Articles | Volume 28, issue 6
https://doi.org/10.5194/hess-28-1441-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-1441-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Root water uptake patterns are controlled by tree species interactions and soil water variability
Group of Terrestrial Ecohydrology, Institute of Geoscience, Friedrich Schiller University Jena, 07749 Jena, Germany
Invited contribution by Gökben Demir, recipient of the EGU Atmospheric Sciences Outstanding Student Poster and PICO Award 2019.
Andrew J. Guswa
Picker Engineering Program, Smith College, Northampton, MA 01063, USA
Janett Filipzik
Group of Terrestrial Ecohydrology, Institute of Geoscience, Friedrich Schiller University Jena, 07749 Jena, Germany
Johanna Clara Metzger
Group of Terrestrial Ecohydrology, Institute of Geoscience, Friedrich Schiller University Jena, 07749 Jena, Germany
Institute of Soil Science, University of Hamburg, 20146 Hamburg, Germany
Christine Römermann
Plant Biodiversity, Institute of Ecology and Evolution, Friedrich Schiller University Jena, 07743 Jena, Germany
German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
Group of Terrestrial Ecohydrology, Institute of Geoscience, Friedrich Schiller University Jena, 07749 Jena, Germany
Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research – UFZ, 04318 Leipzig, Germany
German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
Related authors
Christine Fischer-Bedtke, Johanna Clara Metzger, Gökben Demir, Thomas Wutzler, and Anke Hildebrandt
Hydrol. Earth Syst. Sci., 27, 2899–2918, https://doi.org/10.5194/hess-27-2899-2023, https://doi.org/10.5194/hess-27-2899-2023, 2023
Short summary
Short summary
Canopies change how rain reaches the soil: some spots receive more and others less water. It has long been debated whether this also leads to locally wetter and drier soil. We checked this using measurements of canopy drip and soil moisture. We found that the increase in soil water content after rain was aligned with canopy drip. Independently, the soil storage reaction was dampened in locations prone to drainage, like hig-macroporosity areas, suggesting that canopy drip enhances bypass flow.
Sven Armin Westermann, Anke Hildebrandt, Souhail Bousetta, and Stephan Thober
Biogeosciences, 21, 5277–5303, https://doi.org/10.5194/bg-21-5277-2024, https://doi.org/10.5194/bg-21-5277-2024, 2024
Short summary
Short summary
Plants at the land surface mediate between soil and the atmosphere regarding water and carbon transport. Since plant growth is a dynamic process, models need to consider these dynamics. Two models that predict water and carbon fluxes by considering plant temporal evolution were tested against observational data. Currently, dynamizing plants in these models did not enhance their representativeness, which is caused by a mismatch between implemented physical relations and observable connections.
Laura Dénise Nadolski, Tarek Sebastian El Madany, Jacob Allen Nelson, Arnaud Carrara, Gerardo Moreno, Richard K. F. Nair, Yunpeng Luo, Anke Hildebrandt, Victor Rolo, Markus Reichstein, and Sung-Ching Lee
EGUsphere, https://doi.org/10.5194/egusphere-2024-3190, https://doi.org/10.5194/egusphere-2024-3190, 2024
Short summary
Short summary
Semi-arid ecosystems are crucial for Earth's carbon balance and are sensitive to changes in nitrogen (N) and phosphorus (P) levels. Their carbon dynamics are complex and not fully understood. We studied how long-term nutrient changes affect carbon exchange. In summer, N+P changed plant composition and productivity. In transitional seasons, carbon exchange was less weather-dependent with N. Adding N and N+P are increasing carbon exchange variability, driven by grass greenness.
Sandra Raab, Karel Castro-Morales, Anke Hildebrandt, Martin Heimann, Jorien Elisabeth Vonk, Nikita Zimov, and Mathias Goeckede
Biogeosciences, 21, 2571–2597, https://doi.org/10.5194/bg-21-2571-2024, https://doi.org/10.5194/bg-21-2571-2024, 2024
Short summary
Short summary
Water status is an important control factor on sustainability of Arctic permafrost soils, including production and transport of carbon. We compared a drained permafrost ecosystem with a natural control area, investigating water levels, thaw depths, and lateral water flows. We found that shifts in water levels following drainage affected soil water availability and that lateral transport patterns were of major relevance. Understanding these shifts is crucial for future carbon budget studies.
Sinikka J. Paulus, Rene Orth, Sung-Ching Lee, Anke Hildebrandt, Martin Jung, Jacob A. Nelson, Tarek Sebastian El-Madany, Arnaud Carrara, Gerardo Moreno, Matthias Mauder, Jannis Groh, Alexander Graf, Markus Reichstein, and Mirco Migliavacca
Biogeosciences, 21, 2051–2085, https://doi.org/10.5194/bg-21-2051-2024, https://doi.org/10.5194/bg-21-2051-2024, 2024
Short summary
Short summary
Porous materials are known to reversibly trap water from the air, even at low humidity. However, this behavior is poorly understood for soils. In this analysis, we test whether eddy covariance is able to measure the so-called adsorption of atmospheric water vapor by soils. We find that this flux occurs frequently during dry nights in a Mediterranean ecosystem, while EC detects downwardly directed vapor fluxes. These results can help to map moisture uptake globally.
Tobias L. Hohenbrink, Conrad Jackisch, Wolfgang Durner, Kai Germer, Sascha C. Iden, Janis Kreiselmeier, Frederic Leuther, Johanna C. Metzger, Mahyar Naseri, and Andre Peters
Earth Syst. Sci. Data, 15, 4417–4432, https://doi.org/10.5194/essd-15-4417-2023, https://doi.org/10.5194/essd-15-4417-2023, 2023
Short summary
Short summary
The article describes a collection of 572 data sets of soil water retention and unsaturated hydraulic conductivity data measured with state-of-the-art laboratory methods. Furthermore, the data collection contains basic soil properties such as soil texture and organic carbon content. We expect that the data will be useful for various important purposes, for example, the development of soil hydraulic property models and related pedotransfer functions.
Christine Fischer-Bedtke, Johanna Clara Metzger, Gökben Demir, Thomas Wutzler, and Anke Hildebrandt
Hydrol. Earth Syst. Sci., 27, 2899–2918, https://doi.org/10.5194/hess-27-2899-2023, https://doi.org/10.5194/hess-27-2899-2023, 2023
Short summary
Short summary
Canopies change how rain reaches the soil: some spots receive more and others less water. It has long been debated whether this also leads to locally wetter and drier soil. We checked this using measurements of canopy drip and soil moisture. We found that the increase in soil water content after rain was aligned with canopy drip. Independently, the soil storage reaction was dampened in locations prone to drainage, like hig-macroporosity areas, suggesting that canopy drip enhances bypass flow.
Sinikka Jasmin Paulus, Tarek Sebastian El-Madany, René Orth, Anke Hildebrandt, Thomas Wutzler, Arnaud Carrara, Gerardo Moreno, Oscar Perez-Priego, Olaf Kolle, Markus Reichstein, and Mirco Migliavacca
Hydrol. Earth Syst. Sci., 26, 6263–6287, https://doi.org/10.5194/hess-26-6263-2022, https://doi.org/10.5194/hess-26-6263-2022, 2022
Short summary
Short summary
In this study, we analyze small inputs of water to ecosystems such as fog, dew, and adsorption of vapor. To measure them, we use a scaling system and later test our attribution of different water fluxes to weight changes. We found that they occur frequently during 1 year in a dry summer ecosystem. In each season, a different flux seems dominant, but they all mainly occur during the night. Therefore, they could be important for the biosphere because rain is unevenly distributed over the year.
Friedrich Boeing, Oldrich Rakovec, Rohini Kumar, Luis Samaniego, Martin Schrön, Anke Hildebrandt, Corinna Rebmann, Stephan Thober, Sebastian Müller, Steffen Zacharias, Heye Bogena, Katrin Schneider, Ralf Kiese, Sabine Attinger, and Andreas Marx
Hydrol. Earth Syst. Sci., 26, 5137–5161, https://doi.org/10.5194/hess-26-5137-2022, https://doi.org/10.5194/hess-26-5137-2022, 2022
Short summary
Short summary
In this paper, we deliver an evaluation of the second generation operational German drought monitor (https://www.ufz.de/duerremonitor) with a state-of-the-art compilation of observed soil moisture data from 40 locations and four different measurement methods in Germany. We show that the expressed stakeholder needs for higher resolution drought information at the one-kilometer scale can be met and that the agreement of simulated and observed soil moisture dynamics can be moderately improved.
Ralf Loritz, Maoya Bassiouni, Anke Hildebrandt, Sibylle K. Hassler, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 4757–4771, https://doi.org/10.5194/hess-26-4757-2022, https://doi.org/10.5194/hess-26-4757-2022, 2022
Short summary
Short summary
In this study, we combine a deep-learning approach that predicts sap flow with a hydrological model to improve soil moisture and transpiration estimates at the catchment scale. Our results highlight that hybrid-model approaches, combining machine learning with physically based models, are a promising way to improve our ability to make hydrological predictions.
Bahar Bahrami, Anke Hildebrandt, Stephan Thober, Corinna Rebmann, Rico Fischer, Luis Samaniego, Oldrich Rakovec, and Rohini Kumar
Geosci. Model Dev., 15, 6957–6984, https://doi.org/10.5194/gmd-15-6957-2022, https://doi.org/10.5194/gmd-15-6957-2022, 2022
Short summary
Short summary
Leaf area index (LAI) and gross primary productivity (GPP) are crucial components to carbon cycle, and are closely linked to water cycle in many ways. We develop a Parsimonious Canopy Model (PCM) to simulate GPP and LAI at stand scale, and show its applicability over a diverse range of deciduous broad-leaved forest biomes. With its modular structure, the PCM is able to adapt with existing data requirements, and run in either a stand-alone mode or as an interface linked to hydrologic models.
Swamini Khurana, Falk Heße, Anke Hildebrandt, and Martin Thullner
Biogeosciences, 19, 665–688, https://doi.org/10.5194/bg-19-665-2022, https://doi.org/10.5194/bg-19-665-2022, 2022
Short summary
Short summary
In this study, we concluded that the residence times of solutes and the Damköhler number (Da) of the biogeochemical reactions in the domain are governing factors for evaluating the impact of spatial heterogeneity of the domain on chemical (such as carbon and nitrogen compounds) removal. We thus proposed a relationship to scale this impact governed by Da. This relationship may be applied in larger domains, thereby resulting in more accurate modelling outcomes of nutrient removal in groundwater.
Josephin Kroll, Jasper M. C. Denissen, Mirco Migliavacca, Wantong Li, Anke Hildebrandt, and Rene Orth
Biogeosciences, 19, 477–489, https://doi.org/10.5194/bg-19-477-2022, https://doi.org/10.5194/bg-19-477-2022, 2022
Short summary
Short summary
Plant growth relies on having access to energy (solar radiation) and water (soil moisture). This energy and water availability is impacted by weather extremes, like heat waves and droughts, which will occur more frequently in response to climate change. In this context, we analysed global satellite data to detect in which regions extreme plant growth is controlled by energy or water. We find that extreme plant growth is associated with temperature- or soil-moisture-related extremes.
Daniel E. Pabon-Moreno, Talie Musavi, Mirco Migliavacca, Markus Reichstein, Christine Römermann, and Miguel D. Mahecha
Biogeosciences, 17, 3991–4006, https://doi.org/10.5194/bg-17-3991-2020, https://doi.org/10.5194/bg-17-3991-2020, 2020
Short summary
Short summary
Ecosystem CO2 uptake changes in time depending on climate conditions. In this study, we analyze how different climate variables affect the timing when CO2 uptake is at a maximum (DOYGPPmax). We found that the joint effects of radiation, temperature, and vapor pressure deficit are the most relevant controlling factors of DOYGPPmax and that if they increase, DOYGPPmax will happen earlier. These results help us to better understand how CO2 uptake could be affected by climate change.
Johanna C. Metzger, Jens Schumacher, Markus Lange, and Anke Hildebrandt
Hydrol. Earth Syst. Sci., 23, 4433–4452, https://doi.org/10.5194/hess-23-4433-2019, https://doi.org/10.5194/hess-23-4433-2019, 2019
Short summary
Short summary
Variation in stemflow (rain water running down the stem) enhances the formation of flow hot spots at the forest floor. Investigating drivers based on detailed measurements, we find that forest structure affects stemflow, both for individual trees and small communities. Densely packed forest patches received more stemflow, due to a higher proportion of woody structure and canopy morphology adjustments, which increase the potential for flow path generation connecting crowns and soil.
