Articles | Volume 28, issue 14
https://doi.org/10.5194/hess-28-3243-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-3243-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of reservoir evaporation on future water availability in north-eastern Brazil: a multi-scenario assessment
Gláuber Pontes Rodrigues
CORRESPONDING AUTHOR
Department of Agricultural Engineering, Federal University of Ceará, 60451-070 Fortaleza, Brazil
Institute for Environmental Sciences and Geography, University of Potsdam, Potsdam, Germany
Arlena Brosinsky
Institute for Environmental Sciences and Geography, University of Potsdam, Potsdam, Germany
Remote Sensing and Geoinformatics Section, German Research Centre for Geosciences (GFZ), Potsdam, Germany
Ítalo Sampaio Rodrigues
Department of Geography, University of Lethbridge, Lethbridge, Alberta, Canada
George Leite Mamede
Institute for Engineering and Sustainable Development, University of International Integration of Afro-Brazilian Lusophony, 62790-000 Redenção, Brazil
José Carlos de Araújo
Department of Agricultural Engineering, Federal University of Ceará, 60451-070 Fortaleza, Brazil
Related authors
No articles found.
Italo Sampaio Rodrigues, Christopher Hopkinson, Laura Chasmer, Ryan J. MacDonald, Suzanne E. Bayley, and Brian Brisco
Hydrol. Earth Syst. Sci., 28, 2203–2221, https://doi.org/10.5194/hess-28-2203-2024, https://doi.org/10.5194/hess-28-2203-2024, 2024
Short summary
Short summary
The research evaluated the trends and changes in land cover and river discharge in the Upper Columbia River Wetlands using remote sensing and hydroclimatic data. The river discharge increased during the peak flow season, resulting in a positive trend in the open-water extent in the same period, whereas open-water area declined on an annual basis. Furthermore, since 2003 the peak flow has occurred 11 d earlier than during 1903–1928, which has led to larger discharges in a shorter time.
Pedro Henrique Lima Alencar, Eva Nora Paton, and José Carlos de Araújo
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-278, https://doi.org/10.5194/hess-2021-278, 2021
Manuscript not accepted for further review
Short summary
Short summary
Knowing how long and how fast it rained on a particular day is not often an easy (or cheap) task. It requires equipment and constant monitoring. It can be even harder if you live in an isolated area or if the day you are interested in is so much in the past that such pieces of equipment were not even in the market. In this paper, we propose a new way to assess such information and also show how it can help to model sediment transport and siltation in watersheds.
Cited articles
Abdelrady, A., Timmermans, J., Vekerdy, Z., and Salama, M. S.: Surface energy balance of fresh and saline waters: AquaSEBS, Remote Sens., 7, 1–17, https://doi.org/10.3390/rs8070583, 2016.
Adachi, S. A. and Tomita, H.: Methodology of the constraint condition in dynamical downscaling for regional climate evaluation: A review, J. Geophys. Res.-Atmos., 125, e2019JD032166, https://doi.org/10.1029/2019JD032166, 2020.
Adrian, R., Reilly, C. M. O., Zagarese, H., Baines, S. B., Hessen, D. O., Keller, W., Livingstone, D. M., Sommaruga, R., Straile, D., Donk, E. Van, Weyhenmeyer, G. A., and Winder, M.: Lakes as sentinels of climate change, Limnol. Oceanogr., 54, 2283–2297, https://doi.org/10.4319/lo.2009.54.6_part_2.2283, 2009.
Ahmadalipour, A., Moradkhani, H., and Rana, A.: Accounting for downscaling and model uncertainty in fine-resolution seasonal climate projections over the Columbia River Basin, Clim. Dynam., 50, 717–733, https://doi.org/10.1007/s00382-017-3639-4, 2018.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration: guidelines for computing crop water requirements, in: FAO Irrigation and drainage paper 56, Rome: FAO, https://www.fao.org/3/x0490e/x0490e00.htm#Contents (last access: 8 December 2022), 1998.
