Articles | Volume 27, issue 4
https://doi.org/10.5194/hess-27-873-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-873-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Flexible forecast value metric suitable for a wide range of decisions: application using probabilistic subseasonal streamflow forecasts
Richard Laugesen
CORRESPONDING AUTHOR
School of Civil, Environmental and Mining Engineering, University of Adelaide, Adelaide, SA, Australia
Bureau of Meteorology, Canberra, ACT, Australia
Mark Thyer
School of Civil, Environmental and Mining Engineering, University of Adelaide, Adelaide, SA, Australia
David McInerney
School of Civil, Environmental and Mining Engineering, University of Adelaide, Adelaide, SA, Australia
Dmitri Kavetski
School of Civil, Environmental and Mining Engineering, University of Adelaide, Adelaide, SA, Australia
Related authors
Christopher A. Pickett-Heaps, Patrick Sunter, Wendy Sharples, Michael Pegios, Catherine Wilson, Alex Cornish, Richard Laugesen, and Elisabetta Carrara
EGUsphere, https://doi.org/10.5194/egusphere-2025-1379, https://doi.org/10.5194/egusphere-2025-1379, 2025
Short summary
Short summary
This study evaluates seasonal forecast skill of river discharge from (1) a gridded hydrological model coupled with statistical post-processing and (2) a locally calibrated statistical hydrological model dependant on recent hydrological observations. Results indicate a similar level of forecast skill. The statistical post-processor is not dependant on recent observations to maintain forecast skill, a finding that will have a positive impact on operational hydrological forecasting.
David McInerney, Mark Thyer, Dmitri Kavetski, Richard Laugesen, Fitsum Woldemeskel, Narendra Tuteja, and George Kuczera
Hydrol. Earth Syst. Sci., 26, 5669–5683, https://doi.org/10.5194/hess-26-5669-2022, https://doi.org/10.5194/hess-26-5669-2022, 2022
Short summary
Short summary
Streamflow forecasts a day to a month ahead are highly valuable for water resources management. Current practice often develops forecasts for specific lead times and aggregation timescales. In contrast, a single, seamless forecast can serve multiple lead times/timescales. This study shows seamless forecasts can match the performance of forecasts developed specifically at the monthly scale, while maintaining quality at other lead times. Hence, users need not sacrifice capability for performance.
Christopher A. Pickett-Heaps, Patrick Sunter, Wendy Sharples, Michael Pegios, Catherine Wilson, Alex Cornish, Richard Laugesen, and Elisabetta Carrara
EGUsphere, https://doi.org/10.5194/egusphere-2025-1379, https://doi.org/10.5194/egusphere-2025-1379, 2025
Short summary
Short summary
This study evaluates seasonal forecast skill of river discharge from (1) a gridded hydrological model coupled with statistical post-processing and (2) a locally calibrated statistical hydrological model dependant on recent hydrological observations. Results indicate a similar level of forecast skill. The statistical post-processor is not dependant on recent observations to maintain forecast skill, a finding that will have a positive impact on operational hydrological forecasting.
David McInerney, Mark Thyer, Dmitri Kavetski, Richard Laugesen, Fitsum Woldemeskel, Narendra Tuteja, and George Kuczera
Hydrol. Earth Syst. Sci., 26, 5669–5683, https://doi.org/10.5194/hess-26-5669-2022, https://doi.org/10.5194/hess-26-5669-2022, 2022
Short summary
Short summary
Streamflow forecasts a day to a month ahead are highly valuable for water resources management. Current practice often develops forecasts for specific lead times and aggregation timescales. In contrast, a single, seamless forecast can serve multiple lead times/timescales. This study shows seamless forecasts can match the performance of forecasts developed specifically at the monthly scale, while maintaining quality at other lead times. Hence, users need not sacrifice capability for performance.
Marco Dal Molin, Dmitri Kavetski, and Fabrizio Fenicia
Geosci. Model Dev., 14, 7047–7072, https://doi.org/10.5194/gmd-14-7047-2021, https://doi.org/10.5194/gmd-14-7047-2021, 2021
Short summary
Short summary
This paper introduces SuperflexPy, an open-source Python framework for building flexible conceptual hydrological models. SuperflexPy is available as open-source code and can be used by the hydrological community to investigate improved process representations, for model comparison, and for operational work.