Nicolas Dalla Valle, Karin Potthast, Stefanie Meyer, Beate Michalzik, Anke Hildebrandt, and Thomas Wutzler
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-336, https://doi.org/10.5194/hess-2017-336, 2017
Manuscript not accepted for further review
Short summary
Short summary
Dual permeability models are an important tool to simulate water movement in soils and can be used to assess the risk of groundwater contamination by pesticides or the risk of flooding after strong precipitation events. However, their application is often hampered by the large amount of data they require. We developed a method to run this kind of models based on mostly just soil water content measurements, which will hopefully increase their usage and improve environmental risk assessment.
Anke Hildebrandt, Axel Kleidon, and Marcel Bechmann
Hydrol. Earth Syst. Sci., 20, 3441–3454, https://doi.org/10.5194/hess-20-3441-2016, https://doi.org/10.5194/hess-20-3441-2016, 2016
Short summary
Short summary
This theoretical paper describes the energy fluxes and dissipation along the flow paths involved in root water uptake, an approach that is rarely taken. We show that this provides useful additional insights for understanding the biotic and abiotic impediments to root water uptake. This approach shall be applied to explore efficient water uptake strategies and help locate the limiting processes in the complex soil–plant–atmosphere system.
P. Hamel and A. J. Guswa
Hydrol. Earth Syst. Sci., 19, 839–853, https://doi.org/10.5194/hess-19-839-2015, https://doi.org/10.5194/hess-19-839-2015, 2015
Short summary
Short summary
The paper presents an uncertainty analysis of the InVEST annual water yield model applied to the Cape Fear catchment, North Carolina. The InVEST model is a popular tool used in ecosystem services assessment based on the Budyko theory. The theory is used in a spatially explicit way, at the resolution of GIS rasters. The study confirms the large uncertainties associated with the climate inputs and provides insights into the use of the spatially explicit model.
M. Guderle and A. Hildebrandt
Hydrol. Earth Syst. Sci., 19, 409–425, https://doi.org/10.5194/hess-19-409-2015, https://doi.org/10.5194/hess-19-409-2015, 2015
Short summary
Short summary
This paper is the result of a numerical study to test the application of water balance methods for estimating evapotranspiration and water extraction profiles based on measured soil water content data. The advantage of the tested methods is that they do not rely on a priori information of any root distribution parameters. Our research shows the potential of water balance methods for derivation of water extraction profiles, but their application may be challenging in realistic conditions.
M. Bechmann, C. Schneider, A. Carminati, D. Vetterlein, S. Attinger, and A. Hildebrandt
Hydrol. Earth Syst. Sci., 18, 4189–4206, https://doi.org/10.5194/hess-18-4189-2014, https://doi.org/10.5194/hess-18-4189-2014, 2014
Related subject area
Subject: Ecohydrology | Techniques and Approaches: Instruments and observation techniques
Seasonal shifts in depth-to-water uptake by young thinned and overstocked lodgepole pine (Pinus contorta) forests under drought conditions in the Okanagan Valley, British Columbia, Canada
Hydrological and pedological effects of combining Italian alder and blackberries in an agroforestry windbreak system in South Africa
Rainfall redistribution in subtropical Chinese forests changes over 22 years
The influence of hillslope topography on beech water use: a comparative study in two different climates
Real-time biological early-warning system based on freshwater mussels’ valvometry data
The seasonal origins and ages of water provisioning streams and trees in a tropical montane cloud forest
Benefits of a robotic chamber system for determining evapotranspiration in an erosion-affected, heterogeneous cropland
Quantifying river water contributions to the transpiration of riparian trees along a losing river: lessons from stable isotopes and an iteration method
Dye-tracer-aided investigation of xylem water transport velocity distributions
Technical note: Lessons from and best practices for the deployment of the Soil Water Isotope Storage System
Throughfall spatial patterns translate into spatial patterns of soil moisture dynamics – empirical evidence
Routing stemflow water through the soil via preferential flow: a dual-labelling approach with artificial tracers
Improving soil aquifer treatment efficiency using air injection into the subsurface
Dynamic root growth in response to depth-varying soil moisture availability: a rhizobox study
Controls on leaf water hydrogen and oxygen isotopes: a local investigation across seasons and altitude
Resolving seasonal and diel dynamics of non-rainfall water inputs in a Mediterranean ecosystem using lysimeters
The effect of rainfall amount and timing on annual transpiration in a grazed savanna grassland
Inter- and intra-event rainfall partitioning dynamics of two typical xerophytic shrubs in the Loess Plateau of China
A comparative study of plant water extraction methods for isotopic analyses: Scholander-type pressure chamber vs. cryogenic vacuum distillation
Technical note: Conservative storage of water vapour – practical in situ sampling of stable isotopes in tree stems
Xylem water in riparian willow trees (Salix alba) reveals shallow sources of root water uptake by in situ monitoring of stable water isotopes
Technical note: High-accuracy weighing micro-lysimeter system for long-term measurements of non-rainfall water inputs to grasslands
Response of water fluxes and biomass production to climate change in permanent grassland soil ecosystems
Ecohydrological travel times derived from in situ stable water isotope measurements in trees during a semi-controlled pot experiment
Insights into the isotopic mismatch between bulk soil water and Salix matsudana Koidz trunk water from root water stable isotope measurements
The role of dew and radiation fog inputs in the local water cycling of a temperate grassland during dry spells in central Europe
Co-evolution of xylem water and soil water stable isotopic composition in a northern mixed forest biome
Vapor plumes in a tropical wet forest: spotting the invisible evaporation
Rapid reduction in ecosystem productivity caused by flash droughts based on decade-long FLUXNET observations
Throughfall isotopic composition in relation to drop size at the intra-event scale in a Mediterranean Scots pine stand
Rainfall interception and redistribution by a common North American understory and pasture forb, Eupatorium capillifolium (Lam. dogfennel)
In situ measurements of soil and plant water isotopes: a review of approaches, practical considerations and a vision for the future
Coalescence of bacterial groups originating from urban runoffs and artificial infiltration systems among aquifer microbiomes
A combination of soil water extraction methods quantifies the isotopic mixing of waters held at separate tensions in soil
Using water stable isotopes to understand evaporation, moisture stress, and re-wetting in catchment forest and grassland soils of the summer drought of 2018
Partitioning growing season water balance within a forested boreal catchment using sap flux, eddy covariance, and a process-based model
Technical note: Long-term probe misalignment and proposed quality control using the heat pulse method for transpiration estimations
Contribution of understory evaporation in a tropical wet forest during the dry season
Coffee and shade trees show complementary use of soil water in a traditional agroforestry ecosystem
Responses of soil water storage and crop water use efficiency to changing climatic conditions: a lysimeter-based space-for-time approach
Neighbourhood and stand structure affect stemflow generation in a heterogeneous deciduous temperate forest
Technical Note: A global database of the stable isotopic ratios of meteoric and terrestrial waters
Temporally dependent effects of rainfall characteristics on inter- and intra-event branch-scale stemflow variability in two xerophytic shrubs
Dissolved organic carbon driven by rainfall events from a semi-arid catchment during concentrated rainfall season in the Loess Plateau, China
Dew frequency across the US from a network of in situ radiometers
Seasonal origins of soil water used by trees
Forest harvesting impacts on microclimate conditions and sediment transport activities in a humid periglacial environment
Hydrogeochemical controls on brook trout spawning habitats in a coastal stream
Speculations on the application of foliar 13C discrimination to reveal groundwater dependency of vegetation and provide estimates of root depth and rates of groundwater use
Evaporation from cultivated and semi-wild Sudanian Savanna in west Africa
Emory C. Ellis, Robert D. Guy, and Xiaohua A. Wei
Hydrol. Earth Syst. Sci., 28, 4667–4684, https://doi.org/10.5194/hess-28-4667-2024, https://doi.org/10.5194/hess-28-4667-2024, 2024
Short summary
Short summary
This study analyzes water-stable isotope composition by analyzing the impact of forest thinning on lodgepole pine depth-to-water uptake and water-use strategies. Lodgepole pine's primary source is spring snowmelt and shifts to rely on deeper soil water to maintain water uptake. There was no effect of decreased stand density on depth-to-water uptake. It will become more critical that we know how much water forests are using and which strategies trees use to sustain their water supply.
Svenja Hoffmeister, Rafael Bohn Reckziegel, Ben du Toit, Sibylle K. Hassler, Florian Kestel, Rebekka Maier, Jonathan P. Sheppard, and Erwin Zehe
Hydrol. Earth Syst. Sci., 28, 3963–3982, https://doi.org/10.5194/hess-28-3963-2024, https://doi.org/10.5194/hess-28-3963-2024, 2024
Short summary
Short summary
We studied a tree–crop ecosystem consisting of a blackberry field and an alder windbreak. In the water-scarce region, irrigation provides sufficient water for plant growth. The windbreak lowers the irrigation amount by reducing wind speed and therefore water transport into the atmosphere. These ecosystems could provide sustainable use of water-scarce landscapes, and we studied the complex interactions by observing several aspects (e.g. soil, nutrients, carbon assimilation, water).
Wanjun Zhang, Thomas Scholten, Steffen Seitz, Qianmei Zhang, Guowei Chu, Linhua Wang, Xin Xiong, and Juxiu Liu
Hydrol. Earth Syst. Sci., 28, 3837–3854, https://doi.org/10.5194/hess-28-3837-2024, https://doi.org/10.5194/hess-28-3837-2024, 2024
Short summary
Short summary
Rainfall input generally controls soil water and plant growth. We focus on rainfall redistribution in succession sequence forests over 22 years. Some changes in rainwater volume and chemistry in the throughfall and stemflow and drivers were investigated. Results show that shifted open rainfall over time and forest factors induced remarkable variability in throughfall and stemflow, which potentially makes forecasting future changes in water resources in the forest ecosystems more difficult.
Ginevra Fabiani, Julian Klaus, and Daniele Penna
Hydrol. Earth Syst. Sci., 28, 2683–2703, https://doi.org/10.5194/hess-28-2683-2024, https://doi.org/10.5194/hess-28-2683-2024, 2024
Short summary
Short summary
There is a limited understanding of the role that topography and climate play in tree water use. Through a cross-site comparison in Luxembourg and Italy, we investigated beech water use along slopes in different climates. Our findings indicate that in landscapes characterized by stronger hydraulic and climatic gradients there is greater spatial variation in tree physiological responses. This highlights how differing growing conditions across landscapes can lead to contrasting tree performances.
Ashkan Pilbala, Nicoletta Riccardi, Nina Benistati, Vanessa Modesto, Donatella Termini, Dario Manca, Augusto Benigni, Cristiano Corradini, Tommaso Lazzarin, Tommaso Moramarco, Luigi Fraccarollo, and Sebastiano Piccolroaz
Hydrol. Earth Syst. Sci., 28, 2297–2311, https://doi.org/10.5194/hess-28-2297-2024, https://doi.org/10.5194/hess-28-2297-2024, 2024
Short summary
Short summary
This study investigates the impact of floods on the aquatic ecosystem using freshwater mussels instrumented with sensors to monitor the opening of their valves. Signal analysis techniques were used to gain insight into their responses in terms of changes in the intensity and frequency of valve opening. The approach used in the study enables the development of real-time monitoring systems for ecological purposes and provides a pathway for practical biological early-warning systems.
Emily I. Burt, Gregory R. Goldsmith, Roxanne M. Cruz-de Hoyos, Adan Julian Ccahuana Quispe, and A. Joshua West
Hydrol. Earth Syst. Sci., 27, 4173–4186, https://doi.org/10.5194/hess-27-4173-2023, https://doi.org/10.5194/hess-27-4173-2023, 2023
Short summary
Short summary
When it rains, water remains in the ground for variable amounts of time before it is taken up by plants or becomes streamflow. Understanding how long water stays in the ground before it is taken up by plants or becomes streamflow helps predict what will happen to the water cycle in future climates. Some studies suggest that plants take up water that has been in the ground for a long time; in contrast, we find that plants take up a significant amount of recent rain.
