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Abstract. Streamflow forecasts have the potential to improve
water resource decision-making, but their economic value
has not been widely evaluated, since current forecast value
methods have critical limitations. The ubiquitous measure
for forecast value, the relative economic value (REV) met-
ric, is limited to binary decisions, the cost–loss economic
model, and risk-neutral decision-makers (users). Expected
utility theory can flexibly model more real-world decisions,
but its application in forecasting has been limited and the
findings are difficult to compare with those from REV. In
this study, a new metric for evaluating forecast value, relative
utility value (RUV), is developed using expected utility the-
ory. RUV has the same interpretation as REV, which enables
a systematic comparison of results, but RUV is more flexi-
ble and better represents real-world decisions because more
aspects of the decision context are user-defined. In addition,
when specific assumptions are imposed, it is shown that REV
and RUV are equivalent, hence REV can be considered a spe-
cial case of the more general RUV. The key differences and
similarities between REV and RUV are highlighted, with a
set of experiments performed to explore the sensitivity of
RUV to different decision contexts, such as different decision
types (binary, multi-categorical, and continuous-flow deci-
sions), various levels of user risk aversion, and varying the
relative expense of mitigation. These experiments use an il-
lustrative case study of probabilistic subseasonal streamflow
forecasts (with lead times up to 30 d) in a catchment in the
southern Murray–Darling Basin of Australia. The key out-
comes of the experiments are (i) choice of decision type
has an impact on forecast value, hence it is critically impor-
tant to match the decision type with the real-world decision;
(ii) forecasts are typically more valuable for risk averse users,

but the impact varies depending on the decision context; and
(iii) risk aversion impact is mediated by how large the po-
tential damages are for a given decision. All outcomes were
found to critically depend on the relative expense of mitiga-
tion (i.e. the cost of action to mitigate damages relative to
the magnitude of damages). In particular, for users with rela-
tively high expense of mitigation, using an unrealistic binary
decision to approximate a multi-categorical or continuous-
flow decision gives a misleading measure of forecast value
for forecasts longer than 1 week lead time. These findings
highlight the importance of the flexibility of RUV, which en-
able evaluation of forecast value to be tailored to specific de-
cisions/users and hence better capture real-world decision-
making. RUV complements forecast verification and enables
assessment of forecast systems through the lens of user im-
pact.

1 Introduction

Effective water resource management is critically impor-
tant to human welfare, thriving environmental ecosystems,
agricultural productivity, power generation, town supply,
and economic growth (United Nations, 2011; UNESCO,
2012). The management and equitable distribution of water
to competing stakeholders is challenging due to long-term
decreasing trends in available surface water (Zhang et al.,
2016), increasing high-intensity storm events (Tabari, 2020),
river basins over-allocated to irrigated agriculture (Grafton
and Wheeler, 2018), and deteriorated ecosystems dependent
on river systems (Cantonati et al., 2020). Environmental
decision-making depends largely on the current and antici-
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pated hydrometeorological conditions and is frequently in-
formed by streamflow forecasts. Many decisions, such as
reservoir operations and early flood warnings, benefit from
forecasts at a subseasonal time horizon (2–8 week lead times)
because of long river travel times, operational constraints,
and logistical overheads (White et al., 2015; Monhart et al.,
2019). Previous studies have used forecast verification tech-
niques to demonstrate that subseasonal streamflow forecasts
are becoming more skilful at longer lead times with reliable
estimates of uncertainty (Schmitt Quedi and Mainardi Fan,
2020; McInerney et al., 2020). However, it is not clear
whether forecasts should be used to inform water-sensitive
decisions once economic and other factors are considered,
thus posing the key question, “do the forecasts provide eco-
nomic value for decisions-makers?”. These factors are typ-
ically not considered when evaluating the performance of
forecasts, largely due to the limitations of available forecast
value methods. This study addresses this gap by developing a
new forecast value method that is applicable for a wide range
of water-sensitive decisions, such as storage release manage-
ment and environmental watering.

Forecast verification is the comparison of a set of forecasts
spanning a historical period to the observed record using sta-
tistical performance metrics. The hydrological forecasting
community uses numerous statistical metrics to summarise
the performance of ensemble forecasts, including the contin-
uous rank probability score (CRPS) for accuracy and metrics
based on the probability integral transform for statistical re-
liability (e.g. Cloke and Pappenberger, 2009; McInerney et
al., 2017; Woldemeskel et al., 2018; Bennett et al., 2021).
Forecast verification is necessary but insufficient for users to
confidently adopt forecasts into their operational and strate-
gic decision-making processes. For example, it does not con-
sider the broader context for which a decision is made, the
economic trade-offs, and different decision types. Forecast
value measures the improvements, in an economic sense, that
can be achieved by using one source of forecast information
relative to another. It explicitly considers the broader deci-
sion context, with economics being one of the most tractable
aspects to analyse. When using forecast verification as a
proxy for forecast value, we are implicitly assuming that bet-
ter forecast performance (according to our verification met-
rics) implies more value. However, additional forecast per-
formance is not necessarily a good predictor of additional
benefit to a user (Murphy, 1993; Roebber and Bosart, 1996;
Marzban, 2012). Exploring the relationship between forecast
performance and value over a range of use cases and lead
times is an active area of research, particularly for inflows
into hydropower reservoirs (Turner et al., 2017; Anghileri et
al., 2019; Peñuela et al., 2020; Cassagnole et al., 2021) and
early-warning decision making for extreme events (Bischin-
iotis et al., 2019; Lopez et al., 2020; Lala et al., 2021).

Streamflow forecasts can improve the outcomes of a
range of decisions, including binary, multi-categorical, and
continuous-flow decision types. For example, water level ex-

ceeding the height of a levee is a binary decision, and emer-
gency response decisions in relation to a minor, moderate,
and major flood classification is a familiar multi-categorical
decision. A mitigation decision based on continuous flow is
the limiting case of a very large number of flow classes –
for example, adjusting dam releases to match storage inflow
during flood operations. While decisions involving more flow
classes are an essential feature of many real-world decisions,
a binary decision has traditionally been used as the prototypi-
cal model of decision-making in decision-theoretic literature
(Katz and Murphy, 1997). The most frequently used forecast
value method in hydrology and meteorology is relative eco-
nomic value (REV), which is unable to handle a wide range
of decision types. Substantial research in the field of meteo-
rology has explored the value of temperature, wind, and rain-
fall forecasts for user decisions using REV (e.g. Richardson,
2000; Wilks, 2001; Mylne, 2002; Palmer, 2002; Zhu et al.,
2002; Foley and Loveday, 2020; Dorrington et al., 2020).
There is an ongoing interest in hydrology to quantify the
value of forecasts for decision-making using REV (e.g. Laio
and Tamea, 2007; Roulin, 2007; Abaza et al., 2013; Thiboult
et al., 2017; Verkade et al., 2017; Portele et al., 2021), al-
though there have not been applications with subseasonal
streamflow forecasts. REV is convenient in its tractability but
has strong assumptions about the decision type, economic
model, and user behaviour that neglect important aspects of
decision-making and have implications on the conclusions
reached (Tversky and Kahneman, 1992; Katz and Murphy,
1997; Matte et al., 2017; An-Vo et al., 2019).

REV is only suitable to assess forecast value for risk-
neutral users making binary decisions using a cost–loss
economic model and event frequency reference baseline
(Thompson, 1952; Murphy, 1977). This limited setup is an
excellent prototypical decision model, which is useful to
understand the salient features of forecast value, but may
give misleading results when used to model real-world de-
cisions. For example, flood warnings are a practically impor-
tant multi-categorical decision, typically classified into either
minor, moderate, or major flood impact levels, whereas REV
only handles binary decisions. Likewise, adjusting the re-
lease of water from a storage is best informed by continuous-
flow forecasts and may require a more complex economic
model than the cost–loss economic model assumed by REV.

REV is also unable to consider the impact of risk-averse
users. A user is said to be risk averse if they prefer an option
with a more certain outcome, even if it may on average lead
to a less economically beneficial outcome (Werner, 2008).
For example, a water authority deciding to announce a large
water allocation event, or an irrigator placing an order, ex-
hibit risk aversion if they prefer a forecast outcome that is
almost certain to occur rather than one that is uncertain but
potentially more beneficial.

The field of decision theory explores how agents make de-
cisions with uncertain information, and has produced a num-
ber of innovations such as expected utility theory (Neumann,
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1944; Mas-Colell, 1995). Expected utility theory is flexible
enough to model different decision types, economic models,
and risk aversion, but there is limited understanding of the
relationship and differences between it and REV. It proposes
that when faced with a choice, a rational person will select
the option leading to an outcome that maximises their utility;
an ordinal measure based on the ranking of outcomes. Dif-
ferent people may rank outcomes differently because of their
specific preferences, such as risk aversion. While expected
utility theory is widely used in economics, public policy, and
financial management, it has had a very limited application in
hydrology and associated fields. Recently, Matte et al. (2017)
applied expected utility theory in a flood damage application
to assess the impact of increasing intangible losses and risk
aversion on the value of raw probabilistic streamflow fore-
casts for a single multi-categorical decision type with 12 flow
classes. This study demonstrated some benefits of forecast
value, but was case-study-specific, limited to a single multi-
categorical decision, and used metrics that are somewhat un-
familiar to the verification community. The results were not
presented on a traditional value diagram, and therefore no
comparison to REV could be made. We are unaware of any
literature that attempts to align REV with forecast value from
expected utility theory or present the results on a value dia-
gram. There is no method available to the verification com-
munity to flexibly evaluate the value of probabilistic fore-
casts for different decision types, economic models, or user
characteristics (Cloke and Pappenberger, 2009; Soares et al.,
2018).

