Articles | Volume 28, issue 6
https://doi.org/10.5194/hess-28-1441-2024
https://doi.org/10.5194/hess-28-1441-2024
Research article
 | 
02 Apr 2024
Research article |  | 02 Apr 2024

Root water uptake patterns are controlled by tree species interactions and soil water variability

Gökben Demir, Andrew J. Guswa, Janett Filipzik, Johanna Clara Metzger, Christine Römermann, and Anke Hildebrandt

Related authors

Throughfall spatial patterns translate into spatial patterns of soil moisture dynamics – empirical evidence
Christine Fischer-Bedtke, Johanna Clara Metzger, Gökben Demir, Thomas Wutzler, and Anke Hildebrandt
Hydrol. Earth Syst. Sci., 27, 2899–2918, https://doi.org/10.5194/hess-27-2899-2023,https://doi.org/10.5194/hess-27-2899-2023, 2023
Short summary

Related subject area

Subject: Ecohydrology | Techniques and Approaches: Instruments and observation techniques
Technical note: A weighing forest floor grid lysimeter
Heinke Paulsen and Markus Weiler
Hydrol. Earth Syst. Sci., 29, 2309–2319, https://doi.org/10.5194/hess-29-2309-2025,https://doi.org/10.5194/hess-29-2309-2025, 2025
Short summary
Effects of subsurface water infiltration systems on land movement dynamics in Dutch peat meadows
Sanneke van Asselen, Gilles Erkens, Christian Fritz, Rudi Hessel, and Jan J. H. van den Akker
Hydrol. Earth Syst. Sci., 29, 1865–1894, https://doi.org/10.5194/hess-29-1865-2025,https://doi.org/10.5194/hess-29-1865-2025, 2025
Short summary
Technical Note: Spectral correction for cavity ringdown isotope analysis of plant and soil waters
Gabriel J. Bowen, Sagarika Banerjee, and Suvankar Chakraborty
EGUsphere, https://doi.org/10.5194/egusphere-2025-949,https://doi.org/10.5194/egusphere-2025-949, 2025
Short summary
Understanding ecohydrology and biodiversity in aquatic nature-based solutions in urban streams and ponds through an integrative multi-tracer approach
Maria Magdalena Warter, Dörthe Tetzlaff, Chris Soulsby, Tobias Goldhammer, Daniel Gebler, Kati Vierrikko, and Michael T. Monaghan
EGUsphere, https://doi.org/10.5194/egusphere-2024-3537,https://doi.org/10.5194/egusphere-2024-3537, 2024
Short summary
Seasonal shifts in depth-to-water uptake by young thinned and overstocked lodgepole pine (Pinus contorta) forests under drought conditions in the Okanagan Valley, British Columbia, Canada
Emory C. Ellis, Robert D. Guy, and Xiaohua A. Wei
Hydrol. Earth Syst. Sci., 28, 4667–4684, https://doi.org/10.5194/hess-28-4667-2024,https://doi.org/10.5194/hess-28-4667-2024, 2024
Short summary

Cited articles

Agee, E., He, L., Bisht, G., Couvreur, V., Shahbaz, P., Meunier, F., Gough, C. M., Matheny, A. M., Bohrer, G., and Ivanov, V.: Root lateral interactions drive water uptake patterns under water limitation, Adv. Water Resour., 151, 103896, https://doi.org/10.1016/j.advwatres.2021.103896, 2021. 
Bachmair, S., Weiler, M., and Troch, P. A.: Intercomparing hillslope hydrological dynamics: Spatio-temporal variability and vegetation cover effects, Water Resour. Res., 48, W05537, https://doi.org/10.1029/2011WR011196, 2012. 
Baroni, G., Ortuani, B., Facchi, A., and Gandolfi, C.: The role of vegetation and soil properties on the spatio-temporal variability of the surface soil moisture in a maize-cropped field, J. Hydrol., 489, 148–159, https://doi.org/10.1016/j.jhydrol.2013.03.007, 2013. 
Bartoń, K.: MuMIn: Multi-Model Inference, https://CRAN.Rproject.org/package=MuMIn (last access: 5 July 2021), 2020. 
Bates, D., Mächler, M., Bolker, B., and Walker, S.: Fitting Linear Mixed-Effects Models Using lme4, J. Stat. Softw., 67, 1–48, https://doi.org/10.18637/jss.v067.i01, 2015. 
Download
Short summary
Experimental evidence is scarce to understand how the spatial variation in below-canopy precipitation affects root water uptake patterns. Here, we conducted field measurements to investigate drivers of root water uptake patterns while accounting for canopy induced heterogeneity in water input. We found that tree species interactions and soil moisture variability, rather than below-canopy precipitation patterns, control root water uptake patterns in a mixed unmanaged forest.
Share