Adrian Dahlmann, Mathias Hoffmann, Gernot Verch, Marten Schmidt, Michael Sommer, Jürgen Augustin, and Maren Dubbert
Hydrol. Earth Syst. Sci., 27, 3851–3873, https://doi.org/10.5194/hess-27-3851-2023, https://doi.org/10.5194/hess-27-3851-2023, 2023
Short summary
Short summary
Evapotranspiration (ET) plays a pivotal role in terrestrial water cycling, returning up to 90 % of precipitation to the atmosphere. We studied impacts of soil type and management on an agroecosystem using an automated system with modern modeling approaches. We modeled ET at high spatial and temporal resolution to highlight differences in heterogeneous soils on an hourly basis. Our results show significant differences in yield and smaller differences in ET overall, impacting water use efficiency.
Yue Li, Ying Ma, Xianfang Song, Qian Zhang, and Lixin Wang
Hydrol. Earth Syst. Sci., 27, 3405–3425, https://doi.org/10.5194/hess-27-3405-2023, https://doi.org/10.5194/hess-27-3405-2023, 2023
Short summary
Short summary
We proposed an iteration method in combination with the MixSIAR model and water isotopes to quantify the river water contribution (RWC) to riparian deep-rooted trees nearby a losing river. River water can indirectly contribute by 20.3 % to water uptake of riparian trees. River recharged riparian groundwater rapidly with a short groundwater residence time (no more than 0.28 d). The RWC to riparian trees was negatively correlated with the water table depth and leaf δ13C in linear functions.
Stefan Seeger and Markus Weiler
Hydrol. Earth Syst. Sci., 27, 3393–3404, https://doi.org/10.5194/hess-27-3393-2023, https://doi.org/10.5194/hess-27-3393-2023, 2023
Short summary
Short summary
This study proposes a low-budget method to quantify the radial distribution of water transport velocities within trees at a high spatial resolution. We observed a wide spread of water transport velocities within a tree stem section, which were on average 3 times faster than the flux velocity. The distribution of transport velocities has implications for studies that use water isotopic signatures to study root water uptake and usually assume uniform or even implicitly infinite velocities.
Rachel E. Havranek, Kathryn Snell, Sebastian Kopf, Brett Davidheiser-Kroll, Valerie Morris, and Bruce Vaughn
Hydrol. Earth Syst. Sci., 27, 2951–2971, https://doi.org/10.5194/hess-27-2951-2023, https://doi.org/10.5194/hess-27-2951-2023, 2023
Short summary
Short summary
We present an automated, field-ready system that collects soil water vapor for stable isotope analysis. This system can be used to determine soil water evolution through time, which is helpful for understanding crop water use, water vapor fluxes to the atmosphere, and geologic proxy development. Our system can automatically collect soil water vapor and then store it for up to 30 d, which allows researchers to collect datasets from historically understudied, remote locations.
Christine Fischer-Bedtke, Johanna Clara Metzger, Gökben Demir, Thomas Wutzler, and Anke Hildebrandt
Hydrol. Earth Syst. Sci., 27, 2899–2918, https://doi.org/10.5194/hess-27-2899-2023, https://doi.org/10.5194/hess-27-2899-2023, 2023
Short summary
Short summary
Canopies change how rain reaches the soil: some spots receive more and others less water. It has long been debated whether this also leads to locally wetter and drier soil. We checked this using measurements of canopy drip and soil moisture. We found that the increase in soil water content after rain was aligned with canopy drip. Independently, the soil storage reaction was dampened in locations prone to drainage, like hig-macroporosity areas, suggesting that canopy drip enhances bypass flow.
Juan Pinos, Markus Flury, Jérôme Latron, and Pilar Llorens
Hydrol. Earth Syst. Sci., 27, 2865–2881, https://doi.org/10.5194/hess-27-2865-2023, https://doi.org/10.5194/hess-27-2865-2023, 2023
Short summary
Short summary
We investigated how stemflow (intercepted rainwater by the tree crown that travels down the stem) infiltrates within the soil. We simulated stemflow, applying coloured water along a tree trunk. Coloured patterns, observed when we excavated the soil after the experiment, were used to view and quantify preferential flow in the soil. We found that stemflow was mainly funnelled belowground along tree roots and macropores. Soil moisture near the trunk was affected both vertically and horizontally.
Ido Arad, Aviya Ziner, Shany Ben Moshe, Noam Weisbrod, and Alex Furman
Hydrol. Earth Syst. Sci., 27, 2509–2522, https://doi.org/10.5194/hess-27-2509-2023, https://doi.org/10.5194/hess-27-2509-2023, 2023
Short summary
Short summary
In a series of long-column experiments, subsurface air injection in soil aquifer treatment (Air-SAT) was tested as an alternative to conventional flooding–drying operation (FDO) in tertiary wastewater (WW) treatment. Our results show that Air-SAT allows for the treatment of increased WW volumes and results in similar or better effluent quality compared with FDO. These results highlight the possibility of using air injection to treat more effluent and alleviate the pressure on existing SAT sites.
Cynthia Maan, Marie-Claire ten Veldhuis, and Bas J. H. van de Wiel
Hydrol. Earth Syst. Sci., 27, 2341–2355, https://doi.org/10.5194/hess-27-2341-2023, https://doi.org/10.5194/hess-27-2341-2023, 2023
Short summary
Short summary
Their flexible growth provides the plants with a strong ability to adapt and develop resilience to droughts and climate change. But this adaptability is badly included in crop and climate models. To model plant development in changing environments, we need to include the survival strategies of plants. Based on experimental data, we set up a simple model for soil-moisture-driven root growth. The model performance suggests that soil moisture is a key parameter determining root growth.
Jinzhao Liu, Chong Jiang, Huawu Wu, Li Guo, Haiwei Zhang, and Ying Zhao
Hydrol. Earth Syst. Sci., 27, 599–612, https://doi.org/10.5194/hess-27-599-2023, https://doi.org/10.5194/hess-27-599-2023, 2023
Short summary
Short summary
What controls leaf water isotopes? We answered the question from two perspectives: respective and dual isotopes. On the one hand, the δ18O and δ2H values of leaf water responded to isotopes of potential source water (i.e., twig water, soil water, and precipitation) and meteorological parameters (i.e., temperature, RH, and precipitation) differently. On the other hand, dual δ18O and δ2H values of leaf water yielded a significant linear relationship associated with altitude and seasonality.
Sinikka Jasmin Paulus, Tarek Sebastian El-Madany, René Orth, Anke Hildebrandt, Thomas Wutzler, Arnaud Carrara, Gerardo Moreno, Oscar Perez-Priego, Olaf Kolle, Markus Reichstein, and Mirco Migliavacca
Hydrol. Earth Syst. Sci., 26, 6263–6287, https://doi.org/10.5194/hess-26-6263-2022, https://doi.org/10.5194/hess-26-6263-2022, 2022
Short summary
Short summary
In this study, we analyze small inputs of water to ecosystems such as fog, dew, and adsorption of vapor. To measure them, we use a scaling system and later test our attribution of different water fluxes to weight changes. We found that they occur frequently during 1 year in a dry summer ecosystem. In each season, a different flux seems dominant, but they all mainly occur during the night. Therefore, they could be important for the biosphere because rain is unevenly distributed over the year.
Matti Räsänen, Mika Aurela, Ville Vakkari, Johan P. Beukes, Juha-Pekka Tuovinen, Pieter G. Van Zyl, Miroslav Josipovic, Stefan J. Siebert, Tuomas Laurila, Markku Kulmala, Lauri Laakso, Janne Rinne, Ram Oren, and Gabriel Katul
Hydrol. Earth Syst. Sci., 26, 5773–5791, https://doi.org/10.5194/hess-26-5773-2022, https://doi.org/10.5194/hess-26-5773-2022, 2022
Short summary
Short summary
The productivity of semiarid grazed grasslands is linked to the variation in rainfall and transpiration. By combining carbon dioxide and water flux measurements, we show that the annual transpiration is nearly constant during wet years while grasses react quickly to dry spells and drought, which reduce transpiration. The planning of annual grazing strategies could consider the early-season rainfall frequency that was linked to the portion of annual transpiration.
Jinxia An, Guangyao Gao, Chuan Yuan, Juan Pinos, and Bojie Fu
Hydrol. Earth Syst. Sci., 26, 3885–3900, https://doi.org/10.5194/hess-26-3885-2022, https://doi.org/10.5194/hess-26-3885-2022, 2022
Short summary
Short summary
An in-depth investigation was conducted of all rainfall-partitioning components at inter- and intra-event scales for two xerophytic shrubs. Inter-event rainfall partitioning amount and percentage depended more on rainfall amount, and rainfall intensity and duration controlled intra-event rainfall-partitioning variables. One shrub has larger branch angle, small branch and smaller canopy area to produce stemflow more efficiently, and the other has larger biomass to intercept more rainfall.
Giulia Zuecco, Anam Amin, Jay Frentress, Michael Engel, Chiara Marchina, Tommaso Anfodillo, Marco Borga, Vinicio Carraro, Francesca Scandellari, Massimo Tagliavini, Damiano Zanotelli, Francesco Comiti, and Daniele Penna
Hydrol. Earth Syst. Sci., 26, 3673–3689, https://doi.org/10.5194/hess-26-3673-2022, https://doi.org/10.5194/hess-26-3673-2022, 2022
Short summary
Short summary
We analyzed the variability in the isotopic composition of plant water extracted by two different methods, i.e., cryogenic vacuum distillation (CVD) and Scholander-type pressure chamber (SPC). Our results indicated that the isotopic composition of plant water extracted by CVD and SPC was significantly different. We concluded that plant water extraction by SPC is not an alternative for CVD as SPC mostly extracts the mobile plant water whereas CVD retrieves all water stored in the sampled tissue.
Ruth-Kristina Magh, Benjamin Gralher, Barbara Herbstritt, Angelika Kübert, Hyungwoo Lim, Tomas Lundmark, and John Marshall
Hydrol. Earth Syst. Sci., 26, 3573–3587, https://doi.org/10.5194/hess-26-3573-2022, https://doi.org/10.5194/hess-26-3573-2022, 2022
Short summary
Short summary
We developed a method of sampling and storing water vapour for isotope analysis, allowing us to infer plant water uptake depth. Measurements can be made at high temporal and spatial resolution even in remote areas. We ensured that all necessary components are easily available, making this method cost efficient and simple to implement. We found our method to perform well in the lab and in the field, enabling it to become a tool for everyone aiming to resolve questions regarding the water cycle.
Jessica Landgraf, Dörthe Tetzlaff, Maren Dubbert, David Dubbert, Aaron Smith, and Chris Soulsby
Hydrol. Earth Syst. Sci., 26, 2073–2092, https://doi.org/10.5194/hess-26-2073-2022, https://doi.org/10.5194/hess-26-2073-2022, 2022
Short summary
Short summary
Using water stable isotopes, we studied from which water source (lake water, stream water, groundwater, or soil water) two willows were taking their water. We monitored the environmental conditions (e.g. air temperature and soil moisture) and the behaviour of the trees (water flow in the stem). We found that the most likely water sources of the willows were the upper soil layers but that there were seasonal dynamics.
Andreas Riedl, Yafei Li, Jon Eugster, Nina Buchmann, and Werner Eugster
Hydrol. Earth Syst. Sci., 26, 91–116, https://doi.org/10.5194/hess-26-91-2022, https://doi.org/10.5194/hess-26-91-2022, 2022
Short summary
Short summary
The aim of this study was to develop a high-accuracy micro-lysimeter system for the quantification of non-rainfall water inputs that overcomes existing drawbacks. The micro-lysimeter system had a high accuracy and allowed us to quantify and distinguish between different types of non-rainfall water inputs, like dew and fog. Non-rainfall water inputs occurred frequently in a Swiss Alpine grassland ecosystem. These water inputs can be an important water source for grasslands during dry periods.
Veronika Forstner, Jannis Groh, Matevz Vremec, Markus Herndl, Harry Vereecken, Horst H. Gerke, Steffen Birk, and Thomas Pütz
Hydrol. Earth Syst. Sci., 25, 6087–6106, https://doi.org/10.5194/hess-25-6087-2021, https://doi.org/10.5194/hess-25-6087-2021, 2021
Short summary
Short summary
Lysimeter-based manipulative and observational experiments were used to identify responses of water fluxes and aboveground biomass (AGB) to climatic change in permanent grassland. Under energy-limited conditions, elevated temperature actual evapotranspiration (ETa) increased, while seepage, dew, and AGB decreased. Elevated CO2 mitigated the effect on ETa. Under water limitation, elevated temperature resulted in reduced ETa, and AGB was negatively correlated with an increasing aridity.