Almagro, A., Oliveira, P. T. S., Rosolem, R., Hagemann, S., and Nobre, C. A.: Performance evaluation of Eta/HadGEM2-ES and Eta/MIROC5 precipitation simulations over Brazil, Atmos. Res., 244, 105053, https://doi.org/10.1016/j.atmosres.2020.105053, 2020.
Althoff, D., Rodrigues, L. N., and Da Silva, D. D.: Evaluating Evaporation Methods for Estimating Small Reservoir Water Surface Evaporation in the Brazilian Savannah, Water-Switzerland, 11, 1–17, https://doi.org/10.3390/w11091942, 2019.
Althoff, D., Rodrigues, L. N., and da Silva, D. D.: Impacts of climate change on the evaporation and availability of water in small reservoirs in the Brazilian savannah, Clim. Change, 159, 215–232, https://doi.org/10.1007/s10584-020-02656-y, 2020.
Alvalá, R. C. S., Cunha, A. P. M. A., Brito, S. S. B., Seluchi, M. E., Marengo, J. A., Moraes, O. L. L., and Carvalho, M. A.: Drought monitoring in the Brazilian Semiarid region, An. Acad. Bras. Cienc., 91, e20170209, https://doi.org/10.1590/0001-3765201720170209, 2019.
Bastiaanssen, W. G. M.: SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey, J. Hydrol., 229, 87–100, https://doi.org/10.1016/S0022-1694(99)00202-4, 2000.
Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A., and Holtslag, A. A. M.: A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation, J. Hydrol., 212–213, 198–212, https://doi.org/10.1016/S0022-1694(98)00253-4, 1998.
Bjørnæs, C.: A guide to representative concentration pathways, Center for International Climate and Environmental Research, https://cicero.oslo.no/en/articles/a-guide-to-representative-concentration-pathways (last access: 8 December 2022), 2013.
Brutsaert, W. and Parlange, M. B.: Hydrologic cycle explains the evaporation paradox, Nature, 396, 30, https://doi.org/10.1038/23845, 1998.
Burn, D. H. and Hesch, N. M.: Trends in Evaporation for the Canadian Prairies, J. Hydrol., 336, 61–73, https://doi.org/10.1016/j.jhydrol.2006.12.011, 2007.
Campos, N. J. B.: Modeling the Yield-Evaporation-Spill in the Reservoir Storage Process: The Regulation Triangle Diagram, Water Resour. Manag., 24, 3487–3511, https://doi.org/10.1007/s11269-010-9616-x, 2010.
Campos, J. N. B.: Dimensionamento de Reservatórios (Reservoir Design, in Portuguese), UFC – Federal University of Ceará, Fortaleza, Brazil, ISBN 85-7563-100-4, https://www.researchgate.net/profile/Jose-Nilson-Campos/publication/277665341_Dimensionamento_de_ Reservatorios_o_metodo_do_Diagrama_Triangular_de_ Regularizacao/links/562d14d508ae518e348247ec/ Dimensionamento-de-Reservatorios-o-metodo-do-Diagrama-Triangular-de-Regularizacao.pdf (last access: 8 December 2022), 2015.
Ceará State Secretariat for Water Resources: Electronic Atlas of Water Resources of Ceará, http://atlas.cogerh.com.br/ (last access: 16 December 2022), 2022.
Chattopadhyay, N. and Hulme, M.: Evaporation and potential evapotranspiration in India under conditions of recent and future climate change, Agr. Forest Meteorol., 87, 55–73, https://doi.org/10.1016/S0168-1923(97)00006-3, 1997.
Chen, J., Brissette, F. P., and Caya, D.: Remaining error sources in bias-corrected climate model outputs, Clim. Change, 162, 563–582, https://doi.org/10.1007/s10584-020-02744-z, 2020.
