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Abstract. Root water uptake depends on soil moisture which
is primarily fed by throughfall in forests. Several biotic and
abiotic elements shape the spatial distribution of throughfall.
It is well documented that throughfall patterns result in re-
occurring higher and lower water inputs at certain locations.
However, how the spatial distribution of throughfall affects
root water uptake patterns remains unresolved. Therefore,
we investigate root water uptake patterns by considering spa-
tial patterns of throughfall and soil water in addition to soil
and neighboring tree characteristics. In a beech-dominated
mixed deciduous forest in a temperate climate, we conducted
intensive throughfall sampling at locations paired with soil
moisture sensors during the 2019 growing season. We em-
ployed a linear mixed-effects model to understand control-
ling factors in root water uptake patterns. Our results show
that soil water patterns and interactions among neighboring
trees are the most significant factors regulating root water up-
take patterns. Temporally stable throughfall patterns did not
influence root water uptake patterns. Similarly, soil proper-
ties were unimportant for spatial patterns of root water up-
take. We found that wetter locations (rarely associated with
throughfall hotspots) promoted greater root water uptake.
Root water uptake in monitored soil layers also increased
with neighborhood species richness. Ultimately our findings

suggest that complementarity mechanisms within the forest
stand, in addition to soil water variability and availability,
govern root water uptake patterns.

1 Introduction

Root water uptake depends on soil moisture, which is re-
plenished by precipitation. At the same time, the vegetation
canopy intercepts and redirects precipitation into throughfall
and stemflow, collectively referred to as below-canopy pre-
cipitation. Thus, even before soil water can be taken up by
roots, it has already been influenced by the canopy.
Throughfall is typically the largest component of below-
canopy precipitation (Levia and Frost, 2006; Sadeghi et al.,
2020). For instance, in temperate forests, about 70 % of
above-canopy precipitation ends up as throughfall (Levia and
Frost, 2003; Sadeghi et al., 2020). Below-canopy precipita-
tion is modified by several biotic and abiotic factors (Levia
and Frost, 2006; Levia et al., 2011), including vegetation
type, canopy architecture (Crockford and Richardson, 2000;
Pypker et al., 2011; Levia et al., 2017), and forest struc-
ture (Rodrigues et al., 2022), and meteorological elements
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such as wind speed (Staelens et al., 2008; Van Stan et al.,
2011; Fan et al., 2015), precipitation intensity, and event
size (Dunkerley, 2014; Magliano et al., 2019; Zhang et al.,
2016; Staelens et al., 2008). As a result, throughfall inher-
ently varies across space and time. However, previous studies
have shown that the spatial distribution of throughfall persists
over time (Keim et al., 2005; Staelens et al., 2006; Guswa
and Spence, 2012; Carlyle-Moses et al., 2014; Metzger et
al., 2017; Van Stan et al., 2020).

Throughfall patterns have been hypothesized to affect
the spatial variation in water uptake (Bouten et al., 1992;
Coenders-Gerrits et al., 2013) and soil moisture distribution
(Raat et al., 2002; Blume et al., 2009; Zimmermann et al.,
2009; Zehe et al., 2010; Bachmair et al., 2012; Rosenbaum
etal., 2012; Zhang et al., 2016). However, empirical evidence
is scarce. A decade ago, Coenders-Gerrits et al. (2013) pro-
posed that throughfall patterns are translated into soil wetting
dynamics with a model based on combined hillslope topo-
graphic and throughfall data collected in a beech-dominated
catchment. However, in this model, the effect of throughfall
patterns on soil moisture patterns rapidly ceased and became
more similar to the bedrock topography. Regarding the lat-
ter result, the model and reality differ, as the correlation be-
tween the measured bedrock topography and soil moisture
is low (Tromp-van Meerveld and McDonnell, 2006), which
Coenders-Gerrits et al. (2013) attributed to root water up-
take. Metzger et al. (2017) showed through field observations
that, although throughfall spatial variation strongly increases
shortly after rainfall, it drops again quickly in the drained
state, so the impact rapidly disappears. Later, Fischer-Bedtke
et al. (2023) confirmed at the same field site that recurring
throughfall patterns left a notable imprint on the soil mois-
ture response to rainfall, yet the effect on the absolute values
of the soil water content in the drained state was rather weak.
Additionally, Zhu et al. (2021) observed that stable through-
fall patterns were weakly related to the spatial distribution
of soil moisture since this relationship was restricted only to
relatively wet soil locations and throughfall hotspots. They
also showed that throughfall patterns had a weaker influence
on the temporal dynamics of the soil water content compared
to soil bulk density and litter layer properties.

Taken together, several studies have searched for patterns
of throughfall in soil moisture spatial variation. As compara-
tively weak relationships were found, some previous stud-
ies have suggested that root water uptake (Bouten et al.,
1992; Schwirzel et al., 2009) could be the cause. Specifi-
cally, based on a one-dimensional soil-water model, Bouten
et al. (1992) proposed that throughfall patterns alter and lo-
calize root water uptake and promote fast drainage. As a re-
sult, spatial variation in root water uptake could diminish the
effect of throughfall patterns into spatiotemporal variation of
soil water. However, other researchers suggested that other
factors, such as soil properties (Metzger et al., 2017), prefer-
ential flow (Jost et al., 2004; Blume et al., 2009; Molina et
al., 2019; Fischer-Bedtke et al., 2023), and litter layer pro-
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cesses (Raat et al., 2002), may be at the heart of the weak
and short-term effects of throughfall patterns on soil mois-
ture variability.

However, to the best of our knowledge, the feedback
mechanism of throughfall patterns on root water uptake vari-
ation has not yet been investigated empirically. More com-
mon are studies related to soil water distribution. Soil water
availability, which could potentially be enhanced by through-
fall, affects root water uptake patterns even more than root
abundance (Kithnhammer et al., 2020; Guderle et al., 2018).
On the flip side, root water uptake can amplify or homog-
enize soil water variability (Hupet and Vanclooster, 2005;
Teuling and Troch, 2005; Ivanov et al., 2010; Baroni et al.,
2013; Martinez Garcia et al., 2014). Moreover, variations in
soil water content reflect on root water uptake (Hupet et al.,
2002; Schume et al., 2004; Schwirzel et al., 2009; Guderle
and Hildebrandt, 2015; Jackisch et al., 2020).

Next to water input, soil properties can alter root water up-
take patterns (Nadezhdina et al., 2007; Kirchen et al., 2017).
Also, they control soil water redistribution (Grayson et al.,
1997; Cosh et al., 2008; Jarecke et al., 2021) and water avail-
ability for root structures (Vereecken et al., 2007; Cai et al.,
2018). For a given evaporative demand, water uptake at a
particular location is a function of water transport resistance
between root and soil in addition to the soil-water potential
(Cardon and Letey, 1992; Shani and Dudley, 1996; Lhomme,
1998). Both characteristics depend on local soil properties
and soil water status, and the latter in turn is affected by the
local water uptake rate.

