Articles | Volume 28, issue 17
https://doi.org/10.5194/hess-28-4251-2024
https://doi.org/10.5194/hess-28-4251-2024
Research article
 | 
13 Sep 2024
Research article |  | 13 Sep 2024

Ratio limits of water storage and outflow in a rainfall–runoff process

Yulong Zhu, Yang Zhou, Xiaorong Xu, Changqing Meng, and Yuankun Wang

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Theory development
Technical Note: The divide and measure nonconformity – how metrics can mislead when we evaluate on different data partitions
Daniel Klotz, Martin Gauch, Frederik Kratzert, Grey Nearing, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 28, 3665–3673, https://doi.org/10.5194/hess-28-3665-2024,https://doi.org/10.5194/hess-28-3665-2024, 2024
Short summary
Bimodal hydrographs in a semi-humid forested watershed: characteristics and occurrence conditions
Zhen Cui, Fuqiang Tian, Zilong Zhao, Zitong Xu, Yongjie Duan, Jie Wen, and Mohd Yawar Ali Khan
Hydrol. Earth Syst. Sci., 28, 3613–3632, https://doi.org/10.5194/hess-28-3613-2024,https://doi.org/10.5194/hess-28-3613-2024, 2024
Short summary
Flood drivers and trends: a case study of the Geul River catchment (the Netherlands) over the past half century
Athanasios Tsiokanos, Martine Rutten, Ruud J. van der Ent, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 28, 3327–3345, https://doi.org/10.5194/hess-28-3327-2024,https://doi.org/10.5194/hess-28-3327-2024, 2024
Short summary
Power law between the apparent drainage density and the pruning area
Soohyun Yang, Kwanghun Choi, and Kyungrock Paik
Hydrol. Earth Syst. Sci., 28, 3119–3132, https://doi.org/10.5194/hess-28-3119-2024,https://doi.org/10.5194/hess-28-3119-2024, 2024
Short summary
Characterizing nonlinear, nonstationary, and heterogeneous hydrologic behavior using Ensemble Rainfall-Runoff Analysis (ERRA): proof of concept
James W. Kirchner
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-103,https://doi.org/10.5194/hess-2024-103, 2024
Revised manuscript accepted for HESS
Short summary

Cited articles

Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'Connell, P. E., and Rasmussen, J.: An introduction to the European Hydrological System-Systeme Hydrologique Europeen,“SHE”, 1: History and philosophy of a physically-based, distributed modelling system, J. Hydrol., 87, 45–59, https://doi.org/10.1016/0022-1694(86)90114-9, 1986. 
Almazroui, M.: Rainfall trends and extremes in Saudi Arabia in recent decades, Atmosphere, 11, 964, https://doi.org/10.3390/atmos11090964, 2020. 
Arnold, J. G. and Williams, J. R.: Validation of SWRRB: Simulator for water resources in rural basins, J. Water Resour. Plan. Manage. ASCE, 113, 243–256, https://doi.org/10.1061/(ASCE)0733-9496(1987)113:2(243), 1987. 
Beven, K. J. and Kirkby, M. J.: A Physically Based Variable Contributing Area Model of Basin Hydrology, Hydrol. Sci. B., 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979. 
Bevacqua, E., Vousdoukas, M. I., Zappa, G., Hodges, K., Shepherd, T. G., Maraun, D., Mentaschi, L., and Feyen, L.: More meteorological events that drive compound coastal flooding are projected under climate change, Communications Earth & Environment, 1, 47, https://doi.org/10.1038/s43247-020-00044-z, 2020. 
Download
Short summary
A timely local flood forecast is an effective way to reduce casualties and economic losses. The current theoretical or numerical models play an important role in local flood forecasting. However, they still cannot bridge the contradiction between high calculation accuracy, high calculation efficiency, and simple operability. Therefore, this paper expects to propose a new flood forecasting model with higher computational efficiency and simpler operation.