Chou, S. C., Lyra, A., Mourão, C., Dereczynski, C., Pilotto, I., Gomes, J., Bustamante, J., Tavares, P., Silva, A., Rodrigues, D., Campos, D., Chagas, D., Sueiro, G., Siqueira, G., Nobre, P., and Marengo, J.: Evaluation of the Eta Simulations Nested in Three Global Climate Models, Am. J. Clim. Chang., 3, 438–454, https://doi.org/10.4236/ajcc.2014.35039, 2014.
Chylek, P., Li, J., Dubey, M. K., Wang, M., and Lesins, G.: Observed and model simulated 20th century Arctic temperature variability: Canadian Earth System Model CanESM2, Atmos. Chem. Phys. Discuss., 11, 22893–22907, https://doi.org/10.5194/acpd-11-22893-2011, 2011.
COGERH – Water Resources Management Company of Ceará: Portal Hidrológico do Ceará, http://funceme.br/hidro-ce-app/reservatorios/volume (last access: 16 December 2022), 2020.
Cui, X., Guo, X., Wang, Y., Wang, X., Zhu, W., Shi, J., Lin, C., and Gao, X.: Application of remote sensing to water environmental processes under a changing climate, J. Hydrol., 574, 892–902, https://doi.org/10.1016/j.jhydrol.2019.04.078, 2019.
Darshana, D., Pandey, A., and Pandey, R. P.: Analysing Trends in reference evapotranspiration and weather variables in the Tons River basin in central India, Stoch. Env. Res. Risk A., 27, 1407–1421, https://doi.org/10.1007/s00477-012-0677-7, 2013.
de Araújo, J. C. and Piedra, J. I. G.: Comparative hydrology: analysis of a semiarid and a humid tropical watershed, Hydrol. Process., 23, 1169–1178, https://doi.org/10.1002/hyp.7232, 2009.
de Araújo, J. C., Döll, P., Güntner, A., Krol, M., Abreu, C. B. R., Hauschild, M., and Mendiondo, E. M.: Water scarcity under scenarios for global climate change and regional development in semiarid northeastern Brazil, Water Int., 29, 209–220, https://doi.org/10.1080/02508060408691770, 2004.
de Araújo, J. C., Güntner, A., and Bronstert, A.: Loss of reservoir volume by sediment deposition and its impact on water availability in semiarid Brazil, Hydrolog. Sci. J., 51, 157–170, https://doi.org/10.1623/hysj.51.1.157, 2006.
de Araújo, J. C., Mamede, G. L., and de Lima, B. P.: Hydrological guidelines for reservoir operation to enhance water governance: Application to the Brazilian Semiarid region, Water, 10, 1628, https://doi.org/10.3390/w10111628, 2018.
de Araújo, J. C., Landwehr, T., Alencar, P. H. L., and Paulino, W. D.: Water Management causes increment of reservoir silting and reduction of water yield in the semiarid State of Ceará, Brazil, J. South Am. Earth Sci., 121, 104102, https://doi.org/10.1016/j.jsames.2022.104102, 2023.
de Macêdo, M. V. A.: Características Técnicas dos Açudes Públicos do Ceará, 2 ed., Fortaleza: DNOCS, Fortaleza, Brazil, https://search.worldcat.org/pt/title/710039600 (last access: 8 December 2022), 1981 (in Portuguese).
Dibike, Y., Prowse, T., Bonsal, B., and O'Neil, H.: Implications of future climate on water availability in the western Canadian river basins, Int. J. Climatol., 37, 3247–3263, https://doi.org/10.1002/joc.4912, 2017.
Elsawwaf, M., Willems, P., and Feyen, J.: Assessment of the sensitivity and prediction uncertainty of evaporation models applied to Nasser Lake, Egypt. J. Hydrol., 395, 10–22, https://doi.org/10.1016/j.jhydrol.2010.10.002, 2010.
Donohue, R. J., McVicar, T. R., and Roderick, M. L.: Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate, J. Hydrol., 386, 186–197, https://doi.org/10.1016/j.jhydrol.2010.03.020, 2010.