Cited articles
Abaza, M., Anctil, F., Fortin, V., and Turcotte, R.: A Comparison of the
Canadian Global and Regional Meteorological Ensemble Prediction Systems for
Short-Term Hydrological Forecasting, Mon. Weather Rev., 141, 3462–3476,
https://doi.org/10.1175/MWR-D-12-00206.1, 2013.
Anghileri, D., Monhart, S., Zhou, C., Bogner, K., Castelletti, A., Burlando,
P., and Zappa, M.: The Value of Subseasonal Hydrometeorological Forecasts to
Hydropower Operations: How Much Does Preprocessing Matter?, Water Resour.
Res., 55, 10159–10178, https://doi.org/10.1029/2019WR025280, 2019.
An-Vo, D.-A., Mushtaq, S., Reardon-Smith, K., Kouadio, L., Attard, S., Cobon, D., and Stone, R.: Value of seasonal forecasting for sugarcane farm irrigation planning, Eur. J. Agron., 104, 37–48, https://doi.org/10.1016/j.eja.2019.01.005, 2019.
Babcock, B. A., Choi, E. K., and Feinerman, E.: Risk and probability premiums for CARA utility functions, J. Agricult. Resou. Econ., 18, 17–24, https://doi.org/10.22004/ag.econ.30810, 1993.
Bennett, J. C., Robertson, D. E., Wang, Q. J., Li, M., and Perraud, J.-M.:
Propagating reliable estimates of hydrological forecast uncertainty to many
lead times, J. Hydrol., 603, 126798, https://doi.org/10.1016/j.jhydrol.2021.126798, 2021.
Bischiniotis, K., van den Hurk, B., Coughlan de Perez, E., Veldkamp, T.,
Nobre, G. G., and Aerts, J.: Assessing time, cost and quality trade-offs in
forecast-based action for floods, Int. J. Disast. Risk Reduct., 40, 101252, https://doi.org/10.1016/j.ijdrr.2019.101252, 2019.
Bogner, K., Liechti, K., and Zappa, M.: Post-Processing of Stream Flows in
Switzerland with an Emphasis on Low Flows and Floods, Water, 8, 115,
https://doi.org/10.3390/w8040115, 2016.
Cantonati, M., Poikane, S., Pringle, C. M., Stevens, L. E., Turak, E., Heino, J., Richardson, J. S., Bolpagni, R., Borrini, A., Cid, N., Čtvrtlíková, M., Galassi, D. M. P., Hájek, M., Hawes, I.,
Levkov, Z., Naselli-Flores, L., Saber, A. A., Cicco, M. D., Fiasca, B.,
Hamilton, P. B., Kubečka, J., Segadelli, S., and Znachor, P.: Characteristics, Main Impacts, and Stewardship of Natural and Artificial
Freshwater Environments: Consequences for Biodiversity Conservation, Water,
12, 260, https://doi.org/10.3390/w12010260, 2020.
Carr, R. H., Semmens, K., Montz, B., and Maxfield, K.: Improving the Use of
Hydrologic Probabilistic and Deterministic Information in Decision-Making,
B. Am. Meteorol. Soc., 102, E1878–E1896, https://doi.org/10.1175/BAMS-D-21-0019.1, 2021.
Cassagnole, M., Ramos, M.-H., Zalachori, I., Thirel, G., Garçon, R.,
Gailhard, J., and Ouillon, T.: Impact of the quality of hydrological forecasts on the management and revenue of hydroelectric reservoirs – a
conceptual approach, Hydrol. Earth Syst. Sci., 25, 1033–1052,
https://doi.org/10.5194/hess-25-1033-2021, 2021.
Cloke, H. L. and Pappenberger, F.: Ensemble flood forecasting: A review, J. Hydrol., 375, 613–626, https://doi.org/10.1016/j.jhydrol.2009.06.005, 2009.
Dorrington, J., Finney, I., Palmer, T., and Weisheimer, A.: Beyond skill
scores: exploring sub-seasonal forecast value through a case-study of French
month-ahead energy prediction, Q. J. Roy. Meteorol. Soc., 146, 3623–3637, https://doi.org/10.1002/qj.3863, 2020.
