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S1: Selection and fitting of the optimal Vine Copula model 

This section details the procedure for selecting and fitting the optimal vine copula model 
used to represent the interdependencies between convective cell properties. Note that the 
selection process utilised here is based on the deterministic vine-copula structures, in 
which the 4D copula is D-Vine (2-3-1-4), while the 3D copulas are C-Vine (2-3-1). Here, 
we begin by outlining the three distinct fitting strategies under consideration and then 
elaborate on the rationale behind choosing the TLL (Transformation Local Likelihood) 
copula model as the final model based on both quantitative metrics and visual 
assessment. 

We evaluated the following three strategies for constructing vine copula models: 

● TLL (Non-parametric): This strategy leverages the flexibility of the non-
parametric TLL family, as implemented in the kdecopula R package (Nagler, 
2018), to estimate bivariate dependencies at each edge of the vine structure. This 
method is particularly suitable for capturing complex dependencies that may not 
be well-represented by standard parametric families. 

● Parametric: In this strategy, we fit a range of parametric copula families to the 
data, including Gaussian, Student's t, Clayton, Gumbel, Frank, Joe, BB1, BB6, 
BB7, and BB8. The best-fitting parametric copula for each edge is selected based 
on goodness-of-fit criteria, primarily the Akaike Information Criterion (AIC). 

● Combined TLL and Parametric: This strategy aims to harness the strengths of 
both TLL and parametric approaches by combining them within the vine 
structure. This allows for flexibility in modelling certain dependencies non-
parametrically while potentially benefiting from the parsimony and 
interpretability of parametric copulas for other edges. 

Here, we employed AIC (Akaike information criterion) to be the primary model selection 
criterion since AIC balances the goodness-of-fit with model complexity. 

It is important to note that for non-parametric copulas like TLL, the complexity term in 
the AIC calculation is represented by effective degrees of freedom. These effective 
degrees of freedom are determined by the smoothing parameters (e.g., bandwidth) used in 
the kernel density estimation process (Nagler, 2018). The fitting process for TLL copulas 
involves transforming the input data for each variable to uniform margins on the interval 
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[0, 1] and then applying kernel density estimation to smooth the copula density in the 
transformed space. The smoothing parameters, particularly the bandwidth, are crucial for 
determining the accuracy of the estimation. In this work, we utilised the 
pyvinecopulib Python package for fitting TLL copulas, leveraging its cross-validation 
capabilities to optimise the bandwidth parameter and ensure a balance between bias and 
variance in the density estimation. 

Table S1 summarises the fitting results, with bold text indicating the optimal strategy 
eventually chosen in this study for each copula model. Figures S1-S4 illustrate the 
pairwise correlation structures of distinct vine copula models (Cpeak, CImax, CSmaj and 
CSmin) for each of the three fitting strategies. In each sub-figure, ∆τ represents the 
difference in Kendall’s τ between simulated and observed samples (i.e. ∆τ = τsim − τobs).  

As can be seen, while the optimal copula family selected through visual inspection 
(Figures S1-S4) generally aligns with the AIC and log-likelihood values in Table S1, the 
CSmaj model presents an exception. Specifically, although the combined TLL and 
Parametric strategy initially appeared to be the best strategy for CSmaj model according to 
AIC and log-likelihood values, Figure S3 reveals inconsistent result. The TLL strategy 
provides a better visual match between observed and simulated data compared to the 
other two strategies. This is particularly evident in capturing tail dependencies, while the 
combined and purely parametric strategies exhibit a poorer fit, especially in the tails. 
After further investigation, we found that this is mainly caused by numerical instability 
during the process of fitting parametric models. Therefore, despite the initial AIC results, 
the TLL model was chosen for CSmaj to prioritise the clear visual agreement between 
observed and simulated dependencies and ensure a more reliable representation of the 
underlying data structure. 

This analysis suggests that selecting the optimal bivariate copula family should involve 
both numerical evaluation (AIC and log-likelihood) and visual inspection of the 
correlation distribution. 
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Table S1. Comparative evaluation of different copula models based on Akaike 
Information Criterion (AIC) and log-likelihood metrics. 

Vine-copula 
model Control of Bivariate Family AIC log-likelihood 

Cpeak 

TLL -37314.823 18912.031 

Parametric -32815.206 16416.603 

Parametric and TLL -37362.077 18893.488 

CImax 

TLL -40263.157 20269.259 

Parametric -29212.414 14611.207 

Parametric and TLL -40262.747 20269.104 

CSmaj 

TLL -46064.656 23172.394 

Parametric -92409.25 46210.625 

Parametric and TLL -95783.66 47942.412 

CSmin 

TLL -42428.612 21353.235 

Parametric -39033.233 19521.616 

Parametric and TLL -42427.892 21352.897 
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Figure S1. Visual inspection of the fitting results of parametric, non-parametric, and 
mixed copula models for Cpeak.  
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Figure S2. Visual inspection of the fitting results of parametric, non-parametric, and 
mixed copula models for CImax. 

  



 
 

6 
 

 

Figure S3. Visual inspection of the fitting results of parametric, non-parametric, and 
mixed copula models for CSmaj. 
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Figure S4. Visual inspection of the fitting results of parametric, non-parametric, and 
mixed copula models for CSmin. 
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