Probabilistic forecasts of continuous hydrometeorological
variables lead to improved forecast performance in many
cases and are operationally delivered by all major forecast
producers, but users are still learning the most effective way
to use them (Duan et al., 2019; Carr et al., 2021). A common
approach for decision-making with a probabilistic forecast is
to convert it to a deterministic forecast using a fixed critical
probability threshold (Fundel et al., 2019; Wu et al., 2020).
This approach is known to lead to sub-optimal forecast value
in some situations through studies using REV (Richardson,
2000; Wilks, 2001; Zhu et al., 2002; Roulin, 2007). Matte
et al. (2017) quantified forecast value with an alternative
decision-making approach which uses the whole forecast dis-
tribution to decide on an ideal action at each forecast update.
It is not clear that this alternative approach leads to better de-
cision outcomes and we are unaware of any literature com-
paring them.

The study aims are as follows:

1. develop a methodology to systematically compare two
forecast value techniques; REV and a method based on
expected utility theory;

2. demonstrate the key differences and similarities be-
tween the approaches for different decision types and
levels of risk aversion using subseasonal streamflow
forecasts in the Murray–Darling Basin.

In Sect. 2, the theoretical background of REV and an ex-
pected utility theory approach for forecast value are in-
troduced. Section 3 proposes a new metric (relative utility
value) based on expected utility theory and details its equiv-
alence to REV when a set of assumptions are imposed. Sec-
tion 4 introduces an illustrative case study using subseasonal
forecasts and a series of experiments to explore the sensitiv-
ity of forecast value to different aspects of decision context.
Results of the case study are presented in Sect. 5 and dis-
cussed in Sect. 6, including implications for forecast users
and producers. Conclusions are drawn in Sect. 7.

2 Theoretical background

The background theory introduced here focuses on two meth-
ods to quantify the value of forecasts, namely REV and an
approach using expected utility theory introduced by Matte
et al. (2017).

2.1 Relative economic value

REV is a frequently used and excellent method to quantify
the value of forecasts for cost–loss binary decision problems
(Richardson, 2000; Wilks, 2001; Zhu et al., 2002). Cost–loss
is a well-studied economic model where some of the loss due
to a future event can be avoided by deciding to pay for an ac-
tion which will mitigate the loss (Thompson, 1952; Murphy,
1977; Katz and Murphy, 1997). Many real-world decisions,
such as insurance, can be simplified and framed in this way
as a binary categorical decision. The method assumes that
any real-world decision it is applied to can be framed in this
way.

2.1.1 REV with deterministic forecasts

Whether a user is expected to benefit in the long run from
the use of a forecast system (or an alternative) can be as-
sessed using a 2× 2 contingency table. Table 1 includes the
hit rate h, miss rate m, false alarm rate f , and correct re-
jection rate (quiets) q from a long run historical simulation,
along with the net expense from each combination of action
and occurrence, where C is the cost of an action to mitigate
the loss L. However, only a portion La of the total loss can be
avoided with the remainder Lu being unavoidable. A deriva-
tion of Eq. (2) is provided in Sect. S1 of the Supplement.

The expected long run expense E of each combination of
action and occurrence depends on the rate that combination
occurred over some historical period, and these rates will be
different depending on which forecast information is used.
The REV metric is constructed by comparing the relative dif-
ference in the total net expenses for decisions made using
forecast, perfect, and climatological baseline information,

REV=
Eclimate−Eforecast

Eclimate−Eperfect
, (1)
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Table 1. Contingency table for the cost–loss decision problem with
expenses from each possible combination of action and occurrence.
Here, C is the cost of the mitigating action, Lu is the unavoidable
portion of loss L from the event occurring, and La is avoidable por-
tion of loss from the action.

Event occurred Event did not occur

Action taken Hit rate (h) False alarm rate (f )
C+Lu C

Action not taken Miss rate (m) Quiets/correct
L= La+Lu rejection rate (q)

0

where−∞< REV≤ 1 and each expense term is the summa-
tion of the contingency table elements each weighted by the
rate of occurrence. Equation (1) is equivalent to the following
standard analytical equation for REV (Zhu et al., 2002) when
the long run average expenses from Table 1 are considered,

REV=
min(o,α)− (h+ f )α−m

min(o,α)− oα
, (2)

where o is the frequency of the binary decision event and the
parameter α is known as the cost–loss ratio.

α =
C

La
. (3)

Equation (2) is typically applied over a range of αvalues and
this set of REV results is plotted on a value diagram. This
diagram provides a visualisation of how forecast value varies
for users with different levels of costs required to mitigate
a loss, and by extension mitigation of the underlying dam-
ages. An alternative interpretation of α, which we refer to as
relative expense of mitigation (see Table 2), is the relative ex-
pense (i.e. cost) a user experiences to take action and mitigate
(i.e. avoid) their exposure to damages (i.e. loss). It is a “rel-
ative” expense of mitigation because the expense magnitude
(i.e. cost) is relative to the magnitude of the damages (i.e.
loss). This interpretation is used in this study since it is more
generalisable across different forecast value methods. Users
with smaller cost–loss ratio have a relatively lower expense
of mitigation due to their ability to leverage a lower amount
of spending (small cost) to avoid larger future damages (large
loss). Conversely, users with a large cost–loss ratio have rel-
atively high expense of mitigation, as they require a higher
amount of spending to avoid future damages. For the same
event, the relative expense of mitigation will vary for differ-
ent users and decision types. This relative expense of miti-
gation interpretation of α should not be confused with the
expected long run expense E used in the derivation Eq. (2).

Figure 1 presents an illustrative value diagram as an aid
to describe its interpretation (Richardson, 2000). The non-
dimensional cost–loss ratio α is shown on the x axis and can
be interpreted as a continuum of different decision-makers

Figure 1. Illustrative value diagram with key features annotated
with three key regions of α noted. Positive REV for users in re-
gion 2 indicates the forecasts should be preferred to the baseline
when making the decision under analysis. Negative REV for users
in region 1 and 3 indicates the baseline should be preferred.

using the forecasts, with increasingly more expensive miti-
gation. A value of α = 1 corresponds to maximum relative
expense of mitigation; if losses are USD 100 000, then the
amount to spend on a mitigating action is also USD 100 000.
A value of α = 0.1 indicates that only USD 10 000 would be
needed to mitigate the loss. The y axis shows forecast value
according to REV and has a similar interpretation to any skill
score-based metric. A value of REV= 1 indicates that deci-
sions made using forecast information successfully mitigated
the same level of losses (over the historical period) as deci-
sions made using perfect information (streamflow observa-
tions). A value of REV= 0 indicates the decisions were only
as good as those made using reference baseline. A negative
value indicates the decisions were worse than the reference.
For example, a value of REV= 0.7 at some value of α indi-
cates that decisions made using forecasts led to a 70 % im-
provement in net expense relative to decisions made using
the reference baseline, a similar interpretation to skill scores
(Wilks, 1995).

2.1.2 REV with probabilistic forecasts

Constructing a value diagram using Eq. (2) is only possible
with binary forecasts, so an additional step is required to con-
vert probabilistic forecasts into categorical forecasts to quan-
tify their value, as follows:

1. Introduce a critical probability threshold pτ to convert
the probabilistic forecast into a deterministic forecast
using the quantile function.

2. Construct a categorical forecast and contingency table
from this deterministic forecast and apply Eq. (2) over
a range of α as before.
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Table 2. Comparison of REV and RUV forecast value methods for defining decisions and user characteristics.

Relative economic value (REV) Relative utility value (RUV)

Level of damages Fixed loss (dimensionless) Damage function is flexible and can
Equivalent to step damage function be tailored to decision

Level of spending Fixed cost (dimensionless) Spend amount is optimised and varies
(expense) required Equivalent to fixed spend amount at each time step
to mitigate damages

Relative expense of Cost–loss ratio Spending-leverage parameter
mitigation

Aversion to risk Always risk neutral Level of risk aversion and type of
utility function can vary

Decision types Binary Binary, multi-categorical, or
continuous value

Forecast value baseline Historical event frequency Any alternative forecast

Probabilistic decision- Threshold approach Optimisation approach or threshold
making approach

Economic model Fixed cost–loss Economic model is flexible and can
be tailored to decision

Interpretation Value diagram Value diagram

3. Repeat step 1 and 2 for many probability thresholds over
the range 0≤τ ≤ 1 to form a set of possible REV values
for each value of α.

4. Take the maximum value from this set for each value
of α to construct a single curve that envelopes the many
curves from each value of pτ .

5. This envelope is then considered to represent the value
of the forecast system.

Constructing an envelope to represent the forecast value of
the system in step 4 can lead to a problematic interpreta-
tion. It implicitly assumes that the user will always self-
calibrate to select the best critical threshold pτ for their de-
cision before the event has occurred. This is impractical and
the method therefore leads to an overestimation of the ex-
pected forecast value. This envelope could alternatively be
interpreted as the maximum attainable forecast value. The
impracticality of this method is well understood (Zhu et al.,
2002) but frequently ignored when applied in practice.