Duan, Q. Pappenberger, F., Wood, A., Cloke, H. L., and Schaake, J. C. (Eds.): Handbook of Hydrometeorological Ensemble Forecasting edited by Qingyun Duan, Springer, Berlin, Heidelberg, ISBN 978-3-642-39925-1, 2019.
Expósito, A., Beier, F., and Berbel, J.: Hydro-Economic Modelling for
Water-Policy Assessment Under Climate Change at a River Basin Scale: A Review, Water, 12, 1559, https://doi.org/10.3390/w12061559, 2020.
Foley, M. and Loveday, N.: Comparison of Single-Valued Forecasts in a
User-Oriented Framework, Weather Forecast., 35, 1067–1080,
https://doi.org/10.1175/WAF-D-19-0248.1, 2020.
Fundel, V. J., Fleischhut, N., Herzog, S. M., Göber, M., and Hagedorn,
R.: Promoting the use of probabilistic weather forecasts through a dialogue
between scientists, developers and end-users, Q. J. Roy. Meteorol. Soc., 145, 210–231, https://doi.org/10.1002/qj.3482, 2019.
Grafton, R. Q. and Wheeler, S. A.: Economics of Water Recovery in the
Murray-Darling Basin, Australia, Annu. Rev. Resour. Econ., 10, 487–510,
https://doi.org/10.1146/annurev-resource-100517-023039, 2018.
Harless, D. W. and Camerer, C. F.: The Predictive Utility of Generalized
Expected Utility Theories, Econometrica, 62, 1251–1289, https://doi.org/10.2307/2951749, 1994.
Hudson, D., Alves, O., Hendon, H. H., Lim, E.-P., Liu, G., Luo, J.-J., MacLachlan, C., Marshall, A. G., Shi, L., Wang, G., Wedd, R., Young, G., Zhao, M., and Zhou, X.: ACCESS-S1 The new Bureau of Meteorology multi-week to seasonal prediction system, J. South. Hemisph. Earth Syst. Sci., 67, 132–159, https://doi.org/10.22499/3.6703.001, 2017.
Jackson, S. and Moggridge, B.: Indigenous water management, Aust. J. Environ. Manage., 26, 193–196, https://doi.org/10.1080/14486563.2019.1661645, 2019.
Jones, D., Wang, W., and Fawcett, R. J. B.: High-quality spatial climate
data-sets for Australia, Aust. Meteorol. Oceanogr. J., 58, 233–248, 2009.
Kahneman, D. and Tversky, A.: Prospect Theory: An Analysis of Decision under
Risk, Econometrica, 47, 263–291, https://doi.org/10.2307/1914185, 1979.
Katz, R. W. and Lazo, J. K.: Economic Value of Weather and Climate Forecasts, Oxford University Press, https://doi.org/10.1093/oxfordhb/9780195398649.013.0021, 2011.
Katz, R. W. and Murphy, A. H. (Eds.): Economic Value of Weather and Climate
Forecasts, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511608278, 1997.
Laio, F. and Tamea, S.: Verification tools for probabilistic forecasts of
continuous hydrological variables, Hydrol. Earth Syst. Sci., 11, 1267–1277,
https://doi.org/10.5194/hess-11-1267-2007, 2007.
Lala, J., Bazo, J., Anand, V., and Block, P.: Optimizing forecast-based actions for extreme rainfall events, Clim. Risk Manage., 34, 100374,
https://doi.org/10.1016/j.crm.2021.100374, 2021.
Laugesen, R., Thyer, M., McInerney, D., and Kavetski, D.: Supporting data
for “Flexible forecast value metric suitable for a wide range of decisions:
application using probabilistic subseasonal streamflow forecasts” by
Laugesen et al. (2022), University of Adelaide [data set], https://doi.org/10.25909/19153055.v1, 2022.
Li, C., Cheng, X., Li, N., Liang, Z., Wang, Y., and Han, S.: A Three-Parameter S-Shaped Function of Flood Return Period and Damage, Adv. Meteorol., 2016, e6583906, https://doi.org/10.1155/2016/6583906, 2016.
Li, M., Wang, Q. J., Bennett, J. C., and Robertson, D. E.: Error reduction
and representation in stages (ERRIS) in hydrological modelling for ensemble
streamflow forecasting, Hydrol. Earth Syst. Sci., 20, 3561–3579,
https://doi.org/10.5194/hess-20-3561-2016, 2016.