Finally, plant individual and ecosystem processes affect
uptake: root networks can connect wetter and drier loca-
tions in a variety of ecosystems (e.g., Emerman and Dawson,
1996; Katul and Siqueira, 2010; Yu and D’Odorico, 2015;
Priyadarshini et al., 2016; Hafner et al., 2017). In addition,
tree size, age, neighboring tree species, and ecosystem struc-
ture affect the spatiotemporal variation in root water uptake
(Volkmann et al., 2016; Spanner et al., 2022; Kostner et al.,
2002; Dawson, 1996; Brinkmann et al., 2019; Gaines et al.,
2016; Silvertown et al., 2015; Guo et al., 2018; Brum et al.,
2019; Kramer and Holscher, 2010).

Taken together, throughfall and soil water variability, soil
properties, and root water uptake patterns form complex and
intertwined interactions in the terrestrial hydrological cycle.
It has not yet been shown empirically how root water uptake
patterns are affected by throughfall and spatial distribution
of soil water content. In line with previous modeling results
(Bouten et al., 1992; Coenders-Gerrits et al., 2013), we hy-
pothesize that throughfall hotspots enhance water availability
at certain locations that elevate root water uptake. Further-
more, we investigate the role of soil water variation in com-
bination with soil properties and neighboring tree character-
istics in root water uptake patterns. We pose the following
questions to test the main hypothesis and guide the investi-
gation.
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i. How do throughfall patterns influence root water uptake
patterns?

ii. How do soil moisture and its variation, along with soil
properties, control variation in root water uptake?

iii. What is the role of biotic factors, i.e., size, distance,
number, and species richness of neighboring trees, in
root water uptake patterns?

Here, we address these questions by employing a linear
mixed-effects model based on weekly throughfall sampling
at locations paired with intensive soil moisture measurements
in a beech-dominated unmanaged forest. We estimate root
water uptake using a water balance method applied at a soil
moisture measurement point. This method dissects soil water
flow and water uptake by exploring the differences in soil wa-
ter content change per time between day and night (Guderle
and Hildebrandt, 2015; Jackisch et al., 2020). While other
methods exist, such as using isotopic tracers (Rothfuss and
Javaux, 2017; Zarebanadkouki et al., 2013), daily fluctua-
tions in soil water allow for estimation of the spatial distri-
bution of ecosystem evapotranspiration using standard mea-
surements of soil water content (Guderle and Hildebrandt,
2015) without the need for additional infrastructure. In addi-
tion, we incorporate data on field capacity, bulk density, and
neighboring tree characteristics, i.e., size and species.

2 Materials and methods
2.1 Research site and field sampling
2.1.1 Research site

The research site is located in the forested upper hill region of
the Hainich low mountain range in Thuringia, Germany, as a
part of the Hainich Critical Zone Exploratory (CZE) (Kiisel
et al., 2016). The altitude at the research site ranges from
362 m to 368 m a.s.l. The mean annual air temperature varies
between 7.5 and 9.5 °C, and the mean annual precipitation
ranges from less than 600 to 1000 mm in the CZE (Kiisel et
al., 2016).

In the study area, thin-bedded alternations of limestones
and marlstones of carbonate rock (Middle Triassic) form the
bedrock overlain by a shallow Pleistocene loess layer with
Cambisols and Luvisols as the dominant soil types (IUSS
Working Group, 2006; Metzger et al., 2021). The median soil
depth above the weathered bedrock is 37 cm, with soil depths
ranging from 15 cm to a maximum depth of 87 cm (Metzger
et al., 2017).

In 2019, the tree community at the research site con-
sisted of 574 individuals of various ages (diameter at breast
height >5cm). The dominant species is European beech
(Fagus sylvatica L.), which makes up 70% of the tree
community, followed by sycamore maple (Acer pseudopla-
tanus L.) with 21 % and European ash (Fraxinus excelsior L.)
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with 4 %. These dominant species are accompanied by large-
leaved linden (Tilia platyphyllos Scop.), European hornbeam
(Carpinus betulus L.), Norway maple (Acer platanoides L.),
Scots elm (Ulmus glabra L.), and wild service tree (Sorbus
torminalis (L.) Crantz). The stand has a total basal area of
40m?ha~! and has been unmanaged since 1997 (Kohlhepp
et al., 2017).

2.1.2 Soil moisture monitoring and soil properties

The forest site (1 ha) was equipped with a soil moisture mon-
itoring network (SoilNet; Bogena et al., 2010) consisting
of SMT100 frequency domain sensors (Treuebner GmbH,
Neustadt, Germany). Metzger et al. (2017) first described the
soil moisture monitoring setup. Briefly, the observation plat-
form (Fig. 1) was divided into 100 subplots (10 m x 10 m),
and 49 subplots were equipped with soil moisture sensors at
two random measuring points each, for a total of 98 loca-
tions. At each measuring point, sensors were placed at two
different depths, 7.5cm (top sensors) and 27.5 cm (bottom
sensors). The soil moisture network is maintained through a
regular biweekly routine to avoid potential failures such as
depleted sensor batteries or hardware problems.

Undisturbed soil samples were collected during the sensor
installation in 2014 and 2015 to estimate bulk density and
water content at field capacity. In addition, we collected ad-
ditional disturbed soil samples (n = 40) near sensor locations
in 2019. Bulk density was determined from oven-dried (24 h,
105 °C) soil mass weight and water content at field capac-
ity by applying 60 hPa pressure to the saturated undisturbed
sample for 72 h.

Soil properties vary slightly from topsoil to subsoil at the
research site. While silty loam is the dominant soil texture
in both layers, the clay content is higher in the subsoil (Met-
zger et al., 2021). The median volumetric water content at
field capacity is 44 % in the topsoil and 42 % in the sub-
soil. Moreover, the water content at field capacity varies from
27 % to 60 % and from 31 % to 62 % in the topsoil and sub-
soil, respectively. The average bulk density (dpyix) of the top-
soilis 1.16 gcm™3, with a range of 0.73 to 1.5 gcm™3. In the
subsoil, the average bulk density (dpyik) is slightly higher at
1.37 gcm™3 but has a similar range (0.7-1.6 gcm™>) (see the
Supplement for details).

2.1.3 Gross precipitation and throughfall sampling

Five gross precipitation funnels were placed 1.5ma.g.l. in an
adjacent open grassland (ca. 250 m distance to the research
site). As described in Metzger et al. (2017) and Demir et
al. (2022), the precipitation funnels were made of a circular
plastic funnel (12 cm in diameter) and sampling bottle (2L
in volume), and ping pong balls were placed in the funnel
orifice to prevent evaporation losses.

During the early growing season of 2019, we placed
throughfall collectors in soil moisture monitoring subplots

Hydrol. Earth Syst. Sci., 28, 1441-1461, 2024
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Figure 1. (a) The photo of the site. (b) The field monitoring setup of stratified randomly distributed throughfall collectors and soil moisture
sensors together with the trees which are sized according to the diameter at breast height (dbh) and colored according to the species.
Throughfall collectors are paired with soil moisture sensors at 98 locations (n = 182) in the grey-shaded subplots. White-colored subplots

are equipped with only throughfall collectors.
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at 98 locations. We paired these throughfall collectors with
the soil moisture sensors by placing them within 1 m of
each other. The paired collectors were placed downslope to
avoid interference with soil moisture measurements. For the
rest of the research site, in 51 other subplots, we adopted
a separate independent stratified random design from Met-
zger et al. (2017). Briefly, we placed two throughfall collec-
tors in each subplot that was not equipped with soil moisture
sensors. All the throughfall collectors were placed roughly
37 cm above the ground.