Step 1 of the approach models how users commonly make
decisions using probabilistic forecasts. That is, before the
event has occurred (ex ante), a user will choose a probability
threshold that represents the degree of certainty they require
to act. If the forecast probability of the event occurring is
larger than this threshold, then they will act. We refer to this
as the threshold approach.

Alternatively, one could set the critical probability thresh-
old equal to α. This approach assumes that the user will
self-calibrate based on an awareness of their specific α

value (Richardson, 2000). When forecasts are perfectly re-
liable, this approach is equivalent to the maximum forecast
value from step 4 (Murphy, 1977). Forecast systems are not
perfectly reliable however, even with contemporary post-
processing methods (M. Li et al., 2016; Woldemeskel et al.,
2018; McInerney et al., 2020). The realised value curve will
therefore lie below the maximum value curve when applied
to real-world forecasts. To the best of our knowledge, stud-
ies of real-world decisions using this alternative approach
(pτ = α) have not been reported in the published literature.

2.2 Expected utility theory approach

Matte et al. (2017) introduced a method to quantify fore-
cast value based on expected utility maximisation with a
state-dependent utility. The method is flexible enough to
model binary, multi-categorical, and continuous-value deci-
sions, along with risk-averse users. The method assumes that
decisions of how much to spend on mitigating damages are
based on the forecast probability that the event will occur. We
will refer to this approach to decision-making as the optimi-
sation approach to contrast it with the threshold approach.

For a general decision problem with multiple possible fu-
ture states of world, the following equation specifies the von
Neumann–Morgenstern expected utility U for a single time
step t over M states:

Ut (Et )=

M∑
m=1

pt,mµ(Et (m)), (4)
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where pt,m is the probability of state m occurring in time
step t and Et (m) is the outcome associated with that state.
The outcome is typically, but not necessarily, in monetary
units. A utility function µ(·) maps the outcome to a utility.
This utility represents an ordinal value that the user gains
from that outcome occurring. The expected utility can be
considered a probability weighting of the transformed out-
comes of all possible states of the world.

Risk aversion is represented by the concavity of µ(·), such
that when a user is risk-averse, the utility gained from an
extra dollar is less than the utility lost when losing a dollar
(Mas-Colell, 1995); see Fig. 3b for examples of µ(·) used in
our experiments with different levels of risk aversion. There-
fore, on average, the risk is only worth taking when the prob-
ability of gaining an extra dollar is more likely than losing
a dollar; this is known as the probability premium. Absolute
risk aversion is suitable for the comparison of options whose
outcomes are absolute changes in wealth and relative risk
aversion where outcomes are percentage changes in wealth.
The degree of aversion could be constant, increasing, or de-
creasing with respect to wealth. A consumer or investor gen-
erally takes more risks as they become wealthier, and their
preferences can be reasonably approximated by decreasing
absolute risk aversion.

Matte et al. (2017) assumes that on average a public
agency water manager is more likely to exhibit constant ab-
solute risk aversion (CARA). For example, we assume that
the managers preference for precise forecasts (risk aversion)
remains fixed even if the possible losses from one decision
are larger than another decision. In this case, a utility func-
tion satisfying these properties can be defined by

µ(E;A)=−
1
A

exp(−A ·E), (5)

where the parameter A is the Arrow–Pratt coefficient of ab-
solute risk aversion and E is the economic outcome (Mas-
Colell, 1995). Babcock et al. (1993) cautions against inter-
preting the risk aversion coefficient directly and notes the
importance of considering how perception of risk aversion
depends on the possible loss. A more interpretable mea-
sure which allows comparison between studies with differ-
ent losses is the risk premium; the proportion of loss a user
would pay to eliminate a decision and replace it with a certain
outcome (Pratt, 1964). The method introduced here can use
any utility function, such as constant relative risk aversion,
which was used by Katz and Lazo (2011).

The economic model used in this study is a simplified ver-
sion of that used by Matte et al. (2017) which determines
the net outcome from a cost–loss decision. The Matte et
al. (2017) method considers calibration to monetary units,
damages informed by flood studies, intangible damages, and
distributed spending over multiple lead times. Our method
is less concerned with the absolute monetary value of fore-
casts for a specific decision and instead focuses on the rel-
ative value of one forecast over an alternative. This leads to

a metric which is more generally applicable and compara-
ble across different users, decisions, forecasts methods, and
forecast locations. A cost–loss economic model is required
to compare results with REV, and is used in this study; how-
ever, the RUV method is flexible in that any economic model
could be used.

For a state of the world m at a specific time step t , with
damages dt (m), cost to mitigate the damages Ct , and amount
of damages avoided bt (m), the outcome is given by

Et (m)= bt (m)− dt (m)−Ct . (6)

The benefit function bt (m) specifies the damages avoided
from taking action to mitigate them,

bt (m)=min(β ·Ct ,dt (m)), (7)

where the spending leverage parameter β controls the extra
damages avoided for each dollar spent. This is a similar con-
cept (albeit inverted) to the cost–loss ratio α in the REV met-
ric. The damage function dt (m) relates the states of the world
to the economic damages and must be specified for the de-
cision of interest. This economic model assumes that bene-
fits increase linearly as more is spent on damage mitigation,
followed by a loss if the spend amount is greater than the
damages.

The optimal amount Ct to spend at time step t can be
found by maximising the expected utility following substi-
tution of Eqs. (5)–(7) into Eq. (4),

Ct = argmax
Ct

Ut (Et )

= argmax
Ct

M∑
m=1
−
pt,m

A
exp[−A · (min(β ·Ct ,dt (m))

−dt (m)−Ct )] . (8)

This optimal spend amount for each time step must be found
ex ante, that is, before the event has taken place, when the fu-
ture state of the world is unknown, but a forecast is available.
The probabilistic forecast (for some lead time) is used to de-
termine the forecast likelihood of each state occurring and
calculate the ex ante expected utility Ut (Et ) in Eq. (8). The
optimal amount to spend on mitigation is the amount which
leads to the largest ex ante expected utility.

The utility can also be calculated ex post, after the event
has taken place, and a singular state of the world is known
(streamflow observation). This leads to the following expres-
sion for the ex post utility after substitutions into Eq. (4):

ϒ (Et )= µ
(
min

(
β ·Ct ,dt (mt )

)
− dt (mt )−Ct

)
, (9)

where ϒ(Et ) is the ex post utility, Ct is the spend amount
that was found ex ante, and mt is the state of the world as-
sociated with the observed flow at time step t . The ex post
utility quantifies the benefit a user would have gained if they
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spent Ct on mitigating the damages which occurred as a re-
sult of the observed flow. It is important to note that since
utility is an ordinal quantity that represents a user’s prefer-
ence over the possible decision outcomes, the utilities can be
compared but the actual value is non-interpretable. The ex
post utility is used in the RUV metric introduced in Sect. 3.

Three ex post metrics were used in Matte et al. (2017) to
quantify forecast value using spend amounts found ex ante.
They use economic variables (utility, avoided losses, and
amount spent) averaged over forecasts spanning an histori-
cal period. None of these metrics are equivalent or directly
comparable to REV, and their results were not parameterised
by an equivalent of the cost–loss ratio. The mathematical
form and interpretation of these three metrics are included
in Sect. S3.

Expected utility theory can be used to model more deci-
sions with more realism than is possible with the strong as-
sumptions of REV. However, the economically relevant met-
rics and parametrisation used to quantify forecast value by
Matte et al. (2017) pose a challenge when comparing the out-
comes from the two methods.

3 Relative utility value

This section introduces a new metric which allows direct
comparison of the results quantified by the two alternative
forecast value approaches described in Sect. 2. It aligns the
two approaches and allows comparison using the value dia-
gram, which is familiar to the environmental modelling veri-
fication community and a compelling communication tool.
RUV is inspired by REV and skill scores, but with terms
based on the ex post expected utility.
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where E
t∈T
[ϒ(E·t )] is the expected value of the ex post ex-

pected utility from Eq. (9) over a set of observations and
either forecast (f ), reference baseline (r), or perfect infor-
mation (p). A nice feature of RUV is that it uses the whole
probabilistic forecast and does not first convert it to a deter-
ministic forecast like REV.

RUV has all the benefits and familiarity of REV but is a
more flexible way to quantify forecast value. Any economic
model or form of risk aversion can be used to construct the
expected utility terms required by RUV because it is built on
the expected utility theory framework. In this paper, we focus
on the method with the economic model detailed by Eqs. (6)
and (7) and risk aversion in Eq. (5). If RUV is parameterised
using β = 1

α
and visualised on a value diagram, it can be in-

terpreted in the same way as an REV curve. The flexibil-
ity of the utility framework allows the user to make explicit
choices about suitable approximations to model the decision

problem. This can be accomplished by modifying the eco-
nomic model, damage function, and risk aversion through
Eqs. (5)–(7) when used to calculate RUV. These assumptions
can then be evaluated and extended with additional informa-
tion if available. Unlike REV using Eq. (2), additional evalu-
ation information is available for each time step, such as the
amount spent, damage avoided, and economic utility. This
may benefit a user applying alternative economic models and
tuning damage functions to match real-world data, as they
would require the amount spent and damages incurred at in-
dividual time steps to determine if the components are behav-
ing as expected. Additionally, a user who has finite funds to
spend on mitigation and wants to determine when their bud-
get will be exhausted would require investigation of spend
and damage amounts at individual time steps.