Duethmann, D. and Blöschl, G.: Why has catchment evaporation increased in the past 40 years? A data-based study in Austria, Hydrol. Earth Syst. Sci., 22, 5143–5158, https://doi.org/10.5194/hess-22-5143-2018, 2018.
Feitosa, G. P., de Araújo, J. C., and Barros, M. U. G.: Different methods for measuring evaporation in a tropical reservoir: The case of the gavião reservoir in the state of Ceará, Rev. Caatinga, 34, 410–421, https://doi.org/10.1590/1983-21252021v34n217rc, 2021.
Fiseha, B. M., Setegn, S. G., Melesse, A. M., Volpi, E., and Fiori, A.: Impact of Climate Change on the Hydrology of Upper Tiber River Basin Using Bias Corrected Regional Climate Model, Water Resour. Manag., 28, 1327–1343, https://doi.org/10.1007/s11269-014-0546-x, 2014.
Fuentes, I., van Ogtrop, F., and Vervoort, R. W.: Long-term surface water trends and relationship with open water evaporation losses in the Namoi catchment, Australia, J. Hydrol., 584, 124714, https://doi.org/10.1016/j.jhydrol.2020.124714, 2020.
FUNCEME – Ceará Meteorology and Water Resources Foundation, Hydrological Portal of Ceará, http://www.funceme.br/hidro-ce-zend/ (last access: 16 December 2022), 2020.
Gokool, S., Jarmain, C., Riddell, E., Swemmer, A., Lerm, R., and Chetty, K. T.: Quantifying riparian total evaporation along the Groot Letaba River: A comparison between infilled and spatially downscaled satellite derived total evaporation estimates, J. Arid Environ., 147, 114–124, https://doi.org/10.1016/j.jaridenv.2017.07.014, 2017.
Graham, L., Hagemann, S., Jaun, S., and Beniston, M.: On interpreting hydrological change from regional climate models, Clim. Change 81, 97–122, https://doi.org/10.1007/s10584-006-9217-0, 2007.
Helfer, F., Lemckert, C., and Zhang, H.: Impacts of climate change on temperature and evaporation from a large reservoir in Australia, J. Hydrol., 475, 365–378, https://doi.org/10.1016/j.jhydrol.2012.10.008, 2012.
Hounguè, R., Lawin, A. E., Moumouni, S., and Afouda, A. A.: Change in Climate Extremes and Pan Evaporation Influencing Factors over Ouémé Delta in Bénin, Climate, 7, 2, https://doi.org/10.3390/cli7010002, 2019.
IBGE – Brazilian Institute of Geography: Estados: População. Instituto Brasileiro de Geografia, Rio de Janeiro, https://censo2022.ibge.gov.br (last access: 6 July 2023), 2022.
INMET – Brazilian National Institute of Meteorology: Normais Climatológicas do Brasil, https://portal.inmet.gov.br/normais (last access: 16 December 2022), 2019.
INMET – Brazilian National Institute of Meteorology: Banco de Dados Meteorológicos do INMET, https://bdmep.inmet.gov.br/ (last access: 16 December 2022), 2023.
IPCC – Intergovernmental Panel on Climate Change. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Geneva, Switzerland, 151 pp., https://www.ipcc.ch/report/ar5/syr/ (last access: 16 December 2022), 2014.
IPECE – Instituto de Pesquisa e Estratégia Econômica do Ceará: Indústria de transformação ativa http://www2.ipece.ce.gov.br/atlas/capitulo5/52/index.htm (last access: 14 December 2022), 2017.
Kendall, M. and Gibbons, J. D.: Rank Correlation Methods, Oxford University Press, Oxford, England, ISBN 9780195208375, 1990.
Kendall, M. G.: Rank Correlation Measures, Charles Griffin, London, England, ISBN 9780852641996, 1975.