We conducted weekly manual measurement of through-
fall and gross precipitation during the 2019 growing season
(April to August). Sampling was conducted on rain-free days
only. Thus, the sampling interval ranged between 6 and 8 d.

We used the paired throughfall collectors (n = 98) to iden-
tify the drivers of root water uptake patterns, as we derived
root water uptake values based on soil water content mea-
surements (see below). However, we used all the randomly
placed throughfall collectors (n = 200) to describe the spa-
tiotemporal variation of throughfall within the research site.

2.2 Estimation of potential evapotranspiration

We calculated the daily potential evapotranspiration by ap-
plying the concept of thermodynamic limits of convection
(Kleidon and Renner, 2013; Kleidon et al., 2014):

_1 s R
S As+y 27

ey

E pot

where R, is the absorbed solar radiation (W m~2), A is the
latent heat of vaporization (2.5 x 10°Jkg™!), y is the psy-
chrometric constant (65PaK™!), and s is the slope of the
saturation vapor pressure curve (PaK™1).

Here, we acquired solar radiation, air temperature, and
precipitation data for the throughfall sampling period from
a nearby weather station (Reckenbuel) which is located ap-
proximately 1.4km northeast of the research site and pro-
vides data in 10 min intervals. The site-specific albedo for
the summer period was adopted from Otto et al. (2014).

We used the precipitation data measured at the weather
station to define rain events and dry periods, as described
below.

2.3 Data analysis
2.3.1 Quality control of soil water content data

We systematically reviewed the 6 min soil water content data
for quality control in two steps: (1) identification of problems
(such as jumps to extremely low and high values, duplicated
time stamps of different values, long discontinuities in the
measurements, and lack of temporal variation in the time se-
ries despite rain events); (2) classification and removal of de-
tected outliers and irregularities. We visually identified and
removed unrealistic measurements such as extremely low

https://doi.org/10.5194/hess-28-1441-2024

(< 5vol. %) and high values far beyond the field capacity
(> 75 vol. %) and long plateaus of repeated values despite
rain events. We also excluded any time series that exhibited
long-term discontinuities that prevented us from calculating
root water uptake. During the visual inspection, we elimi-
nated values with duplicated time stamps that violated the
actual temporal trend. Next, we scanned the data using the
Hampel filter function of the pracma R package (Borchers,
2021) with a customized moving window length and Pear-
son’s rule threshold value (Pearson, 1999) to flag possible
outliers.

Despite regular maintenance, many sensors failed to pro-
vide data that met the quality criteria during the growing sea-
son (March—August) in 2019. Only 56 sensor locations (out
of 98) provided data from both top and bottom sensors that
met the qualification criteria described above with varying
date intervals throughout the growing season. Of these, only
34 sensor locations were used to estimate root water uptake
as they simultaneously provided data from both top and bot-
tom sensors within the dry periods.

2.3.2 Soil water calculation

We estimated soil water (S§) at measurement locations for the
monitored soil layer based on the volumetric soil water con-
tent measured by top and bottom sensors.

Sia=Y_ a0l +07, )

We similarly integrated the soil water at field capac-
ity (Sec,i):

Skc,i = ZZtQ]t:C’i + Zbell:jc,lw 3

where z; is the depth of the soil column monitored by the top
sensor, zp is the depth of the soil represented by the bottom
sensor, 6; 4 is the volumetric soil water content at location i
on date d, and 6gc; the soil water content at the field capac-
ity.

We calculated bulk density at the sensors’ locations for the
monitored soil layer.

t b
> 2y i + by ;
Yzt

“)

dpulk,i =

d{)glk, ; and d_tt;ulk, ; are the l.:)ulk density of the topsoil and sub-
soil, respectively, at location i.

2.3.3 Descriptive statistics

We calculated the coefficient of quartile variation (CQV)
and the interquartile range to describe the spatial variation
of throughfall, volumetric soil water content, and root wa-
ter uptake. Also, we estimated the octile skewness (OSg) of
throughfall based on the first and seventh octiles.

Hydrol. Earth Syst. Sci., 28, 1441-1461, 2024



1446 G. Demir et al.: Root water uptake patterns are controlled by tree species interactions
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We characterized spatial patterns of daily root water up-
take (E;) by calculating the spatial deviation from the
mean (6 E; 4, Eq. 7) (Vachaud et al., 1985).

Eiiaq—E¢q

SEiq= T
t,d

(N

E: ; 4 is the daily root water uptake estimated at the i sensor
location on date d, and Eq 4 is the spatial average of the daily
root water uptake on date d.

Similarly, we calculated the spatial deviation of soil water
and throughfall to identify their spatial patterns.

2.4 Root water uptake estimation

We estimated root water uptake using the multistep, multi-
layer regression (MSML) method, which is a water balance
method and derives evapotranspiration from diurnal differ-
ences in soil water content (Guderle and Hildebrandt, 2015;
Guderle et al., 2018). This approach does not require prior
information on root structure but relies on high temporal
and spatial resolution data on multiple soil layers. Previ-
ous studies using additional measurements such as sap flow
and lysimeters demonstrated that the MSML method suc-
cessfully estimates transpiration in both forest and grassland
ecosystems (Guderle et al., 2018; Jackisch et al., 2020).

As described in Guderle and Hildebrandt (2015), the
MSML method derives root water uptake from distinct dif-
ferences in the day and night portions of soil moisture time
series. The main assumption is that, in the absence of rainfall-
driven rapid vertical soil water flow, evapotranspiration oc-
curs only during the day, while soil water flow occurs both
during the day and at night. As a result, soil moisture time
series reflect a distinct day—night signal under dry weather
conditions.

In applying this method to our study, we first excluded
potential periods of fast vertical flow periods from the time
series due to previous rainfall events and identified periods
for estimating daily root water uptake. We considered an 8 h
buffer period to include canopy dripping and 48 h for the ces-
sation of rainfall influence on soil water. Thus, a total of 56 h
was the time interval used to define the start of the water up-
take estimation period. The period when the root water up-
take is estimated is hereafter referred to as the dry period.

Next, we split each soil moisture time series into a day
branch (transpiration-active period) and a night branch, as
explained by Guderle and Hildebrandt (2015). We defined
the transpiration period (starting 2h after sunrise and end-
ing 2h before sunset) based on the local sunrise and sun-
set times. Sunrise and sunset times were obtained from the
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R package suncal (Thieurmel and Elmarhraoui, 2022). We
fit linear models to each split branch of the time series and
derived the slopes. The difference between the slope of the
day branch (my) and the average slope of the antecedent
and preceding nights (gow.;) gives the rate of water uptake.
Thus, we estimated the daily evapotranspiration at each soil
water content location i (Egs. 8 and 9) by accounting for soil
layer thickness and slope difference.

t,b _ t,b t,b t,b
Et,msml,i - (mtot,i ~ Myow,i dz,i (®)
Ei=Y (Elmpg+E 9
L — t,msml, t,msml, i

2.5 Linear mixed-effects model

We employed a linear mixed-effects model to investigate the
driving factors for root water uptake patterns. A linear mixed-
effects model is a multivariate statistical tool that describes
the relationship between a dependent variable and explana-
tory variables (fixed effects) while controlling for depen-
dencies in the data that may arise due to repeated sampling
with certain designs (random effects). Fixed effects are infor-
mative, repeatable levels of explanatory and quantified vari-
ables that can influence the mean of the dependent variable,
and they can be tested. In addition, in a linear mixed-effects
model, how the relationship between the dependent variable
and one predictor depends on the level of another predictor
can be represented via an interaction term.