3.1 Relationship between RUV and REV

Figure 2 contrasts the processes used by REV and RUV to
quantify the value of probabilistic forecasts. Note that RUV
uses the same inputs as REV and leads to the same output,
however RUV allows the economic model, damage function,
and risk aversion to be explicitly specified. The internal pro-
cess is very similar, except RUV maximises utility rather than
minimises expense.

Unlike REV, there is no analytical solution for RUV due to
the optimisation step in Eq. (8) unless assumptions are placed
on the decision context. When the following five assumptions
are applied to RUV, it is equivalent to REV:

1. Binary damage function is used, which is a positive
value for the losses above the decision threshold and
0 otherwise.

2. Users are risk neutral as specified by a linear utility
function.

3. Forecasts are deterministic with the probability of flow
above the threshold, always either 1 or 0.

4. The historical frequency of the binary event is used as
the reference baseline.

5. All possible losses are avoided.

The mathematical justification for these assumptions and a
proof of the equivalence is detailed in Appendix A and the
Sect. S2. Note that when applying these assumptions, the
core RUV method illustrated in Fig. 2 remains the same but
the probabilistic forecast is first converted to a deterministic
forecast. Table 2 summarises how decision concepts are rep-
resented in each forecast value method and demonstrates the
enhanced flexibility of the RUV metric.

4 Illustrative case study

An illustrative case study is used to demonstrate the ap-
plication of RUV for quantifying the value of sub-seasonal
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Figure 2. Flowcharts showing the process followed to quantify the value of probabilistic forecasts using either RUV with an optimisation
approach to decision-making or REV using the threshold approach with a specific critical probability threshold. The sub-processes in the
pink boxes are repeated for forecast, perfect, and reference information before being used to calculate REV and RUV. In practice, REV is
calculated using Eq. (2), which is based on a contingency table with an assumption that it has converged to the long-run performance of the
system.

streamflow forecasts. A series of experiments is used to ex-
plore the sensitivity of forecast value to some aspects of de-
cision context, specifically the decision types, users with dif-
ferent relative expense of mitigation and different levels of
risk aversion, and decision-making approaches. A targeted
approach is adopted to contrast the RUV and REV methods
and illustrate the impact of decision characteristics, rather
than an exhaustive evaluation of the value of the specific fore-
casts used.

4.1 Study region and catchment

Our case study explores the value of subseasonal streamflow
forecasts at the water level station Biggara (401012) on the
Murray River in the southern Murray–Darling Basin, Aus-
tralia.

Agencies operating in the southern Murray–Darling Basin
of Australia, such as the Murray–Darling Basin Author-
ity (MDBA) and Goulburn–Murray Water (GMW), make re-
leases from storages, which have impacts far downstream.
Storage management decisions may benefit from subsea-
sonal forecasts, with lead times out to 30 d, and assist
Enhanced Environmental Water Delivery (Murray–Darling
Basin Authority, 2017). Currently, when operational deci-
sions are informed with probabilistic forecasts, the threshold
approach is used with a set of fixed critical probability thresh-
olds, and a degree of risk aversion is implicitly assumed (per-
sonal correspondence with MDBA). As far as the authors are
aware, the relative value of streamflow forecasts for these de-
cisions and user characteristics has not been previously quan-
tified.

The Biggara station has particular significance for wa-
ter resource management in this region as it is located up-
stream of Hume Dam, a major reservoir used for environ-
mental water releases, irrigated agriculture, and town sup-
ply. It is in a temperate region, has a contributing area of
1257 km2, a mean rainfall of 1158 mm yr−1, and mean runoff
of 361 mm yr−1.

4.2 Streamflow forecasts

Daily streamflow forecasts are generated using the follow-
ing method which demonstrated good performance at sub-
seasonal time horizons in earlier studies (McInerney et al.,
2020, 2022). We generated 30 d ensemble forecast time se-
ries (100 members) starting on the first of each month over
the period 1991 to 2012. Raw streamflow forecasts were
simulated using the GR4J rainfall–runoff model (Perrin et
al., 2003), forced by rainfall from the Australian Commu-
nity Climate and Earth-System Simulator Seasonal (Hudson
et al., 2017) that had been pre-processed using the Rainfall
Post-Processing for Seasonal forecasts method (Schepen et
al., 2018), and potential evapotranspiration from the Aus-
tralian Water Availability Project (Jones et al., 2009). Fi-
nal streamflow forecasts were generated by post-processing
the raw streamflow forecasts using the Multi-Temporal Hy-
drological Residual Error (MuTHRE) model (McInerney et
al., 2020). Post-processing ensured that the statistical prop-
erties of the streamflow forecasts closely match the stream-
flow observations. The MuTHRE model was chosen for post-
processing because it provides “seamless” forecasts that are
(statistically) reliable and sharp across multiple lead times
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Figure 3. (a) Example damage function used in the illustrative case study based on a logistic curve with an inflection point at the top 1 % of
observed flow and (b) corresponding CARA utility function with four levels of risk aversion (limited to −3≤ utility≤ 0 and aligned at zero
utility for visual clarity).

(0–30 d) and aggregation timescales (daily to monthly). Fur-
ther information on the forecasts used in this study can be
found in McInerney et al. (2020), and further method im-
provements to enhance seamless performance in McInerney
et al. (2021).

4.3 Decision types

Decisions involving more than two flow classes are an es-
sential feature of many real-world decisions (see examples
in Sect. 1). Three types of decisions are considered in the il-
lustrative case study: (i) binary decisions with flow above a
single threshold, either the top 25 % of top 10 % of the ob-
servation record; (ii) multi-categorical decisions with flow in
five classes over a range of thresholds; and (iii) continuous-
flow decisions using flow from whole flow regime. These
thresholds are indicative of decisions that depend on moder-
ate to high flow at Biggara, such as operational airspace man-
agement of the Hume Dam or minor inundation upstream of
Yarrawonga Weir when coinciding with a dam release.

4.4 Economic damages

The relationship between damages and flow in Eqs. (6)
and (7) when applying the RUV metric is specified using a
non-dimensional logistic function,

d(q;δ,k,φ)=
δ

1+ exp(−k(q −φ)t)
. (11)

The logistic function can be parameterised to have very sim-
ilar behaviour to the Gompertz curve used in flood damage
studies and used by Matte et al. (2017), with d(q) represent-
ing the cumulative damages incurred from all flow up to q
(C. Li et al., 2016). It was parameterised to reasonably char-
acterise losses from high flow events; no damages when flow
is zero, increasing quickly from around the top 20 % of flow,

and approaching 1 at very high values above the top 1 % of
flow (see Fig. 3a). These assumptions were reproduced with
the following parameter set; δ = 1, k = 0.07 and φ equal to
the value corresponding to the top 1 % of observed historical
flow.

4.5 Risk aversion

It is difficult to precisely know a user’s level of risk with-
out a history of prior decisions. Moreover, it would be in-
correct to assume that all users share the same level of risk.
Therefore, a range of risk aversions have been considered to
illustrate its impact on forecast value. In this study, we have
used risk aversion coefficients A ∈ {0, 0.3, 1,5}, which cor-
respond to risk premiums of θ ≈ {0 %, 15 %, 43 %, 86 %}
for a CARA utility function with maximum losses of δ = 1
(Babcock et al., 1993). Figure 3b shows that the curvature of
µ(·) increases with increasing risk aversion, and this leads
to an increasingly rapid decline in utility from damages.
The four risk aversion coefficients represent users who are
neutral, minorly, moderately, and highly risk averse, respec-
tively. When risk premiums are considered, our range of risk
aversion coefficients is similar to those used by Tena and
Gómez (2008) and Matte et al. (2017). Finding appropriate
values of risk aversion for a specific user is beyond the scope
of this study but would be highly beneficial in user-focused
forecast value studies.

4.6 Experiments

The value of the subseasonal forecasts are quantified using
the RUV and REV metrics. Experiments are performed over
the dimensions of forecast lead time, decision type, decision-
making approach, metric, and user risk aversion. Streamflow
forecasts from multiple daily lead times were grouped to-
gether to quantify forecast value over 7 and 14 d forecast
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Table 3. Dimensions of forecast value problem used for each figure. The key dimension introduced in each experiment is highlighted with
italic text.

Experiment purpose Lead Decision type Decision thresholds Decision- Metric Risk
times making aversion

(days) approach

Experiment 1: equivalence 1–7 Binary Top 25 % Threshold REV 0
of REV and RUV, and RUV
impact of fixed probability
thresholds. Moderate flow
example (Fig. 4).

Experiment 2: contrast 1–7 Binary Top 25 % Threshold RUV 0
decision-making approaches. Optimisation
Moderate flow example
(Fig. 5).