David Mennekes, Michael Rinderer, Stefan Seeger, and Natalie Orlowski
Hydrol. Earth Syst. Sci., 25, 4513–4530, https://doi.org/10.5194/hess-25-4513-2021, https://doi.org/10.5194/hess-25-4513-2021, 2021
Short summary
Short summary
In situ stable water isotope measurements are a recently developed method to measure water movement from the soil through the plant to the atmosphere in high resolution and precision. Here, we present important advantages of the new method in comparison to commonly used measurement methods in an experimental setup. Overall, this method can help to answer research questions such as plant responses to climate change with potentially shifting water availability or temperatures.
Ying Zhao and Li Wang
Hydrol. Earth Syst. Sci., 25, 3975–3989, https://doi.org/10.5194/hess-25-3975-2021, https://doi.org/10.5194/hess-25-3975-2021, 2021
Short summary
Short summary
At our study site during the experimental period, trunk water was only isotopically similar to root water at 100–160 cm depths. The isotopic composition of root water deviated from that of bulk soil water but overlapped with the composition derived for less mobile water. These findings suggest that the isotopic offset between bulk soil water and trunk water was due to the isotopic mismatch between root water and bulk soil water associated with soil water heterogeneity.
Yafei Li, Franziska Aemisegger, Andreas Riedl, Nina Buchmann, and Werner Eugster
Hydrol. Earth Syst. Sci., 25, 2617–2648, https://doi.org/10.5194/hess-25-2617-2021, https://doi.org/10.5194/hess-25-2617-2021, 2021
Short summary
Short summary
During dry spells, dew and fog potentially play an increasingly important role in temperate grasslands. Research on the combined mechanisms of dew and fog inputs to ecosystems and distillation of water vapor from soil to plant surfaces is rare. Our results using stable water isotopes highlight the importance of dew and fog inputs to temperate grasslands during dry spells and reveal the complexity of the local water cycling in such conditions, including different pathways of dew and fog inputs.
Jenna R. Snelgrove, James M. Buttle, Matthew J. Kohn, and Dörthe Tetzlaff
Hydrol. Earth Syst. Sci., 25, 2169–2186, https://doi.org/10.5194/hess-25-2169-2021, https://doi.org/10.5194/hess-25-2169-2021, 2021
Short summary
Short summary
Co-evolution of plant and soil water isotopic composition throughout the growing season in a little-studied northern mixed forest landscape was explored. Marked inter-specific differences in the isotopic composition of xylem water relative to surrounding soil water occurred, despite thin soil cover constraining inter-species differences in rooting depths. We provide potential explanations for differences in temporal evolution of xylem water isotopic composition in this northern landscape.
César Dionisio Jiménez-Rodríguez, Miriam Coenders-Gerrits, Bart Schilperoort, Adriana del Pilar González-Angarita, and Hubert Savenije
Hydrol. Earth Syst. Sci., 25, 619–635, https://doi.org/10.5194/hess-25-619-2021, https://doi.org/10.5194/hess-25-619-2021, 2021
Short summary
Short summary
During rainfall events, evaporation from tropical forests is usually ignored. However, the water retained in the canopy during rainfall increases the evaporation despite the high-humidity conditions. In a tropical wet forest in Costa Rica, it was possible to depict vapor plumes rising from the forest canopy during rainfall. These plumes are evidence of forest evaporation. Also, we identified the conditions that allowed this phenomenon to happen using time-lapse videos and meteorological data.
Miao Zhang and Xing Yuan
Hydrol. Earth Syst. Sci., 24, 5579–5593, https://doi.org/10.5194/hess-24-5579-2020, https://doi.org/10.5194/hess-24-5579-2020, 2020
Short summary
Short summary
We identify flash drought events by considering the decline rate of soil moisture and the drought persistency, and we detect the response of ecosystem carbon and water fluxes to flash droughts based on FLUXNET observations. We find rapid declines in carbon assimilation within 16–24 d of flash drought onset, where savannas show the highest sensitivity. Water use efficiency increases for forests but decreases for herbaceous ecosystems during the recovery stage of flash droughts.
Juan Pinos, Jérôme Latron, Kazuki Nanko, Delphis F. Levia, and Pilar Llorens
Hydrol. Earth Syst. Sci., 24, 4675–4690, https://doi.org/10.5194/hess-24-4675-2020, https://doi.org/10.5194/hess-24-4675-2020, 2020
Short summary
Short summary
Water that drips or splashes from a canopy or passes through it is termed throughfall. This is the first known study to examine interrelationships between throughfall isotopic fractionation and throughfall drop size. Working in a mountainous Scots pine forest, we found that throughfall splash droplets were more prevalent at the onset of rain when vapour pressure deficits were larger. This finding has important implications for water mixing in the canopy and for theories of canopy interception.
D. Alex R. Gordon, Miriam Coenders-Gerrits, Brent A. Sellers, S. M. Moein Sadeghi, and John T. Van Stan II
Hydrol. Earth Syst. Sci., 24, 4587–4599, https://doi.org/10.5194/hess-24-4587-2020, https://doi.org/10.5194/hess-24-4587-2020, 2020
Short summary
Short summary
Where plants exist, rain must pass through canopies to reach soils. We studied how rain interacts with dogfennel – a highly problematic weed that is abundant in pastures, grasslands, rangelands, urban forests and along highways. Dogfennels evaporated large portions (approx. one-fifth) of rain and drained significant (at times > 25 %) rain (and dew) down their stems to their roots (via stemflow). This may explain how dogfennel survives and even invades managed landscapes during extended droughts.
Matthias Beyer, Kathrin Kühnhammer, and Maren Dubbert
Hydrol. Earth Syst. Sci., 24, 4413–4440, https://doi.org/10.5194/hess-24-4413-2020, https://doi.org/10.5194/hess-24-4413-2020, 2020
Short summary
Short summary
Water isotopes are a scientific tool that can be used to identify sources of water and answer questions such as
From which soil depths do plants take up water?, which are highly relevant under changing climatic conditions. In the past, the measurement of water isotopes required tremendous effort. In the last decade methods have advanced and can now be applied in the field. Herein, we review the current status of direct field measurements of water isotopes and discuss future applications.
Yannick Colin, Rayan Bouchali, Laurence Marjolet, Romain Marti, Florian Vautrin, Jérémy Voisin, Emilie Bourgeois, Veronica Rodriguez-Nava, Didier Blaha, Thierry Winiarski, Florian Mermillod-Blondin, and Benoit Cournoyer
Hydrol. Earth Syst. Sci., 24, 4257–4273, https://doi.org/10.5194/hess-24-4257-2020, https://doi.org/10.5194/hess-24-4257-2020, 2020
Short summary
Short summary
Stormwater infiltration systems (SISs) are a source of pollution that may have adverse ecological and sanitary impacts. The incidence of a SIS on the coalescence of microbial communities from runoff waters and aboveground sediments with those of an aquifer was investigated. Aquifer waters showed lower coalescence with aboveground bacterial taxa than aquifer biofilms. These biofilms were colonized by bacterial hydrocarbon degraders and harboured undesirable human-opportunistic pathogens.
William H. Bowers, Jason J. Mercer, Mark S. Pleasants, and David G. Williams
Hydrol. Earth Syst. Sci., 24, 4045–4060, https://doi.org/10.5194/hess-24-4045-2020, https://doi.org/10.5194/hess-24-4045-2020, 2020
Short summary
Short summary
Determining the chemical composition of soil water can help to address questions concerning water transport and use. However, there are many observations of incompletely mixed soil water within various soil pore domains. We applied two contrasting waters to soil samples and then removed water from the soils with three sequential and increasing applied energy steps to assess soil water mixing and equilibration over time. We found it took more than 3 d for soil water to mix and equilibrate.
Lukas Kleine, Doerthe Tetzlaff, Aaron Smith, Hailong Wang, and Chris Soulsby
Hydrol. Earth Syst. Sci., 24, 3737–3752, https://doi.org/10.5194/hess-24-3737-2020, https://doi.org/10.5194/hess-24-3737-2020, 2020
Short summary
Short summary
We investigated the effects of the 2018 drought on water partitioning in a lowland catchment under grassland and forest in north-eastern Germany. Conditions resulted in drying up of streams, yield losses, and lower groundwater levels. Oak trees continued to transpire during the drought. We used stable isotopes to assess the fluxes and ages of water. Sustainable use of resource water requires such understanding of ecohydrological water partitioning.
Nataliia Kozii, Kersti Haahti, Pantana Tor-ngern, Jinshu Chi, Eliza Maher Hasselquist, Hjalmar Laudon, Samuli Launiainen, Ram Oren, Matthias Peichl, Jörgen Wallerman, and Niles J. Hasselquist
Hydrol. Earth Syst. Sci., 24, 2999–3014, https://doi.org/10.5194/hess-24-2999-2020, https://doi.org/10.5194/hess-24-2999-2020, 2020
Short summary
Short summary
The hydrologic cycle is one of the greatest natural processes on Earth and strongly influences both regional and global climate as well as ecosystem functioning. Results from this study clearly show the central role trees play in regulating the water cycle of boreal catchments, implying that forest management impacts on stand structure as well as climate change effects on tree growth are likely to have large cascading effects on the way water moves through boreal forested landscapes.
Elisabeth K. Larsen, Jose Luis Palau, Jose Antonio Valiente, Esteban Chirino, and Juan Bellot
Hydrol. Earth Syst. Sci., 24, 2755–2767, https://doi.org/10.5194/hess-24-2755-2020, https://doi.org/10.5194/hess-24-2755-2020, 2020
Short summary
Short summary
To improve long-term sap flow measurements when using the heat ratio method, this study introduces a dynamic probe misalignment correction method. This work uses sap flow data from four Aleppo pines from April 2017 to December 2018 and shows how a classical probe correction approach declines in accuracy over time. Additionally, it is proposed that a new set of statistical information be recorded along with the sap flow readings to ensure the quality of the raw data.
César Dionisio Jiménez-Rodríguez, Miriam Coenders-Gerrits, Jochen Wenninger, Adriana Gonzalez-Angarita, and Hubert Savenije
Hydrol. Earth Syst. Sci., 24, 2179–2206, https://doi.org/10.5194/hess-24-2179-2020, https://doi.org/10.5194/hess-24-2179-2020, 2020
Short summary
Short summary
Tropical forest ecosystems are able to export a lot of water to the atmosphere by means of evaporation. However, little is known on how their complex structure affects this water flux. This paper analyzes the contribution of three canopy layers in terms of water fluxes and stable water isotope signatures. During the dry season in 2018 the two lower canopy layers provide 20 % of measured evaporation, highlighting the importance of knowing how forest structure can affect the hydrological cycle.
Lyssette Elena Muñoz-Villers, Josie Geris, María Susana Alvarado-Barrientos, Friso Holwerda, and Todd Dawson
Hydrol. Earth Syst. Sci., 24, 1649–1668, https://doi.org/10.5194/hess-24-1649-2020, https://doi.org/10.5194/hess-24-1649-2020, 2020
Short summary
Short summary
Our research showed, consistently, a complementary use of soil water sources between coffee (Coffea Arabica var. typica) plants and shade tree species during the dry and wet seasons in a traditional agroforestry ecosystem in central Veracruz, Mexico. However, more variability in plant water sources was observed among species in the rainy season when higher soil moisture conditions were present and water stress was largely absent.
Jannis Groh, Jan Vanderborght, Thomas Pütz, Hans-Jörg Vogel, Ralf Gründling, Holger Rupp, Mehdi Rahmati, Michael Sommer, Harry Vereecken, and Horst H. Gerke
Hydrol. Earth Syst. Sci., 24, 1211–1225, https://doi.org/10.5194/hess-24-1211-2020, https://doi.org/10.5194/hess-24-1211-2020, 2020
Johanna C. Metzger, Jens Schumacher, Markus Lange, and Anke Hildebrandt
Hydrol. Earth Syst. Sci., 23, 4433–4452, https://doi.org/10.5194/hess-23-4433-2019, https://doi.org/10.5194/hess-23-4433-2019, 2019
Short summary
Short summary
Variation in stemflow (rain water running down the stem) enhances the formation of flow hot spots at the forest floor. Investigating drivers based on detailed measurements, we find that forest structure affects stemflow, both for individual trees and small communities. Densely packed forest patches received more stemflow, due to a higher proportion of woody structure and canopy morphology adjustments, which increase the potential for flow path generation connecting crowns and soil.