Lopez, A., Coughlan de Perez, E., Bazo, J., Suarez, P., van den Hurk, B.,
and van Aalst, M.: Bridging forecast verification and humanitarian decisions: A valuation approach for setting up action-oriented early warnings, Weather Clim. Extrem., 27, 100167, https://doi.org/10.1016/j.wace.2018.03.006, 2020.
Lucatero, D., Madsen, H., Refsgaard, J. C., Kidmose, J., and Jensen, K. H.:
Seasonal streamflow forecasts in the Ahlergaarde catchment, Denmark: the effect of preprocessing and post-processing on skill and statistical
consistency, Hydrol. Earth Syst. Sci., 22, 3601–3617, https://doi.org/10.5194/hess-22-3601-2018, 2018.
Marzban, C.: Displaying Economic Value, Weather Forecast., 27, 1604–1612, https://doi.org/10.1175/WAF-D-11-00138.1, 2012.
Mas-Colell, A.: Microeconomic theory, Oxford University Press, New York,
167–208, ISBN 0195073401, 1995.
Matte, S., Boucher, M.-A., Boucher, V., and Fortier Filion, T.-C.: Moving
beyond the cost–loss ratio: economic assessment of streamflow forecasts for
a risk-averse decision maker, Hydrol. Earth Syst. Sci., 21, 2967–2986, https://doi.org/10.5194/hess-21-2967-2017, 2017.
McInerney, D., Thyer, M., Kavetski, D., Lerat, J., and Kuczera, G.: Improving probabilistic prediction of daily streamflow by identifying Pareto optimal approaches for modeling heteroscedastic residual errors, Water Resour. Res., 53, 2199–2239, https://doi.org/10.1002/2016WR019168, 2017.
McInerney, D., Thyer, M., Kavetski, D., Laugesen, R., Tuteja, N., and Kuczera, G.: Multi-temporal Hydrological Residual Error Modeling for Seamless Subseasonal Streamflow Forecasting, Water Resour. Res., 56, e2019WR026979, https://doi.org/10.1029/2019WR026979, 2020.
McInerney, D., Thyer, M., Kavetski, D., Laugesen, R., Woldemeskel, F., Tuteja, N., and Kuczera, G.: Improving the Reliability of Sub-Seasonal Forecasts of High and Low Flows by Using a Flow-Dependent Nonparametric
Model, Water Resour. Res., 57, e2020WR029317, https://doi.org/10.1029/2020WR029317, 2021.
McInerney, D., Thyer, M., Kavetski, D., Laugesen, R., Woldemeskel, F., Tuteja, N., and Kuczera, G.: Seamless streamflow forecasting at daily to monthly scales: MuTHRE lets you have your cake and eat it too, Hydrol. Earth Syst. Sci., 26, 5669–5683, https://doi.org/10.5194/hess-26-5669-2022, 2022.
Monhart, S., Zappa, M., Spirig, C., Schär, C., and Bogner, K.: Subseasonal hydrometeorological ensemble predictions in small- and medium-sized mountainous catchments: benefits of the NWP approach, Hydrol.
Earth Syst. Sci., 23, 493–513, https://doi.org/10.5194/hess-23-493-2019, 2019.
Murphy, A. H.: Value of climatological, categorical and probabilistic forecasts in cost-loss ratio situation, Mon. Weather Rev., 105, 803–816, https://doi.org/10.1175/1520-0493(1977)105<0803:tvocca>2.0.co;2, 1977.
Murphy, A. H.: What Is a Good Forecast? An Essay on the Nature of Goodness
in Weather Forecasting, Weather Forecast., 8, 281–293,
https://doi.org/10.1175/1520-0434(1993)008<0281:WIAGFA>2.0.CO;2, 1993.
Murphy, A. H. and Ehrendorfer, M.: On the Relationship between the Accuracy
and Value of Forecasts in the Cost–Loss Ratio Situation, Weather Forecast., 2, 243–251, https://doi.org/10.1175/1520-0434(1987)002<0243:OTRBTA>2.0.CO;2, 1987.
Murray–Darling Basin Authority: Modelling assessment to determine SDL
Adjustment Volume, MDBA publication no. 35/17, Murray–Darling Basin Authority, Canberra, Australia, ISBN 978-1-925599-41-1, 2017.