Experiment 3: subseasonal 1–7 Binary Top 10 % Optimisation RUV 0
forecast value for different 8–14 Multi-categorical Top 20 %, 15 %, 10 %,
decision types. High flow 15–30 Continuous flow 5 %
examples (Fig. 6). All flow

Experiment 4: impact of risk 1–7 Binary Top 10 % Optimisation RUV 0, 0.3, 1, 5
aversion on forecast value. Multi-categorical Top 15 %, 10 %, 5 %, 1 %
High flow examples (Fig. 7). Continuous flow All flow

Experiment 5: key driver of 1–7 Binary Thresholds from bottom Optimisation RUV 0, 0.3, 1, 5
impact of risk aversion on 5 % to top 0.03 %
forecast value (Fig. 8).

horizons. Grouping lead times together simplifies the intro-
duction of RUV and comparison of its salient features with
REV; however, for practical applications, there may be ben-
efits for evaluating forecast value at specific lead times of
interest. A fixed climatology based on all observed values
in the record is used for the reference baseline of RUV to
align with that used in REV. Table 3 summarises the specific
attributes used for each figure, with the key dimension high-
lighted as italic text.

5 Results

5.1 Experiment 1: equivalence of RUV and REV and
impact of fixed probability threshold

In Experiment 1, forecast value has been quantified using
REV and RUV with the assumptions detailed in Sect. 3.1:
binary damage function, risk-neutral user, deterministic fore-
casts, event frequency for reference baseline, and all losses
avoided. As expected, Fig. 4 demonstrates that the results are
identical between the two methods.

We now explore the detrimental impact on forecast value
of using the threshold approach to convert probabilistic fore-
casts to deterministic forecasts. Any forecast value method
using the threshold approach needs to select a critical prob-
ability threshold pτ to convert probabilistic forecasts to de-

terministic forecasts. Figure 4 includes three curves corre-
sponding to decisions made with different thresholds. The
blue line shows the value obtained when the threshold pτ is
chosen to maximise that value at each α (see Sect. 2.1.2).
This is an upper limit that cannot be obtained in practical sit-
uations because it implies a user has either perfect foresight
or a perfectly reliable forecast, and pτ = α will lead to max-
imum value if the forecast is perfectly reliable (Richardson,
2000). The orange lines show how the choice of pτ can have
a dramatic impact on the value of forecasts for a decision,
with the dotted line showing forecast value when pτ = 0.1,
the dashed line when pτ = 0.5, and the dash–dot line when
pτ = 0.9. RUV is negative for some regions of α, which indi-
cates that those users should prefer the climatological base-
line rather than the forecasts when making decisions.

This result clearly shows that to extract the most value
from forecast information, a user needs to consider their rela-
tive expense of mitigation α when choosing pτ . For example,
when a user with α = 0.8 uses pτ = 0.9, they gain signifi-
cant value from the forecasts (RUV≈ 0.6), but if they use
pτ = 0.1, their outcome using forecasts is worse than using
the reference baseline (RUV< 0), while for a different user
with α = 0.1, the opposite is true. This critical dependence
of value on pτ is an established finding for REV (Richard-
son, 2000; Murphy, 1977) and is not specific to this example;
here, we illustrate that RUV reproduces it. Figure 4 addition-
ally shows that the value diagram used with REV remains a
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Figure 4. Forecast value quantified using (a) REV and (b) RUV with assumptions enforced and the threshold approach for decision-making.
A binary decision of flow exceeding the top 25 % of observations, subseasonal forecasts from the first week of lead times, and a risk-neutral
user. Critical probability thresholds for the four curves are the value leading to maximum forecast value and the 0.1, 0.5, and 0.9 forecast
quantile corresponding to acting when there is a high, medium, or low chance of event occurring, respectively.

compelling way to visualise how RUV forecast value varies
for different users.

This result, and the derivation in Appendix A and Sect. S2,
demonstrates that RUV and REV are equivalent when appro-
priate assumptions are imposed. It shows that REV can be
considered a special case of the more general RUV metric.

5.2 Experiment 2: contrasting the threshold approach
and optimisation approach for decision-making

Figure 5 adds two more forecast value curves, generated us-
ing RUV, to Fig. 4. The black line shows value when the
optimisation approach is used to make spending decisions
with the subseasonal forecasts (detailed in Sect. 2.2) and the
pink line shows value when the threshold approach is used
with pτ = α. The result demonstrates that making decisions
using either approach provides close to the maximum value
possible for all users (different values of α). This contrasts
dramatically with the threshold approach using specific fixed
values for pτ (orange lines) which only provides maximum
value for a very small range of users.

Investigations (not shown) indicated that the optimisation
and pτ = α curves (black and pink lines) are non-smooth
because of the limited number of events in the observation
record, and the small difference between the black and pink
lines is due to sampling errors from to the relatively small en-
semble size. It is notable that forecast value from these two
different decision-making approaches are essentially equiva-
lent as illustrated by the closeness of the black and pink lines
in Fig. 5. Additional analysis (not shown) found this equiv-
alence to be robust to the type of decisions (binary, multi-
categorical, or continuous flow) but not equivalent for risk-
averse users.

Figure 5. Forecast value quantified using four different approaches
to decision-making: the optimisation approach and the threshold ap-
proach with either perfect critical probability thresholds, specific
critical thresholds, or the critical threshold set equal to the α value.
A binary decision of flow exceeding the top 25 % of observations
was used, with subseasonal forecasts from the first week of lead
times and a risk-neutral user. Specific critical thresholds are the 0.1,
0.5, and 0.9 forecast quantile corresponding to acting when there is
a high or low chance of the event occurring, respectively.

5.3 Experiment 3: comparing forecast value for
different types of decisions

Figure 6 presents results for binary (blue lines), multi-
categorical (orange lines), and continuous-flow decisions
(green lines) with forecast lead times in separate panels.
RUV was calculated for the daily subseasonal forecasts with
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Figure 6. Forecast value for (a) binary decision of flow exceeding the top 10 % of observations, (b) flow within five classes with thresholds
at the top 20 %, 15 %, 10 %, and 5 % of observations, and (c) continuous-flow. Decisions are made using the optimisation approach for
decision-making with a risk-neutral user, and subseasonal forecasts for the first, second, and combined third and fourth weeks of lead times.

lead times pooled from the first week (Fig. 6a), second week
(Fig. 6b), and third and fourth weeks combined (Fig. 6c).
The user is assumed to be risk neutral, and the optimisation
approach was used. Overall, the forecasts provide excellent
value for these three different decision types over all time
horizons (max. 30 d), implying that any user would likely
benefit from using the forecast information over the refer-
ence baseline. Peak RUV is over 0.8 in the first week for all
decision types, and close to 0.7, 0.6, and 0.5 in subsequent
weeks for binary, multi-categorical, and continuous-flow de-
cision types, respectively. Regardless of the decision type or
lead time, forecasts provide maximum value for users with α
close to the probability of the most damaging flow class oc-
curring. For example, for the binary decision, the peak RUV
value is located at α = 0.1, which corresponds with the event
frequency of decision threshold used (top 10 % of flow).

Figure 6 shows that there is important variation in RUV for
different decision types. These differences in RUV for differ-
ent decision types are more pronounced for larger values of α
and at longer lead times. For example, for users with α > 0.6
(lead time week 2), the RUV is below zero for the binary de-
cision type, but not the multi-categorical or continuous-flow
decision types. This suggests the users should prefer the ref-
erence baseline for the binary decision and prefer forecasts
for the multi-categorical and continuous-flow decisions. This
highlights the importance of calculating forecast value using
the decision type which matches the decision being assessed.

It is notable that for higher values of α, the value of fore-
casts in weeks 3 and 4 is higher than week 2. While dif-
ferences are minor, they interestingly appear robust over the
multiple decision types in this case study. The reduced value
of forecasts could possibly be due to lead-time-dependent
differences in forecast reliability and decreasing sharpness
of the forecast ensemble at longer lead times. Another no-
table feature is that forecast value at small α is enhanced
for continuous-flow decisions relative to the other decision

types. This seems to be because large damages from in-
frequent extreme events are more adequately mitigated in
continuous-flow decisions because a correspondingly large
amount is spent when they are forecast correctly.

5.4 Experiment 4: impact of risk aversion

Experiment 4 contrasts forecast value for a risk-neutral user
against three different levels of risk aversion for binary,
multi-categorical, and continuous-flow decisions. The results
presented in Fig. 7 for the RUV metric (first row) as well
as the overspend (middle row) and utility-difference metrics
(last row) used by Matte et al. (2017) provide insight into the
spending decisions and utility, respectively. By varying A in
Eq. (5), risk aversion is found to have a significant impact
on the value of forecasts for highly risk-averse users mak-
ing continuous-flow decisions, a moderate impact for multi-
categorical and continuous-flow decisions (except for highly
risk-averse users), and a minor impact for binary decisions
(see Fig. 7, first row). Increased risk aversion shifts the RUV
curve toward users with higher α, suggesting that risk-averse
users with more expensive mitigation would benefit more
from using forecasts to make their decisions.

The overspend (Fig. 7, middle row) and utility-difference
results (Fig. 7, last row) indicate that risk aversion has a mi-
nor impact on the spending decisions and the resultant utility,
except for highly risk-averse users making continuous-flow
decisions. The overspend panels show that regardless of risk
aversion, on average, a user will spend more than necessary
when their cost of mitigation is small relative to the potential
avoided losses (small α). Conversely, when α is large, they
will underspend on average. When risk aversion is increased,
users spend increasingly more.