Kendon, E. J., Ban, N., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C., Evans, J. P., Fosser, G., and Wilkinson, J. M.: Do convection-permitting regional climate models improve projections of future precipitation change?, B. Am. Meteorol. Soc., 98, 79–93, https://doi.org/10.1175/BAMS-D-15-0004.1, 2017.
Konapala, G., Mishra, A. K., Wada, Y., and Mann, M. E.: Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation, Nat. Commun., 11, 1–10, https://doi.org/10.1038/s41467-020-16757-w, 2020.
Krol, M. S., Jaeger, A., and Bronstert, A.: Integrated modelling of climate change impacts in North-eastern Brazil, in: Global change and regional impacts: water availability and vulnerability of eco-systems and society in the semiarid Northeast of Brazil, edited by: Gaiser, T., Krol, M., Frischkorn, H., and de Araújo, J. C., Springer, Berlin, Germany, ISBN 978-3-642-62861-0, 2003.
Kundzewicz, Z. W., Krysanova, V., Benestad, R. E., Hov, Piniewski, M., and Otto, I. M.: Uncertainty in climate change impacts on water resources, Environ. Sci. Policy, 79, 1–8, https://doi.org/10.1016/j.envsci.2017.10.008, 2018.
Liu, B., Xu, M., Henderson, M., and Gong, W.: A spatial analysis of pan evaporation trends in China, 1955–2000, J. Geophys. Res.-Atmos., 109, D15102, https://doi.org/10.1029/2004JD004511, 2004.
Lyra, A., Tavares, P., Chou, S. C., Sueiro, G., Dereczynski, C., Sondermann, M., Silva, A., Marengo, J., and Giarolla, A.: Climate change projections over three metropolitan regions in Southeast Brazil using the non-hydrostatic Eta regional climate model at 5-km resolution, Theor. Appl. Climatol., 132, 663–682, https://doi.org/10.1007/s00704-017-2067-z, 2018.
Malveira, V. T. C., de Araújo, J. C., and Güntner, A.: Hydrological impact of a high- density reservoir network in semiarid northeastern Brazil, J. Hydrol. Eng., 17, 109–117, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000404, 2012.
Mamede, G. L., Araújo, N. A., Schneider, C. M., de Araújo, J. C., and Herrmann, H. J.: Overspill avalanching in a dense reservoir network, P. Natl. Acad. Sci. USA, 109, 7191–7195, https://doi.org/10.1073/pnas.1200398109, 2012.
Mamede, G. L., Güntner, A., Medeiros, P. H. A., de Araújo, J. C., and Bronstert, A.: Modeling the Effect of Multiple Reservoirs on Water and Sediment Dynamics in a Semiarid Catchment in Brazil, J. Hydrol. Eng., 23, 05018020, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001701, 2018.
Mann, H. B.: Nonparametric tests against trend, Econometrica, 13, 245, https://doi.org/10.2307/1907187, 1945.
Maraun, D.: Bias correction, quantile mapping, and downscaling: Revisiting the inflation issue, J. Climate, 26, 2137–2143, https://doi.org/10.1175/JCLI-D-12-00821.1, 2013.
Marengo, J. A., Jones, R., Alvesa, L. M., and Valverde, M. C.: Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system, Int. J. Climatol., 29, 2241–2255, https://doi.org/10.1002/joc.1863, 2009.
Marengo, J. A., Alves, L. M., Alvalá, R. C. S., Cunha, A. P., Brito, S., and Moraes, O. L. L.: Climatic characteristics of the 2010-2016 drought in the semiarid Northeast Brazil region, An. Acad. Bras. Cienc., 90, 1973–1985, https://doi.org/10.1590/0001-3765201720170206, 2017.
Marengo, J. A., Galdos, M. V., Challinor, A., Cunha, A. P., Marin, F. R., Vianna, M. d. S., Alvala, R. C. S., Alves, L. M., Moraes, O. L., and Bender, F.: Drought in Northeast Brazil: A review of agricultural and policy adaptation options for food security, Clim. Resil. Sustain., 1, 1–20, https://doi.org/10.1002/cli2.17, 2022.