Mylne, K. R.: Decision-making from probability forecasts based on forecast
value, Meteorol. Appl., 9, 307–315, https://doi.org/10.1017/s1350482702003043, 2002.
Neumann, J. V.: Theory Of Games And Economic Behavior, Princeton University Press, https://nla.gov.au/nla.cat-vn2335830 (last access: 25 January 2023), 1944.
Palmer, T. N.: The economic value of ensemble forecasts as a tool for risk
assessment: From days to decades, Q. J. Roy. Meteorol. Soc., 128, 747–774, https://doi.org/10.1256/0035900021643593, 2002.
Peñuela, A., Hutton, C., and Pianosi, F.: Assessing the value of seasonal hydrological forecasts for improving water resource management: insights from a pilot application in the UK, Hydrol. Earth Syst. Sci., 24, 6059–6073, https://doi.org/10.5194/hess-24-6059-2020, 2020.
Perrin, C., Michel, C., and Andréassian, V.: Improvement of a parsimonious model for streamflow simulation, J. Hydrol., 279, 275–289, https://doi.org/10.1016/S0022-1694(03)00225-7, 2003.
Portele, T. C., Lorenz, C., Dibrani, B., Laux, P., Bliefernicht, J., and
Kunstmann, H.: Seasonal forecasts offer economic benefit for hydrological
decision making in semi-arid regions, Sci. Rep., 11, 10581,
https://doi.org/10.1038/s41598-021-89564-y, 2021.
Pratt, J. W.: Risk Aversion in the Small and in the Large, Econometrica, 32,
122–136, https://doi.org/10.2307/1913738, 1964.
Richardson, D. S.: Skill and relative economic value of the ECMWF ensemble
prediction system, Q. J. Roy. Meteorol. Soc., 126, 649–667, https://doi.org/10.1256/smsqj.56312, 2000.
Roebber, P. J. and Bosart, L. F.: The Complex Relationship between Forecast
Skill and Forecast Value: A Real-World Analysis, Weather Forecast., 11,
544–559, https://doi.org/10.1175/1520-0434(1996)011<0544:TCRBFS>2.0.CO;2, 1996.
Roulin, E.: Skill and relative economic value of medium-range hydrological
ensemble predictions, Hydrol. Earth Syst. Sci., 11, 725–737,
https://doi.org/10.5194/hess-11-725-2007, 2007.
Schepen, A., Zhao, T., Wang, Q. J., and Robertson, D. E.: A Bayesian modelling method for post-processing daily sub-seasonal to seasonal rainfall
forecasts from global climate models and evaluation for 12 Australian
catchments, Hydrol. Earth Syst. Sci., 22, 1615–1628, https://doi.org/10.5194/hess-22-1615-2018, 2018.
Schmitt Quedi, E. and Mainardi Fan, F.: Sub seasonal streamflow forecast
assessment at large-scale basins, J. Hydrol., 584, 124635,
https://doi.org/10.1016/j.jhydrol.2020.124635, 2020.
Soares, M. B., Daly, M., and Dessai, S.: Assessing the value of seasonal
climate forecasts for decision-making, Wiley Interdisciplin. Rev.-Clim. Change, 9, e523, https://doi.org/10.1002/wcc.523, 2018.
Tabari, H.: Climate change impact on flood and extreme precipitation increases with water availability, Sci. Rep., 10, 13768,
https://doi.org/10.1038/s41598-020-70816-2, 2020.
Tena, E. C. and Gómez, S. Q.: Cost-Loss Decision Models with Risk
Aversion, Complutense de Estudios Internacionales, 28 pp., ISBN 978-84-691-3436-8, 2008.
Thiboult, A., Anctil, F., and Ramos, M. H.: How does the quantification of
uncertainties affect the quality and value of flood early warning systems?,
J. Hydrol., 551, 365–373, https://doi.org/10.1016/j.jhydrol.2017.05.014, 2017.
Thompson, J. C.: On the Operational Deficiences in Categorical Weather
Forecasts, B. Am. Meteorol. Soc., 33, 223–226, 1952.
Turner, S. W. D., Bennett, J. C., Robertson, D. E., and Galelli, S.: Complex
relationship between seasonal streamflow forecast skill and value in reservoir operations, Hydrol. Earth Syst. Sci., 21, 4841–4859,
https://doi.org/10.5194/hess-21-4841-2017, 2017.