The utility-difference panels (Fig. 7, bottom row) show
that decisions made using forecasts provide users less util-
ity than decisions made using perfect information, and this
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Figure 7. RUV, overspend, and utility difference for different levels of user risk aversion for a binary decision of flow exceeding the top 10 %
of observations (a, d, g), flow within five classes with thresholds at the top 15 %, 10 %, 5 %, and 1 % of observations (b, e, h), and continuous
flow (c, f, i). Decisions made using the optimisation approach with subseasonal forecasts from the first week of lead times.

decrease in utility increases with risk aversion. As utility is
an ordinal measure, it is only meaningful to interpret differ-
ences within Fig. 7g, h, and i, not between them. This high-
lights a benefit of the overspend and RUV metrics which are
comparable across decision type.

5.5 Experiment 5: mechanism behind the varying
impact of risk aversion

It is notable that the impact of risk aversion in Fig. 7 is dif-
ferent for each decision type; minor for the binary decisions,
moderate for multi-categorical and continuous-flow, and par-
ticularly enhanced for highly risk-averse users. Experiment 5
investigates the mechanism behind this. Figure 8 presents
the difference in RUV between risk-averse and risk-neutral
users (y axis) for a binary decision at a single value of α
(α = 0.2). The binary decision threshold (x axis) is varied
from 2–225 m3 s−1 (bottom 5 % to top 0.03 %), and decisions
are made using the optimisation approach with subseasonal
forecasts from the first week of lead times. This contrasts

with the binary decision in experiment 4, where the decision
threshold is fixed at 32 m3 s−1 (top 10 %) and α is varied.

Below a critical decision threshold of approximately
70 m3 s−1 (top 2 % flow), the difference in RUV between any
level of risk aversion and risk neutrality is negligible. Above
this value, an increasing difference is clear, particularly in
the highly risk-averse case, with risk-averse users gaining
more value from the forecast information than risk neutral.
This finding was consistent for multi-categorical decisions
of any number of flow classes, all lead times, and all val-
ues of α except at extreme high and low values (not shown).
The specific experimental values (binary decision, α = 0.2,
first week lead time) were chosen as a representative exam-
ple, and the findings apply for other experimental values. It
demonstrates that the decision thresholds used, specifically
in relation to the damage function, are the key drivers be-
hind the impact of risk aversion regardless of the decision
type. The difference in impact of risk aversion across the dif-
ferent decision types in Fig. 7 can therefore be explained by
the specific decision thresholds used in relation to this critical
value. The binary decision threshold of 32 m3 s−1 used in ex-
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Figure 8. Difference in RUV between risk-averse (A> 0) and risk-
neutral (A= 0) users (y axis) for a binary decision at a single
α value (α = 0.2). The binary decision threshold (x axis) is var-
ied from 2–225 m3 s−1 and decisions are made using the optimisa-
tion approach with subseasonal forecasts from the first week of lead
times.

periment 4 was less than the critical value of 70 m3 s−1, and
only a minor impact from risk aversion was found. Whereas
the top decision threshold for the multi-categorical decision
was 91 m3 s−1, above this critical value, and a moderate im-
pact was found. An even larger impact was found for the
continuous-flow decision which includes contribution from
the largest flows.

6 Discussion

Statistical forecast verification metrics have previously been
used to show that the probabilistic streamflow forecasts used
in this study are reliable and sharp, largely due to the post-
processing method employed (McInerney et al., 2021). Other
post-processing methods have also demonstrated capabil-
ity to improve the reliability and sharpness of raw stream-
flow forecasts (Bogner et al., 2016; M. Li et al., 2016;
Woldemeskel et al., 2018; Lucatero et al., 2018). However,
the ability of these forecasts to improve decision outcomes
has not been extensively established. Additionally, REV, the
most frequently used forecast value method, can only be ap-
plied to a limited number of real-world decisions. In this
paper, we developed a new forecast value method, relative
utility value (RUV), which is more flexible than REV and
can be applied to more decisions. The flexibility of RUV is
demonstrated with an illustrative case study using probabilis-
tic subseasonal streamflow forecasts to inform binary, multi-
categorical, and continuous-flow decisions with risk-averse

users. The five experiments reported in Sect. 5 systemati-
cally explore the impact of different aspects of a decision on
forecast value: the forecast value method, the probabilistic
decision-making approach, types of decisions, user risk aver-
sion, and the mechanism behind varied risk aversion impact.
First, we find that under certain conditions RUV and REV
are equivalent, and REV can be considered a special case of
the more general RUV method (see Fig. 4, Appendix A, and
Sect. S2). Second, making decisions with fixed critical prob-
ability thresholds leads to maximum forecast value only for
a very small set of users, and using an optimisation-based
approach makes better use of probabilistic forecast informa-
tion (see Fig. 5). Third, we showed that forecast value varies
by both decision type and how expensive mitigation is for
the user, highlighting the importance of calculating forecast
value with the decision type which matches the real-world
decision (see Fig. 6). Fourth, risk aversion has a varied im-
pact (minor to moderate) on forecast value (see Fig. 7) and
the degree of impact is sensitive to the decision context being
evaluated. And finally, the key mechanism driving this im-
pact is decision thresholds used relative to the damage func-
tion (see Fig. 8).

6.1 Benefits of RUV over alternatives

6.1.1 Forecast value complements forecast verification

Unlike forecast verification, forecast value considers the
broader context within which decisions are made. This al-
lows forecast producers, such as the Australian Bureau of
Meteorology, to understand their user impact by evaluating
service enhancements against user decisions. Forecast veri-
fication is typically a key deciding factor when determining
which method or enhancement to operationalise. Quantify-
ing the value of forecasts based on impact offers a comple-
mentary line of evidence which places the forecast user at
the centre of the conversation. Because RUV encourages a
dialogue between the forecast producer and user to define
the full decision context, it may enhance communication and
service adoption. For forecast users, it provides a new capa-
bility: an evidence-based approach to decide which forecast
information and decision-making process will improve their
outcomes. For example, the illustrative case study in Sect. 5
indicates that subseasonal forecasts at Biggara offer better
value than reference baseline in almost all cases, and that
an optimisation approach is beneficial when deciding to take
early action to mitigate damages from a high flow event a few
weeks ahead (see Figs. 5 and 6).

6.1.2 RUV is more flexible than REV

RUV can model more decisions with sufficient realism than
REV because it explicitly specifies decision type, risk aver-
sion, economic model, and decision-making approach. Real-
world decisions may be binary, multi-categorical, or based
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on continuous flow, and using a binary model (as in REV)
in all cases will provide a misleading measure of forecast
value for non-binary decisions. Figure 6 shows that neglect-
ing this would have important implications for users; fore-
casts beyond week 2 should be used for the multi-categorical
and continuous flow but not for the binary decision (when
α > 0.6). Similarly, neglecting the realism of other aspects of
the decision may lead to other misleading conclusions. The
flexibility of RUV allows the user to decide how much real-
ism to include in the forecast value assessment depending on
the information available and tailor it to the decision context.

6.1.3 RUV evaluates forecast value conditioned on how
expensive a user’s mitigation is

Unlike single-valued metrics, common in traditional forecast
verification, RUV is evaluated for wide range of users’ ex-
periences, as is shown in the value diagram (Fig. 1). This
offers valuable insight that would otherwise be hidden. In
particular, it is useful for forecast producers who can quickly
compare one forecast system to another over a range of users
with different relative expenses of mitigation (α). However,
this does make it comparatively more difficult to summarise
and aggregate. To assist interpretation for a single decision-
maker, it is important the decision-maker narrows the range
of α that is relevant to their decision by considering how ex-
pensive their mitigation of damages is.

6.2 Implications of case study experiments

6.2.1 Optimisation-based decision-making is better
than fixed critical probability thresholds when
using probabilistic forecasts

Figure 5 demonstrates that a specific critical probability
threshold will only be optimal for a specific value of α and
suboptimal for all other values. When a user is choosing be-
tween using the forecast or the reference baseline, they may
choose incorrectly if their critical probability threshold is not
aligned with their relative expense of mitigation. This incor-
rect choice will be due to a deficiency in the threshold ap-
proach to decision-making rather than the forecast informa-
tion. This RUV-based finding is well supported by the REV
literature (Richardson, 2000; Wilks, 2001; Zhu et al., 2002;
Roulin, 2007). A perfect critical probability threshold is typ-
ically used with REV (Fig. 4); unfortunately, this is not pos-
sible to achieve in practice and the quantified value is unre-
alistically high. Matte et al. (2017) introduced an optimisa-
tion approach and we extended it here to further evaluate the
impact on forecast value. This flexible approach makes best
use of the forecast information available, and for risk-neutral
users is equivalent to the threshold approach when the thresh-
old is set equal to the user’s relative expense of mitigation α
(Fig. 5). When forecasts are reliable, this method yields value
that is very close to the maximum possible, and forecast users

may consider adopting this alternative approach for daily op-
erational decisions. For this approach to be adopted for op-
erational decision-making, a decision support system would
be required to calculate the optimal amount to spend on pre-
ventative mitigation each time a new forecast is issued. This
implies a suitable economic model is available for the deci-
sion and can be used for this calculation.