Annie L. Putman and Gabriel J. Bowen
Hydrol. Earth Syst. Sci., 23, 4389–4396, https://doi.org/10.5194/hess-23-4389-2019, https://doi.org/10.5194/hess-23-4389-2019, 2019
Short summary
Short summary
We describe an open-access, global database of stable water isotope ratios of various water types. The database facilitates data archiving, supports standardized metadata collection, and decreases the time investment for metanalyses. To promote data discovery and collaboration, the database exposes metadata and data owner contact information for private data but only permits download of public data. Two companion apps support digital data collection and processing and upload of analyzed data.
Chuan Yuan, Guangyao Gao, Bojie Fu, Daming He, Xingwu Duan, and Xiaohua Wei
Hydrol. Earth Syst. Sci., 23, 4077–4095, https://doi.org/10.5194/hess-23-4077-2019, https://doi.org/10.5194/hess-23-4077-2019, 2019
Short summary
Short summary
The stemflow dynamics of two xerophytic shrubs were investigated at the inter- and intra-event scales with high-temporal-resolution data in 54 rain events. Stemflow process was depicted by intensity, duration and time lags to rain events. Funneling ratio was calculated as the ratio of stemflow to rainfall intensities. Rainfall intensity and raindrop momentum controlled stemflow intensity and time lags. Influences of rainfall characteristics on stemflow variables showed temporal dependence.
Linhua Wang, Haw Yen, Xinhui E, Liding Chen, and Yafeng Wang
Hydrol. Earth Syst. Sci., 23, 3141–3153, https://doi.org/10.5194/hess-23-3141-2019, https://doi.org/10.5194/hess-23-3141-2019, 2019
Short summary
Short summary
A high-frequency approach was used to monitor dynamic changes of DOC exported during the concentrated rainfall season in LPR, China. DOC concentration and flux from an ecologically restored catchment in the LPR was investigated. Hysteresis analysis indicated non-linear relationships between DOC concentration and discharge rate in a rainfall event. DOC export is substantially affected by the interaction of rainfall and antecedent conditions for a rainfall event.
François Ritter, Max Berkelhammer, and Daniel Beysens
Hydrol. Earth Syst. Sci., 23, 1179–1197, https://doi.org/10.5194/hess-23-1179-2019, https://doi.org/10.5194/hess-23-1179-2019, 2019
Short summary
Short summary
There currently is no standardized approach for measuring dew formation, making it difficult to compare its frequency and importance across ecosystems. Recently, canopy surface temperature data from 30 sites in the US were measured continuously using in situ infrared radiometers. The analysis presented here provides the first continental-scale standardized synthesis of dew formation. This work provides a basis for considering how changing climate and land use will influence dew formation.
Scott T. Allen, James W. Kirchner, Sabine Braun, Rolf T. W. Siegwolf, and Gregory R. Goldsmith
Hydrol. Earth Syst. Sci., 23, 1199–1210, https://doi.org/10.5194/hess-23-1199-2019, https://doi.org/10.5194/hess-23-1199-2019, 2019
Short summary
Short summary
We used stable isotopes of xylem water to study differences in the seasonal origin of water in more than 900 individual trees from three dominant species in 182 Swiss forested sites. We discovered that midsummer transpiration was mostly supplied by winter precipitation across diverse humid climates. Our findings provide new insights into tree vulnerability to droughts, transport of water (and thus solutes) in soils, and the climatic information conveyed by plant-tissue isotopes.
Fumitoshi Imaizumi, Ryoko Nishii, Kenichi Ueno, and Kousei Kurobe
Hydrol. Earth Syst. Sci., 23, 155–170, https://doi.org/10.5194/hess-23-155-2019, https://doi.org/10.5194/hess-23-155-2019, 2019
Short summary
Short summary
We investigated seasonal changes in sediment transport activities following forest harvesting in a humid periglacial area. Removal of the forest canopy by forest harvesting alters the type of winter soil creep. Winter creep velocity of the ground surface sediment in the harvested site was significantly higher than that in the non-harvested site. Meanwhile, sediment flux on the hillslopes decreased in the harvested site because of capture of sediment by branches of harvested trees.
Martin A. Briggs, Judson W. Harvey, Stephen T. Hurley, Donald O. Rosenberry, Timothy McCobb, Dale Werkema, and John W. Lane Jr.
Hydrol. Earth Syst. Sci., 22, 6383–6398, https://doi.org/10.5194/hess-22-6383-2018, https://doi.org/10.5194/hess-22-6383-2018, 2018
Short summary
Short summary
Brook trout are known to seek out groundwater-discharge zones for spawning. However, in a groundwater-dominated system, we observed trout using a few locations for repeatedly laying eggs. To improve the management of this cold-water species, we wanted to know why these specific groundwater-discharge zones were desirable. Through a combination of geophysical and chemical measurements, we found that locations where the stream intersects the sandy valley wall create oxygen-rich seepage zones.
Rizwana Rumman, James Cleverly, Rachael H. Nolan, Tonantzin Tarin, and Derek Eamus
Hydrol. Earth Syst. Sci., 22, 4875–4889, https://doi.org/10.5194/hess-22-4875-2018, https://doi.org/10.5194/hess-22-4875-2018, 2018
Short summary
Short summary
Groundwater is a significant water resource for humans and for groundwater-dependent vegetation. Several challenges to managing both groundwater resources and dependent vegetation include defining the location of dependent vegetation, the rate of groundwater use, and the depth of roots accessing groundwater. In this study we demonstrate a novel application of measurements of stable isotopes of carbon that can be used to identify the location, the rooting depth, and the rate of groundwater use.
Natalie C. Ceperley, Theophile Mande, Nick van de Giesen, Scott Tyler, Hamma Yacouba, and Marc B. Parlange
Hydrol. Earth Syst. Sci., 21, 4149–4167, https://doi.org/10.5194/hess-21-4149-2017, https://doi.org/10.5194/hess-21-4149-2017, 2017
Short summary
Short summary
We relate land cover (savanna forest and agriculture) to evaporation in Burkina Faso, west Africa. We observe more evaporation and temperature movement over the savanna forest in the headwater area relative to the agricultural section of the watershed. We find that the fraction of available energy converted to evaporation relates to vegetation cover and soil moisture. From the results, evaporation can be calculated where ground-based measurements are lacking, frequently the case across Africa.
Cited articles
Agee, E., He, L., Bisht, G., Couvreur, V., Shahbaz, P., Meunier, F., Gough, C. M., Matheny, A. M., Bohrer, G., and Ivanov, V.: Root lateral interactions drive water uptake patterns under water limitation, Adv. Water Resour., 151, 103896, https://doi.org/10.1016/j.advwatres.2021.103896, 2021.
Bachmair, S., Weiler, M., and Troch, P. A.: Intercomparing hillslope hydrological dynamics: Spatio-temporal variability and vegetation cover effects, Water Resour. Res., 48, W05537, https://doi.org/10.1029/2011WR011196, 2012.
Baroni, G., Ortuani, B., Facchi, A., and Gandolfi, C.: The role of vegetation and soil properties on the spatio-temporal variability of the surface soil moisture in a maize-cropped field, J. Hydrol., 489, 148–159, https://doi.org/10.1016/j.jhydrol.2013.03.007, 2013.
Bartoń, K.: MuMIn: Multi-Model Inference, https://CRAN.Rproject.org/package=MuMIn (last access: 5 July 2021), 2020.
Bates, D., Mächler, M., Bolker, B., and Walker, S.: Fitting Linear Mixed-Effects Models Using lme4, J. Stat. Softw., 67, 1–48, https://doi.org/10.18637/jss.v067.i01, 2015.
Blume, T., Zehe, E., and Bronstert, A.: Use of soil moisture dynamics and patterns at different spatio-temporal scales for the investigation of subsurface flow processes, Hydrol. Earth Syst. Sci., 13, 1215–1233, https://doi.org/10.5194/hess-13-1215-2009, 2009.
Boergens, E., Güntner, A., Dobslaw, H., and Dahle, C.: Quantifying the Central European Droughts in 2018 and 2019 With GRACE Follow-On, Geophys. Res. Lett., 47, e2020GL087285, https://doi.org/10.1029/2020GL087285, 2020.
Bogena, H. R., Herbst, M., Huisman, J. A., Rosenbaum, U., Weuthen, A., and Vereecken, H.: Potential of Wireless Sensor Networks for Measuring Soil Water Content Variability, Vadose Zone J., 9, 1002–1013, https://doi.org/10.2136/vzj2009.0173, 2010.
Borchers, H. W.: pracma: Practical Numerical Math Functions, R package version 2.4.2, https://CRAN.R-project.org/package=pracma (last access: 11 May 2022), 2021.
Bouten, W., Heimovaara, T. J., and Tiktak, A.: Spatial patterns of throughfall and soil water dynamics in a Douglas fir stand, Water Resour. Res., 28, 3227–3233, https://doi.org/10.1029/92WR01764, 1992.
Brinkmann, N., Eugster, W., Buchmann, N., and Kahmen, A.: Species-specific differences in water uptake depth of mature temperate trees vary with water availability in the soil, Plant Biol., 21, 71–81, https://doi.org/10.1111/plb.12907, 2019.
Brum, M., Vadeboncoeur, M. A., Ivanov, V., Asbjornsen, H., Saleska, S., Alves, L. F., Penha, D., Dias, J. D., Aragão, L. E. O. C., Barros, F., Bittencourt, P., Pereira, L., and Oliveira, R. S.: Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest, J. Ecol., 107, 318–333, https://doi.org/10.1111/1365-2745.13022, 2019.
Burgess, S. S. O., Adams, M. A., Turner, N. C., and Ong, C. K.: The redistribution of soil water by tree root systems, Oecologia, 115, 306–311, https://doi.org/10.1007/s004420050521, 1998.
Cai, G., Vanderborght, J., Langensiepen, M., Schnepf, A., Hüging, H., and Vereecken, H.: Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions, Hydrol. Earth Syst. Sci., 22, 2449–2470, https://doi.org/10.5194/hess-22-2449-2018, 2018.
Cardon, G. E. and Letey, J.: Plant Water Uptake Terms Evaluated for Soil Water and Solute Movement Models, Soil Sci. Soc. Am. J., 56, 1876–1880, https://doi.org/10.2136/sssaj1992.03615995005600060038x, 1992.
Carlyle-Moses, D. E., Lishman, C. E., and McKee, A. J.: A preliminary evaluation of throughfall sampling techniques in a mature coniferous forest, J. Forest. Res., 25, 407–413, https://doi.org/10.1007/s11676-014-0468-8, 2014.
Coenders-Gerrits, A. M. J., Hopp, L., Savenije, H. H. G., and Pfister, L.: The effect of spatial throughfall patterns on soil moisture patterns at the hillslope scale, Hydrol. Earth Syst. Sci., 17, 1749–1763, https://doi.org/10.5194/hess-17-1749-2013, 2013.
Cosh, M. H., Jackson, T. J., Moran, S., and Bindlish, R.: Temporal persistence and stability of surface soil moisture in a semi-arid watershed, Remote Sens. Environ., 112, 304–313, https://doi.org/10.1016/j.rse.2007.07.001, 2008.
Couvreur, V., Vanderborght, J., Beff, L., and Javaux, M.: Horizontal soil water potential heterogeneity: simplifying approaches for crop water dynamics models, Hydrol. Earth Syst. Sci., 18, 1723–1743, https://doi.org/10.5194/hess-18-1723-2014, 2014.
Crockford, R. H. and Richardson, D. P.: Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate, Hydrol. Process., 14, 2903–2920, 2000.
Dawson, T. E.: Determining water use by trees and forests from isotopic, energy balance and transpiration analyses: the roles of tree size and hydraulic lift, Tree Physiol., 16, 263–272, https://doi.org/10.1093/treephys/16.1-2.263, 1996.
del Río, M., Schütze, G., and Pretzsch, H.: Temporal variation of competition and facilitation in mixed species forests in Central Europe, Plant Biol., 16, 166–176, https://doi.org/10.1111/plb.12029, 2014.