Random factors are uninformative levels of predictor vari-
ables but can explain parts of the residual of the fixed-effects
model by calculating different intercepts for different cate-
gory levels. They are included in mixed-effects models to
account for qualitative information from repeated sampling
with respect to individuals, time stamps, or treatments. Here,
the sensor location and dry period, i.e., date, are taken as ran-
dom effects.

For the model, we used only paired throughfall and soil
moisture measurement locations where both top and bottom
sensors provided data during the dry periods. All the consid-
ered explanatory drivers, which are included as fixed factors
in the model, are listed in Table 1. These factors include abi-
otic and biotic variables that possibly influence the relative
local root water uptake: they are daily spatial average soil
water storage, spatial deviation of soil water from the mean,
soil water at field capacity, and bulk density of the monitored
soil layer.

To account for spatial variability in throughfall, we calcu-
lated the spatial deviation from the mean by using Eq. (7).
Here we considered this variable at two different timescales:
the sampling week(s) prior to root water uptake estimation
and over the entire throughfall sampling period.

Furthermore, as biotic factors, we included the number of
trees, number of species within a 5m radius of each soil

https://doi.org/10.5194/hess-28-1441-2024
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Table 1. List of fixed and random factors considered for estimating the root water uptake patterns through the linear mixed-effects model.

Interaction is shown with an “x”.

Fixed factors

Single factors

Interaction factors

Spatial average of soil water storage in the monitored soil layer (S)
Spatial deviation of soil water storage from the mean (85)

Field capacity of the monitored soil layer (Sgc)

Bulk density capacity of the monitored soil layer (dpy1x)

Spatial deviation of throughfall of events measured in the sampling week prior to the corresponding dry period (8 Pr,, ., )
The median of spatial deviation of throughfall measured within the whole sampling period (8 PTF)

Number of trees (ntree)
Basal area (BA)
Number of species (1sp, tree)

§ X SFC

88 x SFC

3§ x BA

SxBA

88 x Ntree

S X nyree

6PTF]:15( ev. X SFC
8PTFlcmp. stable. < SFC
8PTF]asl ev. X dbu]k
(SPTFtemp. stable. < dbulk
Ngp, tree X BA

Random factors

Soil moisture sensor location
Dry period

moisture location, and an inverse-distance-weighted basal
area (BA) within a 5 m radius of each soil moisture location,
calculated as follows:

R
Z WRAtree
BAj = = —. (10)
with
=2
Wi = (x’—xR)T (11)
> (xi —xp)”
R

where i is the soil moisture sensor located at x;, R is the tree
index located at xg, Aee 1S the individual basal area of the
corresponding tree, and A is the area around the soil moisture
sensor { with a 5 m radius.

Even though our research plot is a beech-dominated forest,
in some spots, two to four species were present within a 5 m
radius of the soil moisture sensors.

We also included interaction terms (Table 1) as fixed fac-
tors in the model to capture complex and nonlinear relation-
ships among the biotic and abiotic factors.

We conducted all the analyses with the R statistical soft-
ware (R Core Team, 2021) and used the Imer function in
the Ime4 package (Bates et al., 2015) for the model develop-
ment. We visually checked the model assumptions using the
check_model function of the performance package (Liidecke
et al., 2021).

In addition, we calculated both the conditional and
marginal R? of the model with the MuMIn package (Bar-
ton, 2020). While the conditional R? includes the variance
of the entire model, the marginal R? subsumes only the fixed
effects (Barton, 2020). Before fitting the linear mixed-effects
model, we tested for co-linearity of the considered variables
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and scaled the data with a Z transformation by using the scale
function in base R (R Core Team, 2021), which allowed us
to evaluate the individual effect of fixed effects by comparing
slopes and significance levels.

We developed the optimal model by applying a systematic
model selection procedure based on Akaike’s information
criterion (AIC) comparison in combination with the exami-
nation of the factors. Model selection began with the beyond-
optimal model, which included all possible fixed and ran-
dom effects. We stepwise evaluated each fixed effect based
on its respective significance (p-value comparison) by fitting
the model with the maximum likelihood (ML) to be able to
compare AIC values (Zuur et al., 2009). In each step, start-
ing with interaction terms, we identified the least significant
effect and formulated a model without it. We compared the
AIC values of the model before and after removing the effect,
discarding it in case the AIC was unaffected or decreased. We
followed the procedure with the next equally detected effect
and repeated it until only significant fixed effects remained,
and the model with the lowest AIC (the optimal model) was
obtained.

As afinal step, the best model was refitted with a restricted
maximum likelihood (REML) (Zuur et al., 2009).

3 Results

3.1 Spatiotemporal distribution of throughfall and soil
water content

In 12 out of the 16 sampling weeks, the weekly gross pre-
cipitation was more than half of the total potential evapo-
transpiration. Table 2 shows the distribution of the through-
fall sampled in 2019 (April-August) at 200 collectors and
the 98 collectors that were paired with soil moisture sensors.

Hydrol. Earth Syst. Sci., 28, 1441-1461, 2024



1448

G. Demir et al.: Root water uptake patterns are controlled by tree species interactions

. precipitation == sub-soil (27.5cm) == top-soil (7.5 cm)
50 30

O'_o| 3 I~ ’ . '\_ ] ~
T 40| ToTrmeyd

0 a

- [
g 20 2
o, 30/ gj
5 S
5 20 El
(@] 4

o 102
2

2 10,
%

[

ol bl 0
Apr May Jun Jul Aug
2019

Figure 2. Soil moisture temporal variation in topsoil and subsoil together with the daily precipitation measured at the nearby Reckenbiihl
station (approximately 1.4 km to the northeast). The solid and dashed lines are the spatial mean of the soil water content estimated based on
top (7.5 cm) and bottom (27.5 cm) sensors, and grey-shaded areas show the first and third quartiles. The reddish-shaded areas show defined
dry periods within the throughfall sampling when root water uptake could be estimated.

Table 2. Cumulative potential evapotranspiration in millimeters (Epot,cum), gross precipitation (Pg), ratio of total precipitation to potential
evapotranspiration, spatial mean of throughfall based on all the collectors (Pr), spatial mean of throughfall-based paired collectors (Prf)
in millimeters, interquartile range (IQR), coefficient of quartile variation (CQV), and octile skewness (OSg) of both all and paired throughfall
collectors during the sampling week. The values are ordered according to the cumulated gross precipitation size.