6.2.2 Forecast information is more valuable for
risk-averse users making high-stakes decisions

Figure 7 (middle row) demonstrates that for a given forecast,
a more risk-averse user spends more to mitigate a potential
damaging event than a less risk-averse decision-maker, all
else being equal. This behaviour is consistent with their pref-
erence for risk aversion because it leads to a more certain re-
sult, with the net outcome equal to the spend amount whether
the event occurs or not. There is a large difference in impact
of risk aversion for the different decision types however, and
Fig. 8 summarises the findings of an investigation into this.
Decision thresholds corresponding to very high flows lead to
a larger impact. This finding explains why risk aversion has
a large impact for the continuous-flow decision, spanning the
whole regime, and a negligible impact for the binary decision
with a single moderately high decision threshold. It suggests
that for a risk-averse user making a high-stakes decision,
forecasts become increasingly more valuable as the potential
damages become larger. It may also explain apparently con-
tradictory findings on the impact of risk aversion in the liter-
ature. Matte et al. (2017) assessed the impact of risk aversion
on a multi-categorical decision (using overspend and utility
metrics) and found it had a moderate impact (similar to the
multi-categorical decisions shown in Fig. 7e and h). Their
study used 12 uniformly spaced flow divisions over a high
flow range and a damage function based on empirical flood
studies, whereas this study used four widely spaced thresh-
olds over a similar high flow range. A recent study by Lala
et al. (2021) found minor impacts from risk aversion for bi-
nary cost–loss decisions with extreme rainfall forecasts, us-
ing the same expected utility maximisation framework from
Matte et al. (2017), and found a similar impact to Fig. 7a.
An alternative argument using reasoning from decision the-
ory suggests that for a given risk premium, the impact should
be larger when decision thresholds are closer together (Mas-
Colell, 1995). However, when investigated, we found no evi-
dence to support this for our case study experiments. Further
research to better characterise the response for different de-
cision contexts would be useful because the impact is modu-
lated by both the decision thresholds and the specific damage
function, consideration of the inherent sampling error intro-
duced for extreme events would also be useful.
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6.3 Limitations and future work

6.3.1 Exploring the impact of alternative damage
functions, economic models, utility functions, and
reference baselines on forecast value

This study focused on the impact of alternative decision types
and risk aversion and a comparative study of RUV and REV.
The foundation in expected utility theory allows us to model
more decisions more realistically than REV, but it requires
more information. When this information is unavailable or
uncertain, the user is required to make assumptions, but it is
not always clear how to best do this. One strategy is to model
all decisions as binary, cost–loss, and risk neutral, and effec-
tively convert RUV to REV. This study explores the impli-
cations of relaxing some, but not all, of those assumptions,
but is limited to an analysis at a single forecast location.
In particular, the damage function used was parameterised
to simplify the introduction of RUV, facilitate comparison
with REV, and highlight important implications for future
studies. Further work will consider the impact of alterna-
tive damage functions and economic models tailored to other
decision contexts. More descriptive economic models than
cost–loss will be essential to consider decisions which in-
volve non-economic intangible externalities like social, cul-
tural, and ecological factors (Jackson and Moggridge, 2019;
Expósito et al., 2020). Future studies which consider these
impacts may be required to address unresolved findings in
our study, such as inconsistent dependence of forecast value
on lead time (see Sect. 5.3).

6.3.2 Tailoring the evaluation of forecast value to
real-world decisions

For practical applications of RUV, it is advisable to calibrate
the damage function, decision thresholds, economic model,
decision-making approach, and reference baseline to the real-
world experience of the decision-makers. This calibration
will ensure the resulting forecast value is tailored to the spe-
cific decision context and will likely lead to more user trust
in the results, and subsequently more appropriate use of fore-
cast information. While the reference baseline (fixed aver-
age climatology) used in this study enabled a direct compar-
ison of RUV with REV, we would recommend comparison
against more relevant baseline forecasts for practical applica-
tions (e.g. information currently used to inform the decision
being assessed).

6.3.3 Expected utility theory approximates actual
decision-making, and contemporary frameworks
may enhance the capability of RUV to model
real-world decisions

There is general agreement, and a substantial body of evi-
dence, that expected utility theory does not adequately de-
scribe individual choice (Kahneman and Tversky, 1979; Har-

less and Camerer, 1994). Many alternative models have been
proposed which address these violations, such as cumula-
tive prospect theory (Tversky and Kahneman, 1992). Future
work could consider whether quantifying forecast value us-
ing a foundation built on a better model of decision-making
changes the conclusions reached. Additionally, the cost–loss
economic model used in this study implies that mitigation
is preventative action to minimise forecast losses, with each
forecast lead time and forecast update treated independently
of all others. Alternative economic models and decision-
making frameworks may be required to explore more realis-
tic forms of mitigation which consider temporal dependence
(see Matte et al., 2017 for an approach).

6.3.4 Exploring the relationship between forecast value
and forecast skill

Roebber and Bosart (1996) found that statistical performance
metrics were poor at predicting the cost–loss value of meteo-
rological forecasts for several real-world decisions. The rela-
tionship was impacted by the user’s α value, and when in ag-
gregate, the distribution of α over all users. Using a real-time
optimisation system to manage reservoir operations, Peñuela
et al. (2020) quantified forecast value through improvement
in pumping costs and resource availability relative to a base-
line. They found a relationship between forecast value and
CRPS skill score mediated by user priorities and hydrolog-
ical conditions. Although a relationship exists, it is clearly
mediated by the characteristics of the decision and user, and
in many cases forecast skill is not a good proxy for forecast
value (Murphy and Ehrendorfer, 1987; Wilks and Hamill,
1995; Roebber and Bosart, 1996; Roulin, 2007; Peñuela et
al., 2020). Exploring this relationship is of interest because
the decision and user characteristics are made explicit in
RUV. Converting RUV to a single-value metric by placing
assumptions on the distribution of α could assist and addi-
tionally allow its use as an objective function for model cal-
ibration or as a summary statistic; Wilks (2001) considers
this using REV. The forecast value results of our illustrative
case study are likely to be sensitive to flow characteristics
and forecast uncertainty of our selected location. Future work
will evaluate the value of streamflow forecast over different
hydroclimatic conditions. Additionally, forecast skill (and re-
liability) is impacted by a forecast model’s ability to repro-
duce seasonality and antecedent conditions. Although these
are modelled well by the system used in this study (McIn-
erney et al., 2020), their impact on forecast value was not
considered in our sensitivity analysis. A future study assess-
ing how RUV is impacted when models fail to reproduce sea-
sonality, antecedent conditions, and other features would be a
useful contribution to the field. The impact of seasonality and
antecedent conditions on forecast value has not been consid-
ered in our sensitivity analysis and a future study assessing
how RUV is impacted by them would be a useful contribu-
tion.
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7 Conclusions

Forecast value methods aim to quantify the potential benefits
that probabilistic forecasts have for water-sensitive decisions,
such as operational water resource management and emer-
gency warning services. However, the most used method to
evaluate forecast value, relative economic value (REV), is
only suitable for specific decisions. REV is unsuitable for
many real-world decisions and when applied may lead to
misleading conclusions on when to use forecasts. This paper
introduces the RUV metric, which has the same interpreta-
tion as the commonly used REV metric, but is more flexible
and can be applied to a far wider range of decision contexts.
This is because many aspects of the decision-making pro-
cess can be incorporated into RUV by the user and adjusted
to match real-world decisions. These include the economic
model, damage function, decision type, user risk aversion,
and relative expense of mitigation.

An illustrative case study using probabilistic subseasonal
streamflow forecasts in a practically significant catchment in
the southern Murray–Darling Basin of Australia was used to
compare the REV and RUV metrics under a range of deci-
sion contexts. The key findings from this case study were the
following:

1. REV can be considered a special case of the more gen-
eral RUV method.

2. Making decisions using an optimisation-based approach
which uses the whole forecast distribution to deter-
mine the amount spent on mitigation makes better
use of probabilistic forecast information than using a
threshold-based approach with fixed critical probability
thresholds.

3. Forecast value depends on the decision type, and hence
it can be critically important to use a decision-type that
matches the real-world decision.

4. Risk-averse users gain more value from forecasts than
risk-neutral users, but the impact can vary from minor
to moderate depending on the decision context.

5. Impact of risk aversion on forecast value is mediated by
how large the potential damages are for a given deci-
sion.

Findings 3–5 were generally sensitive to the user’s relative
expense of mitigation. For example, the impact of the deci-
sion type was more pronounced for users with higher relative
expenses of mitigation (α > 0.6). In this case, for lead times
longer than 1 week, forecast value from RUV of a binary de-
cision was significantly lower than for multi-categorical or
continuous-flow decisions. As REV is limited to binary deci-
sions, a user making a multi-categorical or continuous-flow
decision could be misled by the REV outcomes and consider
not using the forecasts when they actually have significant
value as demonstrated by RUV.

This paper focuses on the introduction of RUV and an ex-
ploration of its sensitivity to some aspects of decision con-
text. Therefore, several future research directions for RUV
are discussed, including (i) exploring sensitivity of forecast
value to more aspects of decision context, (ii) tailoring fore-
cast value to real-world decisions, (iii) assessing alternative
frameworks for modelling decision-making, and (iv) explor-
ing the relationship between forecast value and forecast skill.