Demand, D., Blume, T., and Weiler, M.: Spatio-temporal relevance and controls of preferential flow at the landscape scale, Hydrol. Earth Syst. Sci., 23, 4869–4889, https://doi.org/10.5194/hess-23-4869-2019, 2019.
Demir, G. and Hildebrandt, A.: Root water uptake, May–July 2019, Hainich, Germany, project AquaDiva, Zenodo [data set], https://doi.org/10.5281/zenodo.10564735, 2024.
Demir, G., Michalzik, B., Filipzik, J., Metzger, J., and Hildebrandt, A.: Spatial variation of grassland canopy affects soil wetting patterns and preferential flow, AUTHOREA, https://doi.org/10.22541/au.164970545.54927607/v1, 2022.
Demir, G., Hildebrandt, A., and Filipzik, J.: Weekly cumulated throughfall and rain data, April–August 2019, Hainich, Germany, project AquaDiva, Zenodo [data set], https://doi.org/10.5281/zenodo.10563567, 2024a.
Demir, G., Metzger, J. C., and Hildebrandt, A.: High-resolution throughfall measurement design since 2019, Hainich, Germany, project AquaDiva, Zenodo [data set], https://doi.org/10.5281/zenodo.10563472, 2024b.
Demir, G., Hildebrandt, A., and Filipzik, J.: High-resolution soil water content, March–August 2019, Hainich, Germany, project AquaDiva, Zenodo [data set], https://doi.org/10.5281/zenodo.10563871, 2024c.
Dunkerley, D.: Stemflow on the woody parts of plants: dependence on rainfall intensity and event profile from laboratory simulations, Hydrol. Process., 28, 5469–5482, https://doi.org/10.1002/hyp.10050, 2014.
Emerman, S. H. and Dawson, T. E.: Hydraulic Lift and Its Influence on the Water Content of the Rhizosphere: An Example from Sugar Maple, Acer saccharum, Oecologia, 108, 273–278, 1996.
Evaristo, J., Kim, M., van Haren, J., Pangle, L. A., Harman, C. J., Troch, P. A., and McDonnell, J. J.: Characterizing the Fluxes and Age Distribution of Soil Water, Plant Water, and Deep Percolation in a Model Tropical Ecosystem, Water Resour. Res., 55, 3307–3327, https://doi.org/10.1029/2018WR023265, 2019.
Fan, J., Oestergaard, K. T., Guyot, A., Jensen, D. G., and Lockington, D. A.: Spatial variability of throughfall and stemflow in an exotic pine plantation of subtropical coastal Australia, Hydrol. Process., 29, 793–804, https://doi.org/10.1002/hyp.10193, 2015.
Fischer-Bedtke, C., Metzger, J. C., Demir, G., Wutzler, T., and Hildebrandt, A.: Throughfall spatial patterns translate into spatial patterns of soil moisture dynamics – empirical evidence, Hydrol. Earth Syst. Sci., 27, 2899–2918, https://doi.org/10.5194/hess-27-2899-2023, 2023.
Forrester, D. I.: The spatial and temporal dynamics of species interactions in mixed-species forests: From pattern to process, Forest Ecol. Manage., 312, 282–292, https://doi.org/10.1016/j.foreco.2013.10.003, 2014.
Forrester, D. I. and Bauhus, J.: A Review of Processes Behind Diversity – Productivity Relationships in Forests, Curr. Forest. Rep., 2, 45–61, https://doi.org/10.1007/s40725-016-0031-2, 2016.
Forrester, D. I., Theiveyanathan, S., Collopy, J. J., and Marcar, N. E.: Enhanced water use efficiency in a mixed Eucalyptus globulus and Acacia mearnsii plantation, Forest Ecol. Manage., 259, 1761–1770, https://doi.org/10.1016/j.foreco.2009.07.036, 2010.
Gaines, K. P., Stanley, J. W., Meinzer, F. C., McCulloh, K. A., Woodruff, D. R., Chen, W., Adams, T. S., Lin, H., and Eissenstat, D. M.: Reliance on shallow soil water in a mixed-hardwood forest in central Pennsylvania, Tree Physiol., 36, 444–458, https://doi.org/10.1093/treephys/tpv113, 2016.
Gebauer, T., Horna, V., and Leuschner, C.: Canopy transpiration of pure and mixed forest stands with variable abundance of European beech, J. Hydrol., 442–443, 2–14, https://doi.org/10.1016/j.jhydrol.2012.03.009, 2012.
Gerrits, A. M. J., Pfister, L., and Savenije, H. H. G.: Spatial and temporal variability of canopy and forest floor interception in a beech forest, Hydrol. Process., 24, 3011–3025, https://doi.org/10.1002/hyp.7712, 2010.
González de Andrés, E., Camarero, J. J., Blanco, J. A., Imbert, J. B., Lo, Y.-H., Sangüesa-Barreda, G., and Castillo, F. J.: Tree-to-tree competition in mixed European beech–Scots pine forests has different impacts on growth and water-use efficiency depending on site conditions, J. Ecol., 106, 59–75, https://doi.org/10.1111/1365-2745.12813, 2018.
Grayson, R. B., Western, A. W., Chiew, F. H. S., and Blöschl, G.: Preferred states in spatial soil moisture patterns: Local and nonlocal controls, Water Resour. Res., 33, 2897–2908, https://doi.org/10.1029/97WR02174, 1997.
Guderle, M. and Hildebrandt, A.: Using measured soil water contents to estimate evapotranspiration and root water uptake profiles – a comparative study, Hydrol. Earth Syst. Sci., 19, 409–425, https://doi.org/10.5194/hess-19-409-2015, 2015.
Guderle, M., Bachmann, D., Milcu, A., Gockele, A., Bechmann, M., Fischer, C., Roscher, C., Landais, D., Ravel, O., Devidal, S., Roy, J., Gessler, A., Buchmann, N., Weigelt, A., and Hildebrandt, A.: Dynamic niche partitioning in root water uptake facilitates efficient water use in more diverse grassland plant communities, Funct. Ecol., 32, 214–227, https://doi.org/10.1111/1365-2435.12948, 2018.
Guo, J. S., Hungate, B. A., Kolb, T. E., and Koch, G. W.: Water source niche overlap increases with site moisture availability in woody perennials, Plant Ecol., 219, 719–735, https://doi.org/10.1007/s11258-018-0829-z, 2018.
Guswa, A. J.: Canopy vs. Roots: Production and Destruction of Variability in Soil Moisture and Hydrologic Fluxes, Vadose Zone J., 11, vzj2011.0159, https://doi.org/10.2136/vzj2011.0159, 2012.
Guswa, A. J. and Spence, C. M.: Effect of throughfall variability on recharge: application to hemlock and deciduous forests in western Massachusetts, Ecohydrology, 5, 563–574, https://doi.org/10.1002/eco.28, 2012.
Hafner, B. D., Tomasella, M., Häberle, K.-H., Goebel, M., Matyssek, R., and Grams, T. E. E.: Hydraulic redistribution under moderate drought among English oak, European beech and Norway spruce determined by deuterium isotope labeling in a split-root experiment, Tree Physiol., 37, 950–960, https://doi.org/10.1093/treephys/tpx050, 2017.
Hafner, B. D., Hesse, B. D., and Grams, T. E. E.: Friendly neighbours: Hydraulic redistribution accounts for one quarter of water used by neighbouring drought stressed tree saplings, Plant Cell Environ., 44, 1243–1256, https://doi.org/10.1111/pce.13852, 2021.
Hildebrandt, A.: Root-Water Relations and Interactions in Mixed Forest Settings, in: Forest-Water Interactions, edited by: Levia, D. F., Carlyle-Moses, D. E., Iida, S., Michalzik, B., Nanko, K., and Tischer, A., Springer International Publishing, Cham, 319–348, https://doi.org/10.1007/978-3-030-26086-6_14, 2020.
Hildebrandt, A., Kleidon, A., and Bechmann, M.: A thermodynamic formulation of root water uptake, Hydrol. Earth Syst. Sci., 20, 3441–3454, https://doi.org/10.5194/hess-20-3441-2016, 2016.
Hopmans, J. W. and Bristow, K. L.: Current Capabilities and Future Needs of Root Water and Nutrient Uptake Modeling, Adv. Agron., 77, 103–183, https://doi.org/10.1016/S0065-2113(02)77014-4, 2002.
Hupet, F. and Vanclooster, M.: Micro-variability of hydrological processes at the maize row scale: implications for soil water content measurements and evapotranspiration estimates, J. Hydrol., 303, 247–270, https://doi.org/10.1016/j.jhydrol.2004.07.017, 2005.
Hupet, F., Lambot, S., Javaux, M., and Vanclooster, M.: On the identification of macroscopic root water uptake parameters from soil water content observations, Water Resour. Res., 38, 36-1–36-14, https://doi.org/10.1029/2002WR001556, 2002.
IUSS Working Group: World reference base for soil resources 2006, A framework for international classification, correlation and communication, World Soil Resources Reports, 103 pp., 2006.
Ivanov, V. Y., Fatichi, S., Jenerette, G. D., Espeleta, J. F., Troch, P. A., and Huxman, T. E.: Hysteresis of soil moisture spatial heterogeneity and the “homogenizing” effect of vegetation, Water Resour. Res., 46, W09521, https://doi.org/10.1029/2009WR008611, 2010.
Jackisch, C., Knoblauch, S., Blume, T., Zehe, E., and Hassler, S. K.: Estimates of tree root water uptake from soil moisture profile dynamics, Biogeosciences, 17, 5787–5808, https://doi.org/10.5194/bg-17-5787-2020, 2020.
Jarecke, K. M., Bladon, K. D., and Wondzell, S. M.: The Influence of Local and Nonlocal Factors on Soil Water Content in a Steep Forested Catchment, Water Resour. Res., 57, e2020WR028343, https://doi.org/10.1029/2020WR028343, 2021.
Jonard, F., André, F., Ponette, Q., Vincke, C., and Jonard, M.: Sap flux density and stomatal conductance of European beech and common oak trees in pure and mixed stands during the summer drought of 2003, J. Hydrol., 409, 371–381, https://doi.org/10.1016/j.jhydrol.2011.08.032, 2011.
Jost, G., Schume, H., and Hager, H.: Factors controlling soil water-recharge in a mixed European beech (Fagus sylvatica L.) – Norway spruce [Picea abies (L.) Karst.] stand, Eur. J. Forest Res., 123, 93–104, https://doi.org/10.1007/s10342-004-0033-7, 2004.
Katul, G. G. and Siqueira, M. B.: Biotic and abiotic factors act in coordination to amplify hydraulic redistribution and lift, New Phytol., 187, 3–6, 2010.
Keim, R. F., Skaugset, A. E., and Weiler, M.: Temporal persistence of spatial patterns in throughfall, J. Hydrol., 314, 263–274, https://doi.org/10.1016/j.jhydrol.2005.03.021, 2005.
Keim, R. F., Skaugset, A. E., and Weiler, M.: Storage of water on vegetation under simulated rainfall of varying intensity, Adv. Water Resour., 29, 974–986, https://doi.org/10.1016/j.advwatres.2005.07.017, 2006.
Kirchen, G., Calvaruso, C., Granier, A., Redon, P.-O., Van der Heijden, G., Bréda, N., and Turpault, M.-P.: Local soil type variability controls the water budget and stand productivity in a beech forest, Forest Ecol. Manage., 390, 89–103, https://doi.org/10.1016/j.foreco.2016.12.024, 2017.
Kleidon, A. and Renner, M.: Thermodynamic limits of hydrologic cycling within the Earth system: concepts, estimates and implications, Hydrol. Earth Syst. Sci., 17, 2873–2892, https://doi.org/10.5194/hess-17-2873-2013, 2013.
Kleidon, A., Renner, M., and Porada, P.: Estimates of the climatological land surface energy and water balance derived from maximum convective power, Hydrol. Earth Syst. Sci., 18, 2201–2218, https://doi.org/10.5194/hess-18-2201-2014, 2014.
Klein, T., Rotenberg, E., Cohen-Hilaleh, E., Raz-Yaseef, N., Tatarinov, F., Preisler, Y., Ogée, J., Cohen, S., and Yakir, D.: Quantifying transpirable soil water and its relations to tree water use dynamics in a water-limited pine forest, Ecohydrology, 7, 409–419, https://doi.org/10.1002/eco.1360, 2014.
