Articles | Volume 27, issue 15
https://doi.org/10.5194/hess-27-2951-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-2951-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Technical note: Lessons from and best practices for the deployment of the Soil Water Isotope Storage System
Rachel E. Havranek
CORRESPONDING AUTHOR
Geological Sciences, University of Colorado Boulder, Boulder, 80303, USA
Kathryn Snell
Geological Sciences, University of Colorado Boulder, Boulder, 80303, USA
Sebastian Kopf
Geological Sciences, University of Colorado Boulder, Boulder, 80303, USA
Brett Davidheiser-Kroll
Thermo Fisher Scientific (Bremen) GmbH, 28199 Bremen, Germany
Valerie Morris
Institute of Arctic and Alpine Research, University of Colorado
Boulder, Boulder, 80303, USA
Bruce Vaughn
Institute of Arctic and Alpine Research, University of Colorado
Boulder, Boulder, 80303, USA
Related authors
No articles found.
Chloe A. Brashear, Tyler R. Jones, Valerie Morris, Bruce H. Vaughn, William H. G. Roberts, William B. Skorski, Abigail G. Hughes, Richard Nunn, Sune Olander Rasmussen, Kurt M. Cuffey, Bo M. Vinther, Todd Sowers, Christo Buizert, Vasileios Gkinis, Christian Holme, Mari F. Jensen, Sofia E. Kjellman, Petra M. Langebroek, Florian Mekhaldi, Kevin S. Rozmiarek, Jonathan W. Rheinlænder, Margit H. Simon, Giulia Sinnl, Silje Smith-Johnsen, and James W. C. White
Clim. Past, 21, 529–546, https://doi.org/10.5194/cp-21-529-2025, https://doi.org/10.5194/cp-21-529-2025, 2025
Short summary
Short summary
We use a series of spectral techniques to quantify the strength of high-frequency climate variability in northeastern Greenland to 50 000 ka before present. Importantly, we find that variability consistently decreases hundreds of years prior to Dansgaard–Oeschger warming events. Model simulations suggest a change in North Atlantic sea ice behavior contributed to this pattern, thus providing new information on the conditions which preceded abrupt climate change during the Last Glacial Period.
David J. Harning, Jonathan H. Raberg, Jamie M. McFarlin, Yarrow Axford, Christopher R. Florian, Kristín B. Ólafsdóttir, Sebastian Kopf, Julio Sepúlveda, Gifford H. Miller, and Áslaug Geirsdóttir
Hydrol. Earth Syst. Sci., 28, 4275–4293, https://doi.org/10.5194/hess-28-4275-2024, https://doi.org/10.5194/hess-28-4275-2024, 2024
Short summary
Short summary
As human-induced global warming progresses, changes to Arctic precipitation are expected, but predictions are limited by an incomplete understanding of past changes in the hydrological system. Here, we measured water isotopes, a common tool to reconstruct past precipitation, from lakes, streams, and soils across Iceland. These data will allow robust reconstruction of past precipitation changes in Iceland in future studies.
Alison J. Smith, Emi Ito, Natalie Burls, Leon Clarke, Timme Donders, Robert Hatfield, Stephen Kuehn, Andreas Koutsodendris, Tim Lowenstein, David McGee, Peter Molnar, Alexander Prokopenko, Katie Snell, Blas Valero Garcés, Josef Werne, Christian Zeeden, and the PlioWest Working Consortium
Sci. Dril., 32, 61–72, https://doi.org/10.5194/sd-32-61-2023, https://doi.org/10.5194/sd-32-61-2023, 2023
Short summary
Short summary
Western North American contains accessible and under-recognized paleolake records that hold the keys to understanding the drivers of wetter conditions in Pliocene Epoch subtropical drylands worldwide. In a 2021 ICDP workshop, we chose five paleolake basins to study that span 7° of latitude in a unique array able to capture a detailed record of hydroclimate during the Early Pliocene warm period and subsequent Pleistocene cooling. We propose new drill cores for three of these basins.
Joël Thanwerdas, Marielle Saunois, Antoine Berchet, Isabelle Pison, Bruce H. Vaughn, Sylvia Englund Michel, and Philippe Bousquet
Geosci. Model Dev., 15, 4831–4851, https://doi.org/10.5194/gmd-15-4831-2022, https://doi.org/10.5194/gmd-15-4831-2022, 2022
Short summary
Short summary
Estimating CH4 sources by exploiting observations within an inverse modeling framework is a powerful approach. Here, a new system designed to assimilate δ13C(CH4) observations together with CH4 observations is presented. By optimizing both the emissions and associated source signatures of multiple emission categories, this new system can efficiently differentiate the co-located emission categories and provide estimates of CH4 sources that are consistent with isotopic data.
Sarah J. Widlansky, Ross Secord, Kathryn E. Snell, Amy E. Chew, and William C. Clyde
Clim. Past, 18, 681–712, https://doi.org/10.5194/cp-18-681-2022, https://doi.org/10.5194/cp-18-681-2022, 2022
Short summary
Short summary
New stable isotope records from pedogenic carbonates through the ETM2, H2, and possibly I1 hyperthermals from the Bighorn Basin highlight significant spatial variability in the preservation and magnitude of these global climate events in paleosol records. These data also provide important climate context for the extensive early Eocene mammal fossil record from the southern Bighorn Basin and support previous hypotheses that pulses in mammal turnover corresponded to the ETM2 and H2 hyperthermals.