RUV presents an opportunity to tailor forecasts and their
assessment to the specific decisions, decision-making ap-
proach, characteristics, preferences, and economics of the
user. It is hoped that this capability will encourage the as-
sessment of forecast systems through the lens of user benefit
and be seen as a complement to forecast verification. This
may lead to increased adoption of forecasts through deeper
dialogue and understanding, and ultimately to improved wa-
ter resource management decisions.

Appendix A: Proof of equivalence of REV and RUV
under specific assumptions

This section demonstrates the equivalence of the REV met-
ric as detailed in Eq. (2) and the RUV metric introduced in
Sect. 3 when 5 assumptions are applied to the decision con-
text. A complete derivation is included in Sect. S2.

In a cost–loss decision problem, the two relevant states are
“flow above” and “flow below” a decision threshold Qd.

m= above if Qt ≥Qd

m= below if Qt <Qd. (A1)

Assumption 1. A step damage function with binary values
of 0 and L is used to specify the losses above and below the
decision threshold for all time steps,

d(m;L)=

{
L when m= above
0 when m= below . (A2)

To calculate the net outcome when action is taken to mitigate
the loss, we substitute Eqs. (7) and (A2) into Eq. (6) which
leads to the following net outcomes for the two states:

Et,above =min(β ·Ct ,L)−L−Ct
Et,below =−Ct since β ·Ct > 0. (A3)

Assumption 2. Linear utility function is assumed which im-
plies no aversion to risk,

µ(E)= E. (A4)

Substituting Eq. (A3) into Eq. (4), applying the linear utility
function assumption, and simplifying for only two possible
states using pt , the forecast probability of flow above the flow
threshold at time t leads to

U (Et )= pt ·Et,above+ (1−pt ) ·Et,below

= pt · [min(β ·Ct ,L)−L−Ct ]+ (1−pt ) · [−Ct ]. (A5)
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Table A1. Ex ante utility values for a time step of expected utility
theory with REV assumptions.

Event forecast Event not forecast
to occur to occur

Action taken −
(
Ct +L

u
t

)
−Ct

Ct 6= 0

Action not taken −L 0
Ct = 0

Table A2. Ex post utility values for a time step of expected utility
theory with REV assumptions.

Event Event did
occurred not occur

Action taken −

(
L
β +L

u
t

)
−
L
β

Ct =
L
β

Action not taken −L 0
Ct = 0

Assumption 3. Probability of flow above the threshold will
always be either 1 or 0,

pt ∈ {0,1}. (A6)

Using these assumptions and noting that the total loses at
each time step are fixed and consist of avoided and unavoided
components, L= Lt = La

t +L
u
t , we can now determine the

single time step ex ante utility for the four possible outcomes.
The four possible outcomes are composed of an event is fore-
cast to occur (pt = 1) or not occur (pt = 0), and an action has
therefore been taken or not, leading to Table A1.

Applying Eq. (8) to Eq. (A5) will lead to an optimal
amount Ct to spend on the mitigating action for each time
step. By considering that the forecast probability is always
either 1 or 0 due to assumption 3 and that all costs and
losses are positive values, we can derive that for any time
step the cost will be either Ct = 0 when pt = 0 or Ct = L

β
when pt = 1; see Sect. S2 for a full derivation.

The ex post utility for each time step, shown in Table A2,
can be found by substituting these optimal costs back into
the elements of Table A1, and letting the probability be con-
ditioned on the state of observed flow above the threshold.

A contingency table is now used with Table A2 to deter-
mine each term of the RUV metric.

Assumption 4. The frequency of the binary decision
event o is used for the reference baseline.

This leads to the following expected ex post utility for ref-
erence baseline information:

E
t∈T

[
ϒ
(
Er
t

)]
=−min

{
L

β
,oLa

t

}
− oLu

t . (A7)

Expected ex post utility for perfect information is

E
t∈T

[
ϒ
(
E

p
t

)]
=−o

(
L

β
+Lu

t

)
. (A8)

Expected ex post utility for forecast information is

E
t∈T

[
ϒ
(
Ef
t

)]
=−(h+ f )

L

β
− oLu

t −mL
a
t , (A9)

where h is the hit rate, m is the miss rate, and f is the false
alarm rate from the contingency table.

Assumption 5. At each time step, the avoided losses are
equal to the total possible losses,

La
t = L for t ∈ T . (A10)

Substituting Eqs. (A7)–(A9) into Eq. (10), applying assump-
tion 5, and noting the relationship β = 1

α
leads to

RUV=
min(α,o)− (h+ f )α−m

min(α,o)− oα
, (A11)

which is identical to the definition of the REV metric in
Eq. (2).

Code availability. The code used for this work will be released,
along with a follow-up publication, as a software library which can
be used by researchers and industry to quantify forecast value using
RUV. Please contact the corresponding author to register interest in
beta testing access.

Data availability. A companion dataset for this work is available
at https://doi.org/10.25909/19153055 (Laugesen et al., 2022). This
contains the input streamflow forecasts, output forecast value re-
sults, and high-resolution figures.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-27-873-2023-supplement.

Author contributions. RL led the conceptualisation, data curation,
formal analysis, funding acquisition, investigation, methodology,
project administration, resources, software, supervision, validation,
visualisation, writing – original draft preparation, and writing –
review and editing. MT supported funding acquisition, investiga-
tion, methodology, project administration, supervision, visualisa-
tion, and writing – review and editing. DM supported formal analy-
sis, methodology, resources, visualisation, and writing – review and
editing. DK supported methodology, visualisation, and writing – re-
view and editing.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Hydrol. Earth Syst. Sci., 27, 873–893, 2023 https://doi.org/10.5194/hess-27-873-2023

https://doi.org/10.25909/19153055
https://doi.org/10.5194/hess-27-873-2023-supplement


R. Laugesen et al.: Flexible forecast value metric suitable for a wide range of decisions 891

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. This work was conducted on the traditional
lands of the Ngunnawal people and Kaurna people. We acknowl-
edge their continuing custodianship of these lands and the rivers
that flow through them, and pay our respects to their elders, past,
present, and emerging. We also acknowledge the Jaitmatang and
Ngarigo people, traditional custodians of the upper Murray River
catchment used in this study. The authors thank two anonymous
journal reviewers, Beth Ebert, Michael Foley, and Prasantha Ha-
puarachchi for their review of this paper and thoughtful discus-
sions on the method, and Jacqui Hickey for her formative discus-
sions on the use of forecasts for operational decision making at the
MDBA and encouragement to pursue this topic. Richard Laugesen
is grateful to the Bureau of Meteorology for their generous sup-
port of his research, particularly Narendra Tuteja, Alex Cornish, and
Adam Smith for seeing the value of this innovation. This work was
supported with supercomputing resources provided by the Phoenix
HPC service at the University of Adelaide.

Financial support. This research was partially supported by an
Australian Government Research Training Program Scholarship.

Review statement. This paper was edited by Wouter Buytaert and
reviewed by two anonymous referees.

References

Abaza, M., Anctil, F., Fortin, V., and Turcotte, R.: A Com-
parison of the Canadian Global and Regional Meteorolog-
ical Ensemble Prediction Systems for Short-Term Hydro-
logical Forecasting, Mon. Weather Rev., 141, 3462–3476,
https://doi.org/10.1175/MWR-D-12-00206.1, 2013.

Anghileri, D., Monhart, S., Zhou, C., Bogner, K., Castelletti, A.,
Burlando, P., and Zappa, M.: The Value of Subseasonal Hydrom-
eteorological Forecasts to Hydropower Operations: How Much
Does Preprocessing Matter?, Water Resour. Res., 55, 10159–
10178, https://doi.org/10.1029/2019WR025280, 2019.

An-Vo, D.-A., Mushtaq, S., Reardon-Smith, K., Kouadio, L., At-
tard, S., Cobon, D., and Stone, R.: Value of seasonal forecasting
for sugarcane farm irrigation planning, Eur. J. Agron., 104, 37–
48, https://doi.org/10.1016/j.eja.2019.01.005, 2019.

Babcock, B. A., Choi, E. K., and Feinerman, E.: Risk and proba-
bility premiums for CARA utility functions, J. Agricult. Resou.
Econ., 18, 17–24, https://doi.org/10.22004/ag.econ.30810, 1993.

Bennett, J. C., Robertson, D. E., Wang, Q. J., Li, M., and Per-
raud, J.-M.: Propagating reliable estimates of hydrological fore-
cast uncertainty to many lead times, J. Hydrol., 603, 126798,
https://doi.org/10.1016/j.jhydrol.2021.126798, 2021.

Bischiniotis, K., van den Hurk, B., Coughlan de Perez,
E., Veldkamp, T., Nobre, G. G., and Aerts, J.: Assess-
ing time, cost and quality trade-offs in forecast-based ac-

tion for floods, Int. J. Disast. Risk Reduct., 40, 101252,
https://doi.org/10.1016/j.ijdrr.2019.101252, 2019.

Bogner, K., Liechti, K., and Zappa, M.: Post-Processing of Stream
Flows in Switzerland with an Emphasis on Low Flows and
Floods, Water, 8, 115, https://doi.org/10.3390/w8040115, 2016.

Cantonati, M., Poikane, S., Pringle, C. M., Stevens, L. E., Tu-
rak, E., Heino, J., Richardson, J. S., Bolpagni, R., Borrini,
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