Knighton, J., Singh, K., and Evaristo, J.: Understanding Catchment-Scale Forest Root Water Uptake Strategies Across the Continental United States Through Inverse Ecohydrological Modeling, Geophys. Res. Lett., 47, e2019GL085937, https://doi.org/10.1029/2019GL085937, 2019.
Kohlhepp, B., Lehmann, R., Seeber, P., Küsel, K., Trumbore, S. E., and Totsche, K. U.: Aquifer configuration and geostructural links control the groundwater quality in thin-bedded carbonate–siliciclastic alternations of the Hainich CZE, central Germany, Hydrol. Earth Syst. Sci., 21, 6091–6116, https://doi.org/10.5194/hess-21-6091-2017, 2017.
Kostner, B., Falge, E., and Tenhunen, J. D.: Age-related effects on leaf area/sapwood area relationships, canopy transpiration and carbon gain of Norway spruce stands (Picea abies) in the Fichtelgebirge, Germany, Tree Physiol., 22, 567–574, https://doi.org/10.1093/treephys/22.8.567, 2002.
Krämer, I. and Hölscher, D.: Soil water dynamics along a tree diversity gradient in a deciduous forest in Central Germany, Ecohydrology, 3, 262–271, https://doi.org/10.1002/eco.103, 2010.
Kreuzwieser, J. and Gessler, A.: Global climate change and tree nutrition: influence of water availability, Tree Physiol., 30, 1221–1234, https://doi.org/10.1093/treephys/tpq055, 2010.
Kühnhammer, K., Kübert, A., Brüggemann, N., Deseano Diaz, P., van Dusschoten, D., Javaux, M., Merz, S., Vereecken, H., Dubbert, M., and Rothfuss, Y.: Investigating the root plasticity response of Centaurea jacea to soil water availability changes from isotopic analysis, New Phytol., 226, 98–110, https://doi.org/10.1111/nph.16352, 2020.
Kunert, N., Schwendenmann, L., Potvin, C., and Hölscher, D.: Tree diversity enhances tree transpiration in a Panamanian forest plantation, J. Appl. Ecol., 49, 135–144, https://doi.org/10.1111/j.1365-2664.2011.02065.x, 2012.
Küsel, K., Totsche, K. U., Trumbore, S. E., Lehmann, R., Steinhäuser, C., and Herrmann, M.: How Deep Can Surface Signals Be Traced in the Critical Zone? Merging Biodiversity with Biogeochemistry Research in a Central German Muschelkalk Landscape, Front. Earth Sci., 4, 32, https://doi.org/10.3389/feart.2016.00032, 2016.
Lee, E., Kumar, P., Barron-Gafford, G. A., Hendryx, S. M., Sanchez-Cañete, E. P., Minor, R. L., Colella, T., and Scott, R. L.: Impact of Hydraulic Redistribution on Multispecies Vegetation Water Use in a Semiarid Savanna Ecosystem: An Experimental and Modeling Synthesis, Water Resour. Res., 54, 4009–4027, https://doi.org/10.1029/2017WR021006, 2018.
Le Goff, N. and Ottorini, J.-M.: Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North-East France, Ann. Forest Sci., 58, 1–13, https://doi.org/10.1051/forest:2001104, 2001.
Leuschner, C.: Drought response of European beech (Fagus sylvatica L.) – A review, Perspect. Plant Ecol. Evol. Syst., 47, 125576, https://doi.org/10.1016/j.ppees.2020.125576, 2020.
Levia, D. F. and Frost, E. E.: A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems, J. Hydrol., 274, 1–29, https://doi.org/10.1016/S0022-1694(02)00399-2, 2003.
Levia, D. F. and Frost, E. E.: Variability of throughfall volume and solute inputs in wooded ecosystems, Prog. Phys. Geogr., 30, 605–632, https://doi.org/10.1177/0309133306071145, 2006.
Levia, D. F., Keim, R. F., Carlyle-Moses, D. E., and Frost, E. E.: Throughfall and Stemflow in Wooded Ecosystems, in: Forest Hydrology and Biogeochemistry: Synthesis of Past Research and Future Directions, edited by: Levia, D. F., Carlyle-Moses, D., and Tanaka, T., Springer Netherlands, Dordrecht, 425–443, https://doi.org/10.1007/978-94-007-1363-5_21, 2011.
Levia, D. F., Hudson, S. A., Llorens, P., and Nanko, K.: Throughfall drop size distributions: a review and prospectus for future research: Throughfall drop size distributions, WIREs Water, 4, e1225, https://doi.org/10.1002/wat2.1225, 2017.
Lhomme, J.-P.: Formulation of root water uptake in a multi-layer soil-plant model: does van den Honert's equation hold?, Hydrol. Earth Syst. Sci., 2, 31–39, https://doi.org/10.5194/hess-2-31-1998, 1998.
Looy, K. V., Bouma, J., Herbst, M., Koestel, J., Minasny, B., Mishra, U., Montzka, C., Nemes, A., Pachepsky, Y. A., Padarian, J., Schaap, M. G., Tóth, B., Verhoef, A., Vanderborght, J., van der Ploeg, M. J., Weihermüller, L., Zacharias, S., Zhang, Y., and Vereecken, H.: Pedotransfer Functions in Earth System Science: Challenges and Perspectives, Rev. Geophys., 55, 1199–1256, https://doi.org/10.1002/2017RG000581, 2017.
Lübbe, T., Schuldt, B., Coners, H., and Leuschner, C.: Species diversity and identity effects on the water consumption of tree sapling assemblages under ample and limited water supply, Oikos, 125, 86–97, https://doi.org/10.1111/oik.02367, 2016.
Lüdecke, D., Ben-Shachar, M., Patil, I., Waggoner, P., and Makowski, D.: performance: An R Package for Assessment, Comparison and Testing of Statistical Models, J. Open Sour. Softw., 6, 3139, https://doi.org/10.21105/joss.03139, 2021.
Magh, R.-K., Eiferle, C., Burzlaff, T., Dannenmann, M., Rennenberg, H., and Dubbert, M.: Competition for water rather than facilitation in mixed beech-fir forests after drying-wetting cycle, J. Hydrol., 587, 124944, https://doi.org/10.1016/j.jhydrol.2020.124944, 2020.
Magliano, P. N., Whitworth-Hulse, J. I., Florio, E. L., Aguirre, E. C., and Blanco, L. J.: Interception loss, throughfall and stemflow by Larrea divaricata: The role of rainfall characteristics and plant morphological attributes, Ecol. Res., 34, 753–764, https://doi.org/10.1111/1440-1703.12036, 2019.
Martínez García, G., Pachepsky, Y. A., and Vereecken, H.: Effect of soil hydraulic properties on the relationship between the spatial mean and variability of soil moisture, J. Hydrol., 516, 154–160, https://doi.org/10.1016/j.jhydrol.2014.01.069, 2014.
Meinen, C., Leuschner, C., Ryan, N. T., and Hertel, D.: No evidence of spatial root system segregation and elevated fine root biomass in multi-species temperate broad-leaved forests, Trees, 23, 941–950, https://doi.org/10.1007/s00468-009-0336-x, 2009.
Meißner, M., Köhler, M., Schwendenmann, L., and Hölscher, D.: Partitioning of soil water among canopy trees during a soil desiccation period in a temperate mixed forest, Biogeosciences, 9, 3465–3474, https://doi.org/10.5194/bg-9-3465-2012, 2012.
Metzger, J. C., Wutzler, T., Valle, N. D., Filipzik, J., Grauer, C., Lehmann, R., Roggenbuck, M., Schelhorn, D., Weckmüller, J., Küsel, K., Totsche, K. U., Trumbore, S., and Hildebrandt, A.: Vegetation impacts soil water content patterns by shaping canopy water fluxes and soil properties, Hydrol. Process., 31, 3783–3795, https://doi.org/10.1002/hyp.11274, 2017.
Metzger, J. C., Filipzik, J., Michalzik, B., and Hildebrandt, A.: Stemflow Infiltration Hotspots Create Soil Microsites Near Tree Stems in an Unmanaged Mixed Beech Forest, Front. Forest. Glob. Change, 4, 701293, https://doi.org/10.3389/ffgc.2021.701293, 2021.
Metzger, J. C., Hildebrandt, A., and Filipzik, J.: Soil moisture sensor network, design, location attributes and soil properties, Hainich, Germany, project AquaDiva, Zenodo [data set], https://doi.org/10.5281/zenodo.8065170, 2023.
Molina, A. J., Llorens, P., Garcia-Estringana, P., Moreno de las Heras, M., Cayuela, C., Gallart, F., and Latron, J.: Contributions of throughfall, forest and soil characteristics to near-surface soil water-content variability at the plot scale in a mountainous Mediterranean area, Sci. Total Environ., 647, 1421–1432, https://doi.org/10.1016/j.scitotenv.2018.08.020, 2019.
Nadezhdina, N., Cermak, J., Meiresonne, L., and Ceulemans, R.: Transpiration of Scots pine in Flanders growing on soil with irregular substratum, Forest Ecol. Manage., 9, 1–9, https://doi.org/10.1016/j.foreco.2007.01.089, 2007.
Neumann, R. B. and Cardon, Z. G.: The magnitude of hydraulic redistribution by plant roots: a review and synthesis of empirical and modeling studies, New Phytol., 194, 337–352, https://doi.org/10.1111/j.1469-8137.2012.04088.x, 2012.
Nie, C., Huang, Y., Zhang, S., Yang, Y., Zhou, S., Lin, C., and Wang, G.: Effects of soil water content on forest ecosystem water use efficiency through changes in transpiration/evapotranspiration ratio, Agr. Forest Meteorol., 308–309, 108605, https://doi.org/10.1016/j.agrformet.2021.108605, 2021.
Obladen, N., Dechering, P., Skiadaresis, G., Tegel, W., Keßler, J., Höllerl, S., Kaps, S., Hertel, M., Dulamsuren, C., Seifert, T., Hirsch, M., and Seim, A.: Tree mortality of European beech and Norway spruce induced by 2018–2019 hot droughts in central Germany, Agr. Forest Meteorol., 307, 108482, https://doi.org/10.1016/j.agrformet.2021.108482, 2021.
Otto, J., Berveiller, D., Bréon, F.-M., Delpierre, N., Geppert, G., Granier, A., Jans, W., Knohl, A., Kuusk, A., Longdoz, B., Moors, E., Mund, M., Pinty, B., Schelhaas, M.-J., and Luyssaert, S.: Forest summer albedo is sensitive to species and thinning: how should we account for this in Earth system models?, Biogeosciences, 11, 2411–2427, https://doi.org/10.5194/bg-11-2411-2014, 2014.
Pearson, R. K.: Data cleaning for dynamic modeling and control, in: 1999 European Control Conference (ECC), 31 August–3 September 1999, Karlsruhe, Germany, 2584–2589, ISBN 978-3-9524173-5-5, https://doi.org/10.23919/ECC.1999.7099714, 1999.
Pretzsch, H., Schütze, G., and Uhl, E.: Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation, Plant Biol., 15, 483–495, https://doi.org/10.1111/j.1438-8677.2012.00670.x, 2013.
Priyadarshini, K. V. R., Prins, H. H. T., de Bie, S., Heitkönig, I. M. A., Woodborne, S., Gort, G., Kirkman, K., Ludwig, F., Dawson, T. E., and de Kroon, H.: Seasonality of hydraulic redistribution by trees to grasses and changes in their water-source use that change tree-grass interactions: Hydraulic Redistribution By Trees To Grasses And Changes In Their Water Sources, Ecohydrology, 9, 218–228, https://doi.org/10.1002/eco.1624, 2016.
Pypker, T. G., Levia, D. F., Staelens, J., and Van Stan, J. T.: Canopy Structure in Relation to Hydrological and Biogeochemical Fluxes, in: Forest Hydrology and Biogeochemistry: Synthesis of Past Research and Future Directions, edited by: Levia, D. F., Carlyle-Moses, D., and Tanaka, T., Springer Netherlands, Dordrecht, 371–388, https://doi.org/10.1007/978-94-007-1363-5_18, 2011.
Raat, K. J., Draaijers, G. P. J., Schaap, M. G., Tietema, A., and Verstraten, J. M.: Spatial variability of throughfall water and chemistry and forest floor water content in a Douglas fir forest stand, Hydrol. Earth Syst. Sci., 6, 363–374, https://doi.org/10.5194/hess-6-363-2002, 2002.