Date Epoteum Py Pe/Epor  Prp IQR CQV  OSy Pre,.  IQR cQV 0Sg

PR PR Prr PTFpaired PTFpaired PTFpﬂired
4 Jun 2019 13.55 0.76 0.06 035 0.18 0.25 0.46 0.34 0.16 0.24 0.49
26 Jun 2019 20.87 1.73 0.08 097 044 024 0.16 0.98 0.53 0.27 0.27
17 Apr 2019 5.62 242 0.43 .72 027  0.08 0.23 1.72 0.33 0.09 0.09
18 Jun 2019 9.46 4.00 0.42 258 062 0.12 —-0.03 2.57 0.53 0.10 —0.08
29 May 2019 10.15 6.27 0.62 377 124 017 -0.52 3.63 1.50 0.21 —-0.42
24 Jul 2019 13.52 7.80 0.58 461 106 0.12 —-0.34 4.48 0.88 0.10 —0.63
21 Aug 2019 8.94 8.54 0.96 519 1.06 0.10 —-047 5.17 0.97 0.10 —0.44
30 Jul 2019 12.68 10.73 0.85 7.81 225 015 —-1.51 7.58 2.28 0.15 —1.17
7 May 2019 6.65 12.56 1.89 921 133 007 -0.75 9.21 1.99 0.11 —1.05
14 Aug 2019 851 13.79 1.62 11.19 265 0.12 —-1.40 10.99 2.98 0.13 —1.13
8 Aug 2019 1391 23.87 1.72 16.60 2.65 0.08 -—1.10 16.52 2.65 0.08 —1.17
30 Apr 2019 593 2447 4.13 18.44 3.09 0.08 —1.63 18.30 2.65 0.07 —1.23
17 Jul 2019 8.28 29.27 3.54 2422 354 0.07 —2.08 24.39 3.54 0.07 —-2.59
15 May 2019 742 2953 3.98 22.10 354 0.08 —2.11 22.21 3.54 0.08 -2.11
22 May 2019 6.74 41.82 6.20 3094 354 0.06 —3.04 30.54 3.54 0.06 —3.46
13 Jun 2019 1447 171.84 4.96 57.77 851 0.07 —5.82 57.99 7.29 0.06 —6.52

Weekly throughfall increased with an increase in rain. The
CQV of throughfall was generally lower for larger cumula-
tive weekly rains. On average, the collectors paired with soil
moisture sensors received similar amounts of throughfall to
all the collectors (Table 2). The CQV of data from the paired
collectors ranged from 0.27 to 0.6, which is similar to the
CQYV of throughfall sampled at all the collectors. The octile
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skew (OSg) of the paired collectors and all the collectors was
also similar.

As the growing season progressed in 2019, the average
soil water content decreased in both the topsoil and subsoil.
In April and early May, the average volumetric soil water
content in the topsoil was above 30 % and dropped to below
10 % by the end of August. In the subsoil, the volumetric soil

https://doi.org/10.5194/hess-28-1441-2024



G. Demir et al.: Root water uptake patterns are controlled by tree species interactions 1449

water content similarly declined from above 40 % to below
20 % over the sampling period (Fig. 2). On average, soil wa-
ter changed from 52.5 to 17.5mm in the topsoil and from
80 to 40 mm in the subsoil.

We derived the root water uptake for four periods (a total
of 19 d) under different soil wetness conditions that captured
the seasonal variation of soil water content, including late
spring, when the soil water content was higher, and drier pe-
riods during the summer following re-wetted soil conditions
with late-summer rains. As listed in Table 3 and shown in
Fig. 2, the two periods were in late May and early June, and
each lasted 2 d. The third period began in late June and lasted
11d; the last was 4 d in late July. From the start of the first
dry period to the end of the last one, the average soil water
content declined from 33 % to 15 % in the topsoil and from
43 % to 27 % in the subsoil. Table 3 shows that, within the
dry periods, the CQV of the soil water content was between
0.09 and 0.14 in the topsoil and between 0.08 and 0.16 in the
subsoil, respectively. During the dry periods, the spatial het-
erogeneity of the soil water content in the subsoil increased
systematically. In contrast, the spatial variation of the soil
water content in the topsoil was not correlated with soil dry-
ness.

3.2 Soil water storage, potential evapotranspiration,
and root water uptake

The integrated field capacity of the monitored soil depth was
160 mm on average at the research site. Table 4 shows that
soil water was much lower than the field capacity during the
dry periods, and the mean soil water storage dropped be-
low 42 mm in late July. In addition, Table 4 demonstrates
that the average root water uptake (E;) ranged from 0.94 to
3mmd~!, while potential evapotranspiration (Epot) ranged
from 1.75 to 3.12mmd~'. The discrepancy between the
average root water uptake and the potential evapotranspi-
ration increased as soil water decreased, especially during
the longest dry period (Table 4). Root water uptake showed
greater spatial variation than water input and soil wetness.
The CQV of the root water uptake ranged from 0.15 to 0.28,
which was higher than the CQV of the throughfall and volu-
metric soil water content in both soil layers.

3.3 Soil water, throughfall, and root water uptake
patterns

At soil moisture measurement points where the daily root
water uptake was determined (n = 34), we calculated the
spatial deviation from the median of throughfall, soil water
storage, and root water uptake to illustrate the spatial pat-
terns. Figure 3 shows that some locations received repeatedly
less (or more) throughfall than average (§ Prr < 0), some lo-
cations were repeatedly wetter or drier (65 < 0), and some
places regularly had lower or higher root water uptake (§ Ey)
throughout the sampling period. However, these locations
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were not related to each other. In fact, Fig. 3 demonstrates
that neither throughfall nor soil water patterns are directly
correlated with the root water uptake patterns. For example,
the locations with higher water uptake were not coupled with
elevated throughfall input (locations colored dark) or higher
soil water storage. In addition, soil water storage patterns
were not correlated with throughfall patterns.

3.4 Fixed factors regulating root water uptake patterns

We used a linear mixed-effects model to disentangle the ef-
fects of throughfall, soil water, soil properties, and the neigh-
boring tree characteristics on root water uptake patterns. The
fixed and random effects contributed almost equally to the
model. The R? of the model was 0.77, and the contribution
of the fixed effect to the R? was 0.39 (see the Supplement for
more details on the optimal model).

Figure 4 shows only the significant fixed effects for root
water uptake patterns. The spatial deviation of soil water
from the mean (i.e., soil water patterns) was the only single
and most significant factor positively related to the spatial
deviation of the root water uptake. Thus, water uptake was
elevated at locations where the most water was retained in
the soil at the given time, i.e., greater soil water storage.

Field capacity by itself was not a significant factor affect-
ing local root water uptake. However, it strongly influenced
how local soil water controlled root water uptake as a part
of the significant interaction term. Figure Sa illustrates how
root water uptake was more dependent on local soil water
when the field capacity was low (i.e., higher macroporosity).
In contrast, soil bulk density and therefore total porosity were
not part of the final model.

Although the spatial average of soil water storage, e.g.,
the state of wetness, was not an important factor in local root
water uptake by itself, it moderated the impact of the BA
on the spatial distribution of water uptake. We found that,
as the plot dries, uptake shifts from places with a higher
basal area to places with a lower basal area (Fig. 5b). Fur-
thermore, the statistical model revealed that water uptake in-
creased with the higher basal area at locations where mul-
tiple species co-existed (Fig. 5c). However, the number of
species and the basal area were individually not significant
fixed effects. Lastly, throughfall patterns were not significant
predictors of local root water uptake. Only the median of the
spatial deviation of throughfall, which represents temporally
stable patterns within the sampling period (8 Prr), marginally
improved the final model.