Mays, L. W.: Water Resources Engineering, John Wiley & Sons, Inc., New York, United States, ISBN 978-0-470-46064-1, 2011.
McMahon, T. A. and Mein, R. G.: River and Reservoir Yield, Water Resources Publications, Littleton, Colorado, USA, ISBN 9780918334619, 1986.
McMahon, T. A., Peel, M. C., Lowe, L., Srikanthan, R., and McVicar, T. R.: Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis, Hydrol. Earth Syst. Sci., 17, 1331–1363, https://doi.org/10.5194/hess-17-1331-2013, 2013.
McMahon, T. A., Finlayson, B. L., and Peel, M. C.: Historical developments of models for estimating evaporation using standard meteorological data, Wires Water, 3, 788–818, https://doi.org/10.1002/wat2.1172, 2016.
Medeiros, P. H. A. and de Araújo, J. C.: Temporal variability of rainfall in a semiarid environment in Brazil and its effect on sediment transport processes, J. Soils Sediments, 14, 1216–1223, https://doi.org/10.1007/s11368-013-0809-9, 2014.
Medeiros, P. H. A. and Sivapalan, M.: From hard-path to soft-path solutions: slow–fast dynamics of human adaptation to droughts in a water scarce environment, Hydrolog. Sci. J., 65, 1803–1814, https://doi.org/10.1080/02626667.2020.1770258, 2020.
Mesinger, F., Chou, S. C., Gomes, J. L., Gomes, J. L., Jovic, D., Bastos, P., Bustamante, J. F., Lazic, L., Lyra, A. A., Morelli, S., Ristic, I., and Veljovic, K.: An upgraded version of the Eta model, Meteorol. Atmos. Phys., 116, 63–79, https://doi.org/10.1007/s00703-012-0182-z, 2012.
Mesquita, J. B. d. F., Lima Neto, I. E., Raabe, A., and de Araújo, J. C.: The influence of hydroclimatic conditions and water quality on evaporation rates of a tropical lake, J. Hydrol., 590, 125456, https://doi.org/10.1016/j.jhydrol.2020.125456, 2020.
Minville, M., Brissette, F., and Leconte, R.: Impacts and uncertainty of climate change on water resource management of the Peribonka River System (Canada), J. Water Res. Plan. Man., 136, 376–385, https://doi.org/10.1061/(ASCE)WR.1943-5452.0000041, 2010.
Miralles, D. G., van den Berg, M. J., Gash, J. H., Parinussa, R. M., de Jeu, R. A. M., Beck, H. E., Holmes, T. R. H., Jiménez, C., Verhoest, N. E. C., Dorigo, W. A., Teuling, A. J., and Johannes Dolman, A.: El Niño–La Niña cycle and recent trends in continental evaporation, Nat. Clim. Change, 4, 122–126, https://doi.org/10.1038/nclimate2068, 2014.
Moges, D. M. and Bhat, H. G.: Climate change and its implications for rainfed agriculture in Ethiopia, J. Water Clim. Change, 12, 1229–1244, https://doi.org/10.2166/wcc.2020.058, 2021.
Moonen, A. C., Ercoli, L., Mariotti, M., and Masoni, A.: Climate change in Italy indicated by agrometeorological indices over 122 years, Agr. Forest Meteorol., 111, 13–27, https://doi.org/10.1016/S0168-1923(02)00012-6, 2002.
Mozny, M., Trnka, M., Vlach, V., Vizina, A., Potopova, V., Zahradnicek, P., Stepanek, P., Hajkova, L., Staponites, L., and Zalud, Z.: Past (1971–2018) and future (2021–2100) pan evaporation rates in the Czech Republic, J. Hydrol., 590, 125390, https://doi.org/10.1016/j.jhydrol.2020.125390, 2020.