Kevin S. Rozmiarek, Bruce H. Vaughn, Tyler R. Jones, Valerie Morris, William B. Skorski, Abigail G. Hughes, Jack Elston, Sonja Wahl, Anne-Katrine Faber, and Hans Christian Steen-Larsen
Atmos. Meas. Tech., 14, 7045–7067, https://doi.org/10.5194/amt-14-7045-2021, https://doi.org/10.5194/amt-14-7045-2021, 2021
Short summary
Short summary
We have designed an unmanned aerial vehicle (UAV) sampling platform for operation in extreme polar environments that is capable of sampling atmospheric water vapor for subsequent measurement of water isotopes. During flight, we measure location, temperature, humidity, and pressure to determine the height of the planetary boundary layer (PBL) using algorithms, allowing for strategic decision-making by the pilot to collect samples in glass flasks contained in the nose cone of the UAV.
Jonathan H. Raberg, David J. Harning, Sarah E. Crump, Greg de Wet, Aria Blumm, Sebastian Kopf, Áslaug Geirsdóttir, Gifford H. Miller, and Julio Sepúlveda
Biogeosciences, 18, 3579–3603, https://doi.org/10.5194/bg-18-3579-2021, https://doi.org/10.5194/bg-18-3579-2021, 2021
Short summary
Short summary
BrGDGT lipids are a proxy for temperature in lake sediments, but other parameters like pH can influence them, and seasonality can affect the temperatures they record. We find a warm-season bias at 43 new high-latitude sites. We also present a new method that deconvolves the effects of temperature, pH, and conductivity and generate global calibrations for these variables. Our study provides new paleoclimate tools, insight into brGDGTs at the biochemical level, and a new method for future study.
Cited articles
Beyer, M., Kühnhammer, K., and Dubbert, M.: In situ measurements of
soil and plant water isotopes: a review of approaches, practical considerations and a vision for the future, Hydrol. Earth Syst. Sci., 24, 4413–4440, https://doi.org/10.5194/hess-24-4413-2020, 2020.
Bowen, G. J., Putman, A., Brooks, J. R., Bowling, D. R., Oerter, E. J., and
Good, S. P.: Inferring the source of evaporated waters using stable H and O isotopes, Oecologia, 187, 1025–1039, https://doi.org/10.1007/s00442-018-4192-5, 2018.
Bowen, G. J., Cai, Z., Fiorella, R. P., and Putman, A. L.: Isotopes in the
Water Cycle: Regional- to Global-Scale Patterns and Applications, Annu. Rev. Earth Planet. Sci., 47, 453–479, https://doi.org/10.1146/annurev-earth-053018-060220, 2019.
Brooks, J. R., Barnard, H. R., Coulombe, R., and McDonnell, J. J.: Ecohydrologic separation of water between trees and streams in a Mediterranean climate, Nat. Geosci., 3, 100–104, https://doi.org/10.1038/ngeo722, 2010.
CoAgMet – Colorado Climate Center, Colorado State University, Fort Collins, CO, USA: https://coagmet.colostate.edu/ (last access: 25 April 2023), 2023.
Dawson, T. E. and Ehleringer, J. R.: Streamside trees that do not use stream-water: evidence from hydrogen isotopes ratios, Nature, 350, 335–337, https://doi.org/10.1038/350335a0, 1991.
Gaj, M., Beyer, M., Koeniger, P., Wanke, H., Hamutoko, J., and Himmelsbach,
T.: In situ unsaturated zone water stable isotope (2H and 18O) measurements in semi-arid environments: A soil water balance, Hydrol. Earth Syst. Sci., 20, 715–731, https://doi.org/10.5194/hess-20-715-2016, 2016.
Gessler, A., Bächli, L., Rouholahnejad Freund, E., Treydte, K., Schaub,
M., Haeni, M., Weiler, M., Seeger, S., Marshall, J., Hug, C., Zweifel, R.,
Hagedorn, F., Rigling, A., Saurer, M., and Meusburger, K.: Drought reduces
water uptake in beech from the drying topsoil, but no compensatory uptake
occurs from deeper soil layers, New Phytol., 233, 194–206, https://doi.org/10.1111/nph.17767, 2022.
Gómez-Navarro, C., Pataki, D. E., Bowen, G. J., and Oerter, E. J.:
Spatiotemporal variability in water sources of urban soils and trees in the
semiarid, irrigated Salt Lake Valley, Ecohydrology, 12, e2154, https://doi.org/10.1002/eco.2154, 2019.
Gonfiantini, R., Wassenaar, L. I., Araguas-Araguas, L., and Aggarwal, P. K.: A unified Craig-Gordon isotope model of stable hydrogen and oxygen isotope fractionation during fresh or saltwater evaporation, Geochim. Cosmochim. Ac., 235, 224–236, https://doi.org/10.1016/j.gca.2018.05.020, 2018.
Good, S. P., Noone, D., and Bowen, G. J.: Hydrologic connectivity constrains partitioning of global terrestrial water fluxes, Science, 349, 175–177, https://doi.org/10.1126/science.aaa5931, 2015.
Green, M. B., Laursen, B. K., Campbell, J. L., Mcguire, K. J., and Kelsey, E. P.: Stable water isotopes suggest sub-canopy water recycling in a northern forested catchment. Hydrol. Process., 29, 5193–5202, https://doi.org/10.1002/hyp.10706, 2015.
Groh, J., Stumpp, C., Lücke, A., Pütz, T., Vanderborght, J., and
Vereecken, H.: Inverse estimation of soil hydraulic and transport parameters
of layered soils from water stable isotope and lysimeter data, Vadose Zone J., 17, 1–19, https://doi.org/10.2136/vzj2017.09.0168, 2018.
Gupta, P., Noone, D., Galewsky, J., Sweeney, C., and Vaughn, B. H.: Demonstration of high-precision continuous measurements of water vapor
isotopologues in laboratory and remote field deployments using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) technology, Rapid
Commun. Mass Spectrom., 23, 2534–