4 Discussion

We investigated the role of throughfall, soil water patterns,
and soil and tree characteristics in the spatial variation of
root water uptake. In the following sections we discuss three
main findings, which are that, (1) contrary to our hypothesis,
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Table 3. The spatial average of the daily volumetric soil water content (Byop-soi1, VOl. %) in topsoil (0~17.5 cm) and (Osubsoit, vol. %) in subsoil
(17.5-37.5 cm) during the defined dry periods. The IQR and CQV of the daily volumetric soil water content in both layers during the dry
periods are shown.

Date Otop-soil  IQR Orop-soil  CQV Gropsoil  Osubsoil  IQR Osubsoit  CQV Osubsoil Dry
(vol. %) (vol. %) (vol. %) (vol. %) (vol. %) (vol. %) period
25 May 2019 33.17 5.72 0.09 42.82 6.72 0.08 1
26 May 2019 32.12 6.62 0.10 42.46 6.67 0.08 1
1 Jun 2019 30.23 6.87 0.12 40.61 6.9 0.09 2
2 Jun 2019 29.22 7.23 0.13 40.11 6.85 0.09 2
23 Jun 2019 25.01 6.69 0.14 37.80 6.38 0.08 3
24 Jun 2019 24.04 6.45 0.14 36.94 6.22 0.08 3
25 Jun 2019 22.52 5.43 0.12 36.13 6.54 0.09 3
26 Jun 2019 21.48 5.07 0.12 35.24 6.71 0.10 3
27 Jun 2019 20.20 4.25 0.11 33.98 7.75 0.12 3
28 Jun 2019 19.45 3.85 0.10 33.31 8.08 0.12 3
29 Jun 2019 18.98 3.83 0.10 32.36 8.05 0.12 3
30 Jun 2019 18.44 3.52 0.09 31.37 8.15 0.13 3
1 Jul 2019 17.67 3.62 0.10 30.45 8.18 0.13 3
2 Jul 2019 17.29 4.18 0.12 29.84 8.87 0.15 3
3 Jul 2019 16.89 3.72 0.11 29.26 8.98 0.15 3
24 Jul 2019 16.15 3.48 0.11 28.56 8.7 0.16 4
25 Jul 2019 15.51 3.47 0.11 27.85 8.67 0.16 4
26 Jul 2019 14.98 3.57 0.12 27.21 8.49 0.16 4
27 Jul 2019 14.57 3.65 0.13 26.65 8.63 0.16 4

Table 4. The daily average air temperature (T,ir, °C), potential evapotranspiration (Epot, mm), mean soil water storage (S, mm) in the
monitored soil layer (0-37.5 cm), and spatial mean of the daily root water uptake (E;, mm) based on all the soil moisture sensors, together
with the ratio of the root water uptake to the potential evapotranspiration and the standard deviation (SD) and CQV of the daily root water
uptake during the defined dry periods.

Date Tair Epot S E; E/ Epot SD E; CQV E¢ Dry
°C) (mm) (mm) (mm) (%) period

25May 2019 1274 1.80 7194 1.09 60.56  0.38 0.28
26 May 2019 1443 190 70.57 1.30 6842 048 0.25
1 Jun 2019 1842 259 67.16 226 8726  0.98 0.27
2 Jun 2019 2138 277 6579 250 90.25 1.12 0.18
23 Jun 2019 1945 279 5981 283 10143  0.90 0.19
24 Jun 2019 2022 2.82 58.16 2.62 92.91 0.76 0.17
25Jun 2019 2252 289 5596 2.67 9239  0.78 0.16
26Jun 2019 2573 296 5413 3.00 101.35  0.88 0.15
27 Jun 2019 18.83 275 5191 2.28 82.91 0.55 0.16
28 Jun 2019 16.07 258 5055 1.53 59.30 040 0.20
29 Jun 2019 19.59 285 4955 211 74.04  0.60 0.20
30Jun 2019 2554 3.12 4826 2.57 8237  0.86 0.18
1 Jul 2019 20.63 230 46.69 1.59 69.13  0.53 0.18
2 Jul 2019 1488 1.75 4581 1.08 61.71 042 0.24
3 Jul 2019 13.77 191 4495 094 49.21 0.30 0.23
24 Jul 2019 2439 276 43.61 1.88 68.12  0.64 0.19
25 Jul 2019 2533 282 4231 1.77 62.77  0.60 0.24
26 Jul 2019 2327 264 41.18 140 53.03 0.55 0.18
27 Jul 2019 21.29 268 4023 121 45.15 047 0.19
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Figure 3. Temporal stability of throughfall patterns which is estimated by the spatial deviation from the mean (§ Ptp) throughout the sampling
period in 2019 (April-August), soil water (§.5), and root water uptake (8 Et) based on the spatial deviation from the mean during the defined
dry periods. Soil moisture sensor locations are colored according to throughfall input. Soil moisture sensor locations are colored from lighter

to darker throughout the figure according to throughfall input.
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Figure 4. The significant fixed factors of the best model to esti-
mate root water uptake patterns (6 Et). Values on the x axis indicate
the slope of the relations. All the variables were scaled by Z trans-
formation. Interaction is shown with an “x”. Here 8§ is the spatial
deviation of soil water, Sgc is the field capacity, nsp tree i the num-
ber of species, BA is the basal area, and S is the soil water storage.
The significance codes are *** = (0 and ** = 0.001 (the details on
the model can be found in the Supplement).
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throughfall patterns do not play a role in root water uptake
patterns despite the recurrence of distinctly localized greater
and lesser throughfall inputs. (2) How and where water is
stored in the soil, which is strongly determined by soil hy-
draulic properties, dominates water uptake patterns. (3) The
size and species of neighboring trees regulate relative local
water uptake such that locations surrounded by more diverse
neighborhoods are subject to greater water uptake.

4.1 Spatial variation in throughfall does not affect root
water uptake patterns

We adequately captured the spatial distribution and tempo-
ral stability of throughfall at locations where local root wa-
ter uptake was derived. Consistent with previous observa-
tions in temperate forests (e.g., Whelan and Anderson, 1996;
Staelens et al., 2006; Metzger et al., 2017), the amount of
weekly rainfall significantly altered the spatial distribution of
throughfall such that more rainfall, and thus more through-
fall, resulted in less spatial variability. Previous studies re-
peatedly showed that throughfall patterns exhibit temporal
stability in forest ecosystems (e.g., Keim et al., 2005; Stae-
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Figure 5. Visualisation of the significant relations shown in Fig. 4,
representing the significant drivers of root water uptake patterns
during the defined dry periods. Relation to the (a) interactive re-
lation of the spatial deviation of soil water storage and field capac-
ity (Spc), (b) interactive relation of the BA and the spatial average
of the soil water storage (S), and (c) interactive relation of the num-
ber of species (ngp, tree) and the BA.

lens et al., 2006; Wullaert et al., 2009; Rodrigues et al.,
2022). At our research site, using event-based sampling, Met-
zger et al. (2017) and Fischer-Bedtke et al. (2023) demon-
strated that throughfall patterns persist over time, which was
also true for our weekly sampling in 2019. With canopy cover
being the key driver of throughfall (Fischer-Bedtke et al.,
2023), it is not surprising that weekly cumulative events re-
sulted in a localized high- and low-throughfall input.

Contrary to expectations (Bouten et al., 1992; Guswa and
Spence, 2012; Coenders-Gerrits et al., 2013; Fischer-Bedtke
et al., 2023), our results showed that throughfall hotspots do
not increase or facilitate greater root water uptake. In addi-
tion, the linear mixed-effects model results confirmed that
throughfall patterns do not drive the variation in root wa-
ter uptake. We attributed the absence of this to two reasons:
(1) decoupled soil water and throughfall patterns as well as
(2) non-water-limited conditions.