R Core Team: R: The R Project for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 8 March 2024), 2021.
Rodrigues, A. F., Terra, M. C. N. S., Mantovani, V. A., Cordeiro, N. G., Ribeiro, J. P. C., Guo, L., Nehren, U., Mello, J. M., and Mello, C. R.: Throughfall spatial variability in a neotropical forest: Have we correctly accounted for time stability?, J. Hydrol., 608, 127632, https://doi.org/10.1016/j.jhydrol.2022.127632, 2022.
Rodríguez-Robles, U., Arredondo, J. T., Huber-Sannwald, E., Yépez, E. A., and Ramos-Leal, J. A.: Coupled plant traits adapted to wetting/drying cycles of substrates co-define niche multidimensionality, Plant Cell Environ., 43, 2394–2408, https://doi.org/10.1111/pce.13837, 2020.
Rosenbaum, U., Bogena, H. R., Herbst, M., Huisman, J. A., Peterson, T. J., Weuthen, A., Western, A. W., and Vereecken, H.: Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale: Dynamics Of Catchment-Scale Soil Moisture Patterns, Water Resour. Res., 48, W10544, https://doi.org/10.1029/2011WR011518, 2012.
Rothfuss, Y. and Javaux, M.: Reviews and syntheses: Isotopic approaches to quantify root water uptake: a review and comparison of methods, Biogeosciences, 14, 2199–2224, https://doi.org/10.5194/bg-14-2199-2017, 2017.
Sadeghi, S. M. M., Gordon, D. A., and Van Stan II, J. T.: A Global Synthesis of Throughfall and Stemflow Hydrometeorology, in: Precipitation Partitioning by Vegetation: A Global Synthesis, edited by: Van Stan, I., John, T., Gutmann, E., and Friesen, J., Springer International Publishing, Cham, 49–70, https://doi.org/10.1007/978-3-030-29702-2_4, 2020.
Schume, H., Jost, G., and Hager, H.: Soil water depletion and recharge patterns in mixed and pure forest stands of European beech and Norway spruce, J. Hydrol., 289, 258–274, https://doi.org/10.1016/j.jhydrol.2003.11.036, 2004.
Schwärzel, K., Menzer, A., Clausnitzer, F., Spank, U., Häntzschel, J., Grünwald, T., Köstner, B., Bernhofer, C., and Feger, K.-H.: Soil water content measurements deliver reliable estimates of water fluxes: A comparative study in a beech and a spruce stand in the Tharandt forest (Saxony, Germany), Agr. Forest Meteorol., 149, 1994–2006, https://doi.org/10.1016/j.agrformet.2009.07.006, 2009.
Seeger, S. and Weiler, M.: Temporal dynamics of tree xylem water isotopes: in situ monitoring and modeling, Biogeosciences, 18, 4603–4627, https://doi.org/10.5194/bg-18-4603-2021, 2021.
Shachnovich, Y., Berliner, P. R., and Bar, P.: Rainfall interception and spatial distribution of throughfall in a pine forest planted in an arid zone, J. Hydrol., 349, 168–177, https://doi.org/10.1016/j.jhydrol.2007.10.051, 2008.
Shani, U. and Dudley, L. M.: Modeling water uptake by roots under waterand salt stress: Soil-based and crop response root sink terms, in: PlantRoots: The Hidden Half, 2nd Edn., edited by: Waisel, Y., Eshel, A., and Kafkafi, U., Marcel Dekker, New York, 635–641, ISBN 0-8247-9685-3, 1996.
Silvertown, J., Araya, Y., and Gowing, D.: Hydrological niches in terrestrial plant communities: a review, J. Ecol., 103, 93–108, https://doi.org/10.1111/1365-2745.12332, 2015.
Spanner, G. C., Gimenez, B. O., Wright, C. L., Menezes, V. S., Newman, B. D., Collins, A. D., Jardine, K. J., Negrón-Juárez, R. I., Lima, A. J. N., Rodrigues, J. R., Chambers, J. Q., Higuchi, N., and Warren, J. M.: Dry Season Transpiration and Soil Water Dynamics in the Central Amazon, Front. Plant Sci., 13, 825097, https://doi.org/10.3389/fpls.2022.825097, 2022.
Sprenger, M., Llorens, P., Cayuela, C., Gallart, F., and Latron, J.: Mechanisms of consistently disjunct soil water pools over (pore) space and time, Hydrol. Earth Syst. Sci., 23, 2751–2762, https://doi.org/10.5194/hess-23-2751-2019, 2019.
Staelens, J., De Schrijver, A., Verheyen, K., and Verhoest, N. E. C.: Spatial variability and temporal stability of throughfall water under a dominant beech (Fagus sylvatica L.) tree in relationship to canopy cover, J. Hydrol., 330, 651–662, https://doi.org/10.1016/j.jhydrol.2006.04.032, 2006.
Staelens, J., De Schrijver, A., Verheyen, K., and Verhoest, N. E. C.: Rainfall partitioning into throughfall, stemflow, and interception within a single beech (Fagus sylvatica L.) canopy: influence of foliation, rain event characteristics, and meteorology, Hydrol. Process., 22, 33–45, https://doi.org/10.1002/hyp.6610, 2008.
Teuling, A. J. and Troch, P. A.: Improved understanding of soil moisture variability dynamics, Geophys. Res. Lett., 32, L05404, https://doi.org/10.1029/2004GL021935, 2005.
Thieurmel, B. and Elmarhraoui, A.: suncalc: Compute Sun Position, Sunlight Phases, Moon Position and Lunar Phase, R package version 0.5.1, https://CRAN.R-project.org/package=suncalc (last access: 8 March 2024), 2022.
Tromp-van Meerveld, H. J. and McDonnell, J. J.: On the interrelations between topography, soil depth, soil moisture, transpiration rates and species distribution at the hillslope scale, Adv. Water Resour., 29, 293–310, https://doi.org/10.1016/j.advwatres.2005.02.016, 2006.
Tsuruta, K., Kwon, H., Law, B. E., and Kume, T.: Relationship between stem diameter and whole-tree transpiration across young, mature and old-growth ponderosa pine forests under wet and dry soil conditions, Ecohydrology, 16, e2572, https://doi.org/10.1002/eco.2572, 2023.
Vachaud, G., Passerat De Silans, A., Balabanis, P., and Vauclin, M.: Temporal Stability of Spatially Measured Soil Water Probability Density Function, Soil Sci. Soc. Am. J., 49, 822–828, https://doi.org/10.2136/sssaj1985.03615995004900040006x, 1985.
Van Stan, J. T., Siegert, C. M., Levia, D. F., and Scheick, C. E.: Effects of wind-driven rainfall on stemflow generation between codominant tree species with differing crown characteristics, Agr. Forest Meteorol., 151, 1277–1286, https://doi.org/10.1016/j.agrformet.2011.05.008, 2011.
Van Stan, J. T., Hildebrandt, A., Friesen, J., Metzger, J. C., and Yankine, S. A.: Spatial Variability and Temporal Stability of Local Net Precipitation Patterns, in: Precipitation Partitioning by Vegetation: A Global Synthesis, edited by: Van Stan, I., John, T., Gutmann, E., and Friesen, J., Springer International Publishing, Cham, 89–104, https://doi.org/10.1007/978-3-030-29702-2_6, 2020.
Vereecken, H., Kamai, T., Harter, T., Kasteel, R., Hopmans, J., and Vanderborght, J.: Explaining soil moisture variability as a function of mean soil moisture: A stochastic unsaturated flow perspective, Geophys. Res. Lett., 34, L22402, https://doi.org/10.1029/2007GL031813, 2007.
Vereecken, H., Amelung, W., Bauke, S. L., Bogena, H., Brüggemann, N., Montzka, C., Vanderborght, J., Bechtold, M., Blöschl, G., Carminati, A., Javaux, M., Konings, A. G., Kusche, J., Neuweiler, I., Or, D., Steele-Dunne, S., Verhoef, A., Young, M., and Zhang, Y.: Soil hydrology in the Earth system, Nat. Rev. Earth Environ., 3, 573–587, https://doi.org/10.1038/s43017-022-00324-6, 2022.
Vitali, V., Forrester, D. I., and Bauhus, J.: Know Your Neighbours: Drought Response of Norway Spruce, Silver Fir and Douglas Fir in Mixed Forests Depends on Species Identity and Diversity of Tree Neighbourhoods, Ecosystems, 21, 1215–1229, https://doi.org/10.1007/s10021-017-0214-0, 2018.
Volkmann, T. H. M., Haberer, K., Gessler, A., and Weiler, M.: High-resolution isotope measurements resolve rapid ecohydrological dynamics at the soil–plant interface, New Phytol., 210, 839–849, https://doi.org/10.1111/nph.13868, 2016.
Wambsganss, J., Beyer, F., Freschet, G. T., Scherer-Lorenzen, M., and Bauhus, J.: Tree species mixing reduces biomass but increases length of absorptive fine roots in European forests, J. Ecol., 109, 2678–2691, https://doi.org/10.1111/1365-2745.13675, 2021.
Whelan, M. J. and Anderson, J. M.: Modelling spatial patterns of throughfall and interception loss in a Norway spruce (Picea abies) plantation at the plot scale, J. Hydrol., 186, 335–354, 1996.
Wiekenkamp, I., Huisman, J. A., Bogena, H. R., Lin, H. S., and Vereecken, H.: Spatial and temporal occurrence of preferential flow in a forested headwater catchment, J. Hydrol., 534, 139–149, https://doi.org/10.1016/j.jhydrol.2015.12.050, 2016.
Wullaert, H., Pohlert, T., Boy, J., Valarezo, C., and Wilcke, W.: Spatial throughfall heterogeneity in a montane rain forest in Ecuador: Extent, temporal stability and drivers, J. Hydrol., 377, 71–79, https://doi.org/10.1016/j.jhydrol.2009.08.001, 2009.
Yu, K. and D'Odorico, P.: Hydraulic lift as a determinant of tree–grass coexistence on savannas, New Phytol., 207, 1038–1051, https://doi.org/10.1111/nph.13431, 2015.
Zacharias, S. and Wessolek, G.: Excluding Organic Matter Content from Pedotransfer Predictors of Soil Water Retention, Soil Sci. Soc. Am. J., 71, 43–50, https://doi.org/10.2136/sssaj2006.0098, 2007.
Zarebanadkouki, M., Kim, Y. X., and Carminati, A.: Where do roots take up water? Neutron radiography of water flow into the roots of transpiring plants growing in soil, New Phytol., 199, 1034–1044, https://doi.org/10.1111/nph.12330, 2013.
Zehe, E., Graeff, T., Morgner, M., Bauer, A., and Bronstert, A.: Plot and field scale soil moisture dynamics and subsurface wetness control on runoff generation in a headwater in the Ore Mountains, Hydrol. Earth Syst. Sci., 14, 873–889, https://doi.org/10.5194/hess-14-873-2010, 2010.
Zhang, Y., Wang, X., Hu, R., and Pan, Y.: Throughfall and its spatial variability beneath xerophytic shrub canopies within water-limited arid desert ecosystems, J. Hydrol., 539, 406–416, https://doi.org/10.1016/j.jhydrol.2016.05.051, 2016.
Zhu, X., He, Z., Du, J., Chen, L., Lin, P., and Tian, Q.: Spatial heterogeneity of throughfall and its contributions to the variability in near-surface soil water-content in semiarid mountains of China, Forest Ecol. Manage., 488, 119008, https://doi.org/10.1016/j.foreco.2021.119008, 2021.
Zimmermann, A., Zimmermann, B., and Elsenbeer, H.: Rainfall redistribution in a tropical forest: Spatial and temporal patterns, Water Resour. Res., 45, W11413, https://doi.org/10.1029/2008WR007470, 2009.
Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A., and Smith, G. M.: Mixed effects models and extensions in ecology with R, Springer, New York, NY, https://doi.org/10.1007/978-0-387-87458-6, 2009.
Short summary
Experimental evidence is scarce to understand how the spatial variation in below-canopy precipitation affects root water uptake patterns. Here, we conducted field measurements to investigate drivers of root water uptake patterns while accounting for canopy induced heterogeneity in water input. We found that tree species interactions and soil moisture variability, rather than below-canopy precipitation patterns, control root water uptake patterns in a mixed unmanaged forest.
Experimental evidence is scarce to understand how the spatial variation in below-canopy...