscore values exceeding 0.9, indicating
strong agreement between observed and simulated probabil-
ity density functions (PDFs). While empirical sampling more
closely replicates the observed PDFs, theoretical sampling
covers a broader range of values, suggesting it can sample
unobserved property values.

Similar trends are observed in the distributions of
Sscore values across 100 ensemble members (see Fig. 9b).
Empirical sampling generally yields slightly higher
Sscore values with more concentrated distributions, while
theoretical sampling produces slightly lower Sscore values
but with distributions spread over a larger range. Nonethe-
less, both sampling methods demonstrate satisfactory
preservation of individual statistical properties.

In terms of modelling the dependence structure at peaks,
we begin by presenting the results from an arbitrary en-
semble member of peak properties sampling (see Fig. 10).
To demonstrate the impact of utilising the proposed copula
model, we highlight two well-known dependencies: between
peak rainfall intensity and life cycle duration (i.e. Imax,peak
vs. DL, Fig. 10a) and between major and minor axis lengths
of cells (i.e. Smaj,peak vs. Smin,peak, Fig. 10b). The left
columns in both Fig. 10a and b show results with copula in-
corporated, while the right columns display results without it.
To better visualise the quality of dependence modelling, we
provide the dependence structures in two spaces: the original
variable space (in the upper row) and the [0,1]×[0,1] copula
space (in the lower row).

It is evident that while the marginal distributions can be ac-
curately reproduced in both cases, only those sampled with
the proposed 4D copula model can effectively preserve the
dependence structures amongst peak properties. This is fur-
ther confirmed by examining the corresponding Kendall’s τ
correlations. As given in Fig. 10, samples obtained with
the copula exhibit Kendall’s τ correlations comparable to
those observed, indicating close alignment with the original
data. In contrast, samples generated without the copula show
nearly negligible correlations, suggesting a lack of preserva-
tion of the underlying dependence structure.

Furthermore, Fig. 11a provides a detailed visualisation
of the pairwise dependence structures within the 4D copula
for an arbitrary ensemble member in the [0,1]× [0,1] cop-
ula space. The accuracy of the reproduced dependencies is
further supported by the corresponding Kendall’s τ values,
which show deviations smaller than 10−2 when compared
to the observed data. This close agreement confirms that the
4D copula captures the complex interdependencies among
peak properties and life cycle duration.

Moreover, the selection of empirical versus theoretical
quantile functions in the copula process also affects how
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Figure 9. Comparisons of marginal distributions derived from empirical quantile conversion (Ce) and theoretical quantile conversion (Ct )
sampling process for observed and simulated peak properties: (a) marginal distributions of an arbitrary ensemble member and (b) distributions
of Perkins’ skill scores derived from 100 ensemble members.

Figure 10. A comparison of dependence structures obtained from the observed (red circles) and simulated cell life cycle samples:
(a) Imax,peak vs. DL and (b) Smaj,peak vs. Smin,peak. The left column in (a) and (b) presents results incorporating copula modelling (black
crosses: simulated), and the right column shows results without copula modelling (grey crosses: simulated). The upper row displays depen-
dence structure in the original variable space, while the lower row shows the space after the quantile transformation has been applied.

well the dependence structure at peaks is preserved. Fig-
ure 12a and b demonstrate results of the dependence struc-
tures amongst peak properties from an arbitrary ensemble
member of life cycle samples, obtained from empirical (blue
markers) and theoretical (green markers) quantile functions,
respectively. Overall, the proposed 4D vine copula model

can effectively reproduce the observed dependence structure,
whether obtained from the empirical (Fig. 12a) or theoretical
(Fig. 12b) quantile functions. This is validated by the corre-
sponding Kendall’s τ values, with differences resulting from
empirical and theoretical quantile functions all on the order
of 10−2 or smaller. However, upon visual inspection, it is
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Figure 11. Comparisons of the dependence structure between observed (red round markers) and simulated (black crosses) properties obtained
from an arbitrary ensemble member. From top to bottom, each row represents results derived from a specific copula model (Cpeak, CImax ,
CSmaj and CSmin ).
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Figure 12. Comparisons of the dependence structure between observed (red round markers) and simulated properties in the original value
space, using the same ensemble member as in Fig. 11. The three left columns of plots (blue markers, denoted Ce

. ) show simulations derived
from empirical quantile functions, whilst the three right columns of plots (green markers, denoted Ct) show simulations from theoretical
quantile functions simulations.

evident that the dependence structure resulting from theoret-
ical quantile conversion (Sim (Ct)) displays a more divergent
pattern compared to that from empirical quantile conversion
(Sim (Ce)), as indicated by the presence of more outliers in
the plots. Consistent with the findings in sampling individual
properties, this suggests that the theoretical quantile function
has the potential to sample unobserved data points, while the
empirical one tends to better preserve the observed structure.

Extending our analysis to the results from 100 ensemble
members, we computed Kendall’s τ correlations amongst
peak properties for each ensemble member. As illustrated
in Fig. 13a, the distributions of Kendall’s τ correlations
amongst peak properties are well centred around the ob-
served Kendall’s τ correlations (dashed red lines) with nearly
negligible biases. Those obtained from the empirical quantile

functions may slightly outperform those from the theoreti-
cal ones, in terms of the level of central tendency, but the
difference is really insignificant. This reaffirms the proposed
algorithm’s ability to consistently reproduce the observed de-
pendence structures amongst peak properties.

4.3 Capturing life cycle evolution

Building upon the results from peak property sampling, we
can further explore the capability of the proposed algorithm
to sample the temporal variations, conditioned on the sam-
pled peak properties.