Regarding (1), we confirmed that the temporally stable
throughfall patterns do not correspond to the post-event soil
water and root water uptake patterns. We paired the measure-
ments of throughfall and soil water content measurements —
and thus the estimates of root water uptake — within a dis-
tance of 1 m. The spatial correlation length of soil water
content and throughfall is on the order of 6-10m in natu-
ral temperate forests (Keim et al., 2005; Gerrits et al., 2010;
Zehe et al., 2010). At the same study site with the spatially
extended throughfall sampling, Fischer-Bedtke et al. (2023)
found that the throughfall correlation length increased with
decreasing event size, varying from 6.2 to 9.5 m depending
on the sizes of the rain events. Thus, the paired sampling de-
sign in our study likely provided co-located throughfall and
soil moisture measurements. However, variation in soil water
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storage was not related to throughfall patterns despite tempo-
rally persistent local high- and low-throughfall inputs.

Some studies, mostly conducted in the arid regions and
coniferous forests, reported that soil wetting patterns were
not or only partly linked to throughfall variation, despite re-
current throughfall patterns (Raat et al., 2002; Shachnovich
et al., 2008; Zhu et al., 2021). Forest floor thickness, hori-
zontal water flow, and soil properties were suggested as rea-
sons for the decoupled patterns. Other modeling and field
studies conducted in temperate deciduous forests found that
throughfall patterns influenced soil moisture response to rain
events rather than post-event soil water storage variability
(Coenders-Gerrits et al., 2013; Metzger et al., 2017; Fis-
cher et al., 2023). These studies attributed possible reasons
to local processes such as preferential flow due to soil wa-
ter repellency, the soil pore structure, or elevated root wa-
ter uptake. Our results support it not being root water up-
take but preferential flow paths that are likely to decouple the
throughfall and soil water patterns. In fact, Fischer-Bedtke
et al. (2023), using independent throughfall and soil water
content sampling designs, demonstrated that the signature of
throughfall patterns dissipated in the post-event soil water
variation. However, they detected the stronger influence of
throughfall patterns in the soil moisture response to rainfall
in the 2015 and 2016 growing seasons. The temporal vari-
ation in soil water content in the 2019 growing season was
similar to the seasonal decline in soil water content in 2015
(Metzger et al., 2017). Dry soil conditions can lead to rapid
drainage due to reduced water-holding capability (Jost et al.,
2004; Blume et al., 2009; Wiekenkamp et al., 2016; Demand
et al., 2019; Molina et al., 2019) regardless of throughfall
amount and its variation. Therefore, our findings support the
localized throughfall input potentially enhancing preferen-
tial flow because of low soil retention (Fischer-Bedtke et al.,
2023) rather than local root water uptake. As a result, the fast-
flow processes likely dominate how water is stored and trans-
ported at our site, erasing the throughfall distribution signa-
ture in soil water and root water uptake patterns. Moreover,
any short-term response of uptake to throughfall could not
be captured as water uptake was calculated only after 56 h
had elapsed since the last rain event, and we showed that
temporally stable hotspots are not associated with elevated
water uptake. Hence, our results are consistent with previ-
ous propositions stating that the spatial variation of through-
fall affects drainage and subsurface flow (Keim et al., 2006;
Blume et al., 2009; Guswa and Spence, 2012), while root ac-
tivities such as water uptake and hydraulic redistribution do
not alter canopy-attributed heterogeneity in drainage path-
ways (Guswa, 2012).

Reason (2) is related to water-limitation conditions. In
central Europe, 2019 was the second consecutive extremely
dry summer (Boergens et al., 2020), which damaged beech
forests (Obladen et al., 2021). On average, however, the po-
tential evapotranspiration demand was met at the study site
despite the low soil water storage. The ratio of root water up-
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take to potential evapotranspiration was mostly above 65 %,
which is within the expected range even in the absence of
shallow groundwater storage (Nie et al., 2021). Hence, local
biotic and soil-tied abiotic factors determined the spatial vari-
ation of root water uptake during the growing season rather
than throughfall — water input — patterns. However, the dis-
crepancy between daily potential evapotranspiration and root
water uptake only increased as the soil in the sampled layers
dried out, due to a potential shift in the water uptake depth
(see below).

4.2 Relative and average soil wetness shapes root water
uptake patterns

We found that spatial variation in soil water storage strongly
regulates local water uptake such that wetter locations en-
hance root water uptake. This finding is consistent with ex-
pectations as transpiration rate relies on soil water availabil-
ity and distribution (Couvreur et al., 2014; Klein et al., 2014;
Hildebrandt et al., 2016). Here, we provide further support
for root water uptake being likely to reduce the spatial vari-
ability in soil water storage, as has been previously suggested
(Hopmans and Bristow, 2002; Ivanov et al., 2010; Neumann
and Cardon, 2012).

Trees take up more water in locations where water is not
subject to throughfall-driven rapid drainage (see above). As
a result, root water uptake patterns are determined by where
water is retained longer in the soil. Our results support pre-
vious studies suggesting that tree transpiration demand is
met by water with a longer residence time in the soil ma-
trix — passive storage — while groundwater recharge is fed
by rapid flow — active storage (e.g., Evaristo et al., 2019;
Sprenger et al., 2019). In our statistical analyses, we inves-
tigated the soil properties of bulk density and field capac-
ity, which are strongly dependent on other soil properties
that control aggregation and soil structure. Although bulk
density is strongly related to texture, porosity, and soil or-
ganic carbon content, all of which also affect water retention
(Zacharias and Wessolek, 2007; Looy et al., 2017), surpris-
ingly, soil bulk density was not retained as a predictive vari-
able in the optimal model. In contrast, the interaction term in-
cluding field capacity and local soil water storage was signif-
icant in the model with a negative relationship with relative
water uptake, showing that the combination of higher field
capacity (fewer macropores) and low soil water hinders water
uptake because water more is more strongly bound in the soil.
Differences in local soil properties regulate the matric poten-
tial at a certain soil wetness. Thus, wetter locations do not
necessarily correspond to those of easier root water uptake
due to differences in the soil water retention characteristics
(Vereecken et al., 2007; Cai et al., 2018) for which field ca-
pacity serves as a proxy. However, soil properties alone were
less important (smaller effects size of the interaction term,
including field capacity) than other factors despite their con-
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trol on the spatial distribution of soil moisture (Vereecken et
al., 2022).

In addition, the spatial mean of soil water — a measure of
the overall wetness of the stand — influenced root water up-
take patterns, yet the effect depended on the basal area of
neighboring trees. We found that, as the study site dries out,
local water uptake increased in locations with smaller basal
areas. Conversely, wetter site conditions facilitate greater wa-
ter uptake at locations with higher basal areas, i.e., dense
clusters of large trees. We interpret this as a sign that larger
trees are likely to shift their water uptake to deeper soil lay-
ers to meet transpiration demands, beyond the monitored soil
depth (37 cm), as follows.