Tversky, A. and Kahneman, D.: Advances in prospect theory: Cumulative
representation of uncertainty, J. Risk. Uncertain., 5, 297–323,
https://doi.org/10.1007/BF00122574, 1992.
UNESCO (Ed.): Managing water under uncertainty and risk, UNESCO, Paris, 780 pp., UNESCO, ISBN 978-92-3-001045-4, 2012.
United Nations: International UN-Water Conference, Water in the Green
Economy in Practice: Towards Rio+20, 3–5 October 2011, Zaragoza, Spain,
https://www.un.org/waterforlifedecade/green_economy_2011/ (last access: 10 January 2022), 2011.
Verkade, J. S., Brown, J. D., Davids, F., Reggiani, P., and Weerts, A. H.:
Estimating predictive hydrological uncertainty by dressing deterministic and
ensemble forecasts; a comparison, with application to Meuse and Rhine, J. Hydrol., 555, 257–277, https://doi.org/10.1016/j.jhydrol.2017.10.024, 2017.
Werner, J.: Risk Aversion, in: The New Palgrave Dictionary of Economics,
Palgrave Macmillan, UK, 1–6, https://doi.org/10.1057/978-1-349-95121-5_2741-1, 2008.
White, C. J., Franks, S. W., and McEvoy, D.: Using subseasonal-to-seasonal (S2S) extreme rainfall forecasts for extended-range flood prediction in Australia, in: Proceedings of the International Association of Hydrological Sciences, Changes in Flood Risk and Perception in Catchments and Cities – IAHS Symposium HS01, 26th General Assembly of the International Union of Geodesy and Geophysics, 22 June–2 July 2015, Prague, Czech Republic, 229–234, https://doi.org/10.5194/piahs-370-229-2015, 2015.
Wilks, D. S.: Statistical Methods in the Atmospheric Sciences: An Introduction, in: International Geophysics, Elsevier Science & Technology, Burlington, ISBN 0-12-751965-3, 1995.
Wilks, D. S.: A skill score based on economic value for probability forecasts, Meteorol. Appl., 8, 209–219, https://doi.org/10.1017/S1350482701002092, 2001.
Wilks, D. S. and Hamill, T. M.: Potential Economic Value of Ensemble-Based
Surface Weather Forecasts, Mon. Weather Rev., 123, 3565–3575,
https://doi.org/10.1175/1520-0493(1995)123<3565:PEVOEB>2.0.CO;2, 1995.
Woldemeskel, F., McInerney, D., Lerat, J., Thyer, M., Kavetski, D., Shin, D., Tuteja, N., and Kuczera, G.: Evaluating post-processing approaches for monthly and seasonal streamflow forecasts, Hydrol. Earth Syst. Sci., 22, 6257–6278, https://doi.org/10.5194/hess-22-6257-2018, 2018.
Wu, W., Emerton, R., Duan, Q., Wood, A. W., Wetterhall, F., and Robertson, D. E.: Ensemble flood forecasting: Current status and future opportunities, WIREs Water, 7, e1432, https://doi.org/10.1002/wat2.1432, 2020.
Zhang, X. S., Amirthanathan, G. E., Bari, M. A., Laugesen, R. M., Shin, D.,
Kent, D. M., MacDonald, A. M., Turner, M. E., and Tuteja, N. K.: How
streamflow has changed across Australia since the 1950s: Evidence from the
network of hydrologic reference stations, Hydrol. Earth Syst. Sci., 20, 3947–3965, https://doi.org/10.5194/hess-20-3947-2016, 2016.
Zhu, Y. J., Toth, Z., Wobus, R., Richardson, D., and Mylne, K.: The economic
value of ensemble-based weather forecasts, B. Am. Meteorol. Soc., 83, 73–84, https://doi.org/10.1175/1520-0477(2002)083<0073:tevoeb>2.3.co;2, 2002.
Short summary
Forecasts may be valuable for user decisions, but current practice to quantify it has critical limitations. This study introduces RUV (relative utility value, a new metric that can be tailored to specific decisions and decision-makers. It illustrates how critical this decision context is when evaluating forecast value. This study paves the way for agencies to tailor the evaluation of their services to customer decisions and researchers to study model improvements through the lens of user impact.
Forecasts may be valuable for user decisions, but current practice to quantify it has critical...