Similarly to the analysis conducted at peaks, we initially
assess the performance in reproducing the observed (individ-
ual) marginal distributions, as well as the dependence struc-
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Figure 13. Comparisons of Kendall’s τ correlations amongst cell properties, obtained from the observations (dashed red line) and from
simulations (blue box plots – empirical quantile functions, and green box plots – theoretical quantile function). Panel (a) shows results
between each pair of peak properties and lifespan, and panel (b) shows results between given peak properties and the corresponding growth
and decay rates.

tures between a given peak property and the corresponding
growth and decay rates. As illustrated in Fig. 14a, a strong
agreement between the observed and the sampled PDFs
is evident. Furthermore, the distributions of Perkins’ skill
scores computed from all 100 ensemble members, resulting
from both empirical and theoretical quantile functions, are
all highly concentrated and well above 0.9 skill score (see
Fig. 14b). This indicates that the proposed algorithm consis-
tently reproduces observed distributions of growth and decay
rates for selected properties.

We then shift our attention to the dependence structure be-
tween specific peak properties and the corresponding growth
and decay rates. As illustrated in Fig. 11b–d, the proposed
3D copula models effectively preserve the observed correla-
tions between the sampled peak properties and the associated
growth and decay rates. This trend holds true for both the-
oretical and empirical quantile conversions, as displayed in
Fig. 12c–h. In addition, distributions of the Kendall’s τ cor-
relations computed from all 100 ensemble members are well
centred around the observed Kendall’s τ values, whether re-
sulting from empirical or theoretical quantile functions (see
Fig. 13b–d).

Building upon the sampled peak properties and the corre-
sponding growth and decay rates, we can further infer the
properties at any stage within a given cell life cycle. To

evaluate the result of the inference, here we first derive the
properties for the first and the last time steps of the life cy-
cles from the sampled peak properties and the correspond-
ing growth and decay rates. We then compare them with the
observed properties. As shown in Fig. 15, the distributions
of the inferred properties are highly consistent with the ob-
served ones, whether those obtained from the empirical or
those obtained from the theoretical quantile functions. This
suggests that the observed properties for the first and the last
time steps of the life cycles are well preserved. This result
further confirms that the proposed algorithm can effectively
replicate the variations in the temporal profiles of cell life
cycles.

5 Conclusions

This work proposes an algorithm that models the life cy-
cle of convective cells, explicitly accounting for the inter-
dependence between cell properties and the corresponding
temporal evolution using copulas. This algorithm enables
stochastic generation of samples of cell life cycles, preserv-
ing not only the observed individual cell properties but also
their dependence structures. A summary of the key findings
throughout the development process is provided below:
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Figure 14. Comparisons of marginal distributions for observed and simulated growth and decay rates of selected cell properties (from left
to right, CImax , CSmaj and CSmin ): (a) marginal distributions of an arbitrary ensemble member and (b) distributions of Perkins’ skill scores
derived from 100 ensemble members.
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Figure 15. Distributions of observed and simulated properties for the (a) first and (b) last time step of the convective life cycles.
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– The proposed conceptual model and the generation al-
gorithm effectively capture not only the cell properties
at peaks but also their temporal variation throughout the
cell’s lifespan.

– Vine copulas are effective in modelling the complex
high-dimensional inter-dependence amongst convective
cell properties. Specifically, both the observed depen-
dence structures amongst peak properties and those
between given peak properties and the corresponding
growth and decay rates can be satisfactorily reproduced.

– While the correlations between cell properties have
been widely discussed and modelled in the literature,
this work demonstrates that the dependence between
given properties and their temporal variations is not neg-
ligible and is useful in inferring cell properties at any
stage within a life cycle.

– In terms of sampling methods, the use of either em-
pirical or theoretical quantile functions yields satisfac-
tory results. The empirical conversion appears to pre-
serve the observed distributions and dependence struc-
tures slightly better, whilst the theoretical conversion
can simulate properties not directly observed in the
dataset. Notably, in scenarios with large data sample
sizes, such as those examined in this paper, the differ-
ence between these two functions is minimal. However,
in cases with smaller sample sizes, the theoretical quan-
tile function may be preferred to ensure a better infer-
ence of population features.

Beyond preserving convective cell properties, the pro-
posed algorithm is methodologically generic. The use of vine
copulas makes the modelling of inter-dependence amongst
selected properties flexible, facilitating the incorporation of
additional variables in future work. With radar technology
advancements, these may include variables derived from
dual-polarisation data or 3-dimensional radar images (Rigo
and Llasat, 2016; Cheng et al., 2024).

Furthermore, future work could expand the algorithm to
account for more complex behaviours of convective cells,
such as merging or splitting processes (Handwerker, 2002;
del Moral et al., 2018). One possible approach would involve
developing a two-stage framework, where the initial stage
models the occurrence of cell merging or splitting, followed
by a second stage that handles the evolution of cell properties
post-interaction. This would enhance the algorithm’s ability
to capture the dynamic nature of convective systems.

In this work, we connected the proposed algorithm with
the EXCELL model to generate spatially distributed rain-
fall fields for sampled convective cells. Despite its simplicity,
this linkage may effectively enhances the hydrological rele-
vance of the proposed algorithm. Future research could fur-
ther refine this connection using more complex models such
as MultiEXCELL or HYCELL (Luini and Capsoni, 2011;

Peleg and Morin, 2014) or by incorporating cell analogue
searching techniques (Shehu and Haberlandt, 2022).

In addition to linking with “downstream” applications,
the proposed algorithm could also be incorporated into “up-
stream” applications. For example, future research could ex-
plore associating convective cell properties with large-scale
atmospheric or climate variables. This would enable integra-
tion with climate models (e.g. Lucas-Picher et al., 2021b) or
statistically based weather generators (e.g. Peleg and Morin,
2014; Yiou, 2014), thereby facilitating the generation of con-
vective storms within a climate context.
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