Navarro-Racines, C., Tarapues, J., Thornton, P., Jarvis, A., and Ramirez-Villegas, J.: High-resolution and bias-corrected CMIP5 projections for climate change impact assessments, Sci. Data, 7, 1–14, https://doi.org/10.1038/s41597-019-0343-8, 2020.
Penman, H. L.: Natural evaporation from open water, bare soil and grass, Proc. R. Soc., 193, 120–145, https://doi.org/10.1098/rspa.1948.0037, 1948.
Penman, H. L.: Evaporation: An introductory survey, Neth. J. Agr. Sci., 4, 9–29, https://doi.org/10.18174/njas.v4i1.17768, 1956.
Peter, S. J., de Araújo, J. C., Araújo, N. A., and Herrmann, H. J.: Flood avalanches in a semiarid basin with a dense reservoir network, J. Hydrol., 512, 408–420, https://doi.org/10.1016/j.jhydrol.2014.03.001, 2014.
Pierce, D. W., Das, T., Cayan, D. R., Maurer, E. P., Miller, N. L., Bao, Y., Kanamitsu, M., Yoshimura, K., Snyder, M. A., Sloan, L. C., Franco, G., and Tyree, M.: Probabilistic estimates of future changes in California temperature and precipitation using statistical and dynamical downscaling, Clim. Dynam., 40, 839–856, https://doi.org/10.1007/s00382-012-1337-9, 2013.
Qin, M., Zhang, Y., Wan, S., Yue, Y., Cheng, Y., and Zhang, B.: Impact of climate change on “evaporation paradox” in province of Jiangsu in southeastern China, PLoS One, 16, 1–26, https://doi.org/10.1371/journal.pone.0247278, 2021.
Recio-Villa, I., Martínez Rodríguez, J. B., Molina, J. L., and Pino Tarragó, J. C.: Multiobjective optimization modeling approach for multipurpose single reservoir operation, Water, 10, 427, https://doi.org/10.3390/w10040427, 2018.
Roderick, M. L. and Farquhar, G. D.: Changes in Australian pan evaporation from 1970 to 2002, Int. J. Climatol., 24, 1077–1090, https://doi.org/10.1002/joc.1061, 2004.
Rodrigues, I. S., Ramalho, G. L. B., and Medeiros, P. H. A.: Potential of floating photovoltaic plant in a tropical reservoir in Brazil, J. Environ. Plann. Man., 63, 2334–2356, https://doi.org/10.1080/09640568.2020.1719824, 2020.
Rodrigues, I. S., Costa, C. A. G., Raabe, A., Medeiros, P. H. A., and de Araújo, J. C.: Evaporation in Brazilian dryland reservoirs: Spatial variability and impact of riparian vegetation, Sci. Total Environ., 797, 149059, https://doi.org/10.1016/j.scitotenv.2021.149059, 2021a.
Rodrigues, I. S., Costa, C. A. G., Lima Neto, I. E., and Hopkinson, C.: Trends of evaporation in Brazilian tropical reservoirs using remote sensing, J. Hydrol., 598, 126473, https://doi.org/10.1016/j.jhydrol.2021.126473, 2021b.
Rodrigues, G. P., Rodrigues, Í. S., Raabe, A., Holstein, P., and de Araújo, J. C.: Direct measurement of open-water evaporation: a newly developed sensor applied to a Brazilian tropical reservoir, Hydrolog. Sci. J., 68, 379–394, https://doi.org/10.1080/02626667.2022.2157278, 2023.
Rosenzweig, C., Casassa, G., Karoly, D. J., Imeson, A., Liu, C., Menzel, A., Rawlins, S., Root, T. L., Seguin, B., Tryjanowski, P., and Hanson, C. E.: Assessment of observed changes and responses in natural and managed systems, In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Parry, M. L., Canziani, O. F., Palutikof, J. P., and van der Linden, P. J., Cambridge University Press, Cambridge, England, https://pubs.giss.nasa.gov/docs/2007/2007_Rosenzweig_ro02900h.pdf (last access: 16 December 2022), 2007.