A higher basal area is likely to increase transpiration de-
mand and enhance water uptake as long as water is available.
Moreover, locations with a higher basal area exhaust the wa-
ter storage more rapidly as these locations host a larger root
structure and root biomass (Le Goff and Ottorini, 2001). At
the same time, larger-sized trees can shift uptake to deeper
layers (Gaines et al., 2016).

Beech trees have extensive root systems at shallower
depths similar to other temperate tree species, such as Eu-
ropean ash and sycamore maple (Kreuzwieser and Gessler,
2010; Brinkmann et al., 2019). Despite their shallower root
system (Leuschner, 2020) in response to declining soil wa-
ter content in the topsoil, temperate tree species can tap
water from the deeper soil layers (Brinkmann et al., 2019;
Agee et al., 2021; Seeger and Weiler, 2021). Recently, Agee
et al. (2021) used a three-dimensional water uptake model
based on observations in a temperate mixed deciduous for-
est to show that water uptake is shifted to the deeper soil
layers as soil moisture depletes, which is consistent with the
field observations. Moreover, Kramer and Holscher (2010)
observed in beech and mixed deciduous stands that roots
can extract water at depths down to 70 cm soil depth. Sim-
ilar to our site, theirs had a shallow soil layer underlain
by weathered limestone, but the soil depth varied between
50 and 120 cm. Brinkmann et al. (2019) also observed a sim-
ilar depth range for beech trees in a mixed forest by tracing
stable water isotopes of soil and xylem water.

Furthermore, tree age and size can affect both individual
and stand level transpiration because of the different physio-
logical characteristics and biometrics of trees associated with
them (Kostner et al., 2002; Tsuruta et al., 2023). Within the
same species, the larger — presumably older — trees have an
advantage in accessing the deeper water storages because of
their larger root biomass (Le Goff and Ottorini, 2001), and
root plasticity may be able to shift the depth of water up-
take, while younger trees rely on shallower soil water stor-
ages (Dawson, 1996). Our results can be interpreted as tree
size, which can be attributed to tree age, affecting root wa-
ter uptake patterns through differential root biomass devel-
opment. Furthermore, in the Hainich range the coexisting
species most likely represent a highly coherent rooting depth
distribution among trees (Gebauer et al., 2012; Meinen et al.,
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2009) yet adopt different water uptake strategies (see below).
Hence, consistent with previous studies focusing on temper-
ate tree species, the linear mixed-effects model results indi-
cate that trees of different sizes respond to declining soil wa-
ter content by shifting water uptake depth.

4.3 Tree species richness regulates root water uptake
patterns

In addition to the basal area, we included the number of
species and the number of tree individuals in the linear
mixed-effects analysis to further explore the biotic drivers
of root water uptake patterns. While the number of trees
was unimportant, the number of species and the basal area
showed a significant interaction effect on the local water up-
take. The result indicates that an increase in species rich-
ness leads to greater root water uptake, depending on the
size and/or density of the neighboring trees: a higher basal
area, combined with more species, elevates water uptake.
In other words, the interactions between neighboring tree
species strongly determine root water uptake patterns, and
for the same basal area, more water can be taken up in a di-
verse neighborhood than in a less diverse location.

In temperate forests, transpiration has been observed to
change with tree species richness at the stand level (Krimer
and Holscher, 2010; Gebauer et al., 2012; Kunert et al.,
2012; MeiBner et al., 2012; Forrester, 2014). Although some
studies indicate a positive relationship between tree diver-
sity and water uptake rate (Forrester et al., 2010; Kridmer
and Holscher, 2010; Kunert et al., 2012), tree species diver-
sity is not always positively related to water uptake. While
Kriamer and Holscher (2010) observed a positive correlation
between water uptake and species richness of the plots in
the upper soil layers during soil drying in 2006 at the same
study site, MeiBiner et al. (2012) found no relationship be-
tween tree diversity and root water uptake in 2009. They
attributed this finding to wetter soil conditions. In contrast,
Liibbe et al. (2016) observed a weak effect of diversity on
transpiration under wetter soil conditions but not under drier
conditions compared to previous studies (e.g., Pretzsch et al.,
2013; del Rio et al., 2014). Shortage of water can inflate com-
petition mechanisms for water among tree species (Gonzélez
de Andrés et al., 2018; Vitali et al., 2018; Magh et al., 2020).
Our results indicate that competition between neighboring
tree species increases water uptake capacity in more diverse
spots (Wambsganss et al., 2021).

In addition, different co-existing tree species can facili-
tate resource uptake or reduce competition, depending on
the temporal and spatial availability of the sources, which
is often defined as complementarity (Forrester and Bauhus,
2016). As reviewed and listed by Silvertown et al. (2015),
several studies suggest that co-existing tree species reduce
competition for subsurface water sources by adopting differ-
ent vertical root water uptake strategies, referred to as hy-
drological niche partitioning. In addition, trees can transport
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water from wet to dry parts of the soil layers through their
roots (Neumann and Cardon, 2012). The mechanism is called
hydraulic redistribution or hydraulic lift, which can provide
water availability to the shallow roots in drier layers (Burgess
et al., 1998; Jonard et al., 2011; Hafner et al., 2017, 2021;
Lee et al., 2018; Rodriguez-Robles et al., 2020). In an exper-
iment with six temperate tree species, including European
beech, Hafner et al. (2021) found that the neighboring tree
species diversity may not be important for exploiting wa-
ter uptake through hydraulic redistribution. Both hydraulic
niche partitioning and redistribution have been observed ver-
tically, whereas horizontal patterns are largely unexplored in
the context of niche partitioning (Hildebrandt, 2020). Our re-
sults do not provide direct evidence for either hydraulic re-
distribution or horizontal niche partitioning. However, they
indicate that horizontal root water uptake patterns are reg-
ulated by species richness and interactions between neigh-
boring trees. Thus, here we emphasize the complex interplay
between tree species diversity, complementary mechanisms,
and water uptake patterns, which is consistent not only with
the abovementioned plot-scale studies, but also with larger-
scale studies. For instance, Knighton et al. (2019), using the
Budyko framework across more than 100 catchments, found
that transpiration losses in catchments with deep-rooted and
mixed-species forests differed from those in monoculture
catchments. In other words, both plot- and catchment-scale
studies support our results showing that interactions among
different coexisting species play a significant role in the spa-
tiotemporal variation of root water uptake.

5 Conclusion

We investigated the factors that influence the spatial patterns
of root water uptake by considering heterogeneity in through-
fall and soil water. To that end, we acquired a comprehen-
sive dataset based on throughfall measurements paired with
soil moisture sensors in a mixed deciduous forest. Soil and
neighboring tree characteristics were also included in the lin-
ear mixed-effects model. We found that variation in root wa-
ter uptake did not correspond to throughfall, consequently
rejecting our hypothesis that variation in throughfall is im-
printed in water uptake patterns. Wetter soil locations, also
poorly associated with higher throughfall, increased local
root water uptake. In contrast, how average soil water con-
ditions modified root water uptake depended on the neigh-
borhood basal area. As the site dried out, large trees likely
took up water in deeper layers to meet transpiration demands.
Furthermore, an increase in species diversity promoted root
water uptake, similarly depending on the sizes of neighbor-
ing trees and suggesting active complementarity mechanisms
in the forest stand. In conclusion, our results show that soil
water distribution and neighboring tree characteristics regu-
late root water uptake patterns more than soil properties and
throughfall variation.
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