Silva, J. F. C. B. d. C., da Silva, R. M., Santos, C. A. G., Silva, A. M., and Vianna, P. C. G.: Analysis of the response of the Epitácio Pessoa reservoir (Brazilian semiarid region) to potential future drought, water transfer and LULC scenarios, Nat. Hazards., 108, 1347–1371, https://doi.org/10.1007/s11069-021-04736-3, 2021.
Sivapalan, M., Savenije, H. H. G., and Blöschl, G.: Socio-hydrology: a new science of people and water, Hydrol. Process., 26, 1270–1276, https://doi.org/10.1002/hyp.8426, 2012.
Solomon, S., Qin, D., and Manning, M. (Eds.): Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, England, ISBN 978-0-521-88009-1, 2007.
Su, Z.: The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes, Hydrol. Earth Syst. Sci., 6, 85–100, https://doi.org/10.5194/hess-6-85-2002, 2002.
Tavares, P. d. S., Pilotto, I. L., Chou, S. C., Souza, S. A., Fonseca, L. M. G., and Chagas, D. J.: Projeções climáticas para América do Sul regionalizadas pelo modelo Eta com correção de viés, versão 3.0, LattesData [data set] https://doi.org/10.57810/lattesdata/WAVGSL, 2023.
Teutschbein, C. and Seibert, J.: Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods, J. Hydrol., 456–457, 12–29, https://doi.org/10.1016/j.jhydrol.2012.05.052, 2012.
Thrasher, B., Maurer, E. P., McKellar, C., and Duffy, P. B.: Technical Note: Bias correcting climate model simulated daily temperature extremes with quantile mapping, Hydrol. Earth Syst. Sci., 16, 3309–3314, https://doi.org/10.5194/hess-16-3309-2012, 2012.
Valiantzas, J. D.: Simplified forms for the standardized FAO-56 Penman-Monteith reference evapotranspiration using limited weather data, J. Hydrol., 505, 13–23, https://doi.org/10.1016/j.jhydrol.2013.09.005, 2013.
Wang, W., Xiao, W., Cao, C., Gao, Z., Hu, Z., Liu, S., Shen, S., Wang, L., Xiao, Q., Xu, J., Yang, D., and Lee, X.: Temporal and spatial variations in radiation and energy balance across a large freshwater lake in China, J. Hydrol., 511, 811–824, https://doi.org/10.1016/j.jhydrol.2014.02.012, 2014.
Watanabe, M., Suziki, T., O'ishi, R., Komuro, Y., Watanabe, S., Emori, S., Takemura, T., Chikira, M., Ogura, T., Sekiguchi, M., Takata, K., Yamazaki, D., Yokohata, T., Nozawa, T., Hasumi, H., Tatebe, H., and Kimoto, M.: Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity, J. Climate, 23, 6312–6335, https://doi.org/10.1175/2010JCLI3679.1, 2010.
Zhang, S., Foerster, S., Medeiros, P., de Araújo, J. C., Duan, Z., Bronstert, A., and Waske, B.: Mapping regional surface water volume variation in reservoirs in northeastern Brazil during 2009–2017 using high-resolution satellite images, Sci. Total Environ., 789, 147711, https://doi.org/10.1016/j.scitotenv.2021.147711, 2021.
Zhao, G., Li, Y., Zhou, L., and Gao, H.: Evaporative water loss of 1.42 million global lakes, Nat. Commun., 13, 3686, https://doi.org/10.1038/s41467-022-31125-6, 2022.
Short summary
The research focuses on a 4-million-inhabitant tropical region supplied by a network of open-water reservoirs where the dry season lasts for 8 months (Jun−Dec). We analysed the impact of four climate change scenarios on the evaporation rate and the associated availability (water yield distributed per year). The worst-case scenario shows that by the end of the century (2071−2099), the evaporation rate in the dry season could increase by 6 %, which would reduce stored water by about 80 %.
The research focuses on a 4-million-inhabitant tropical region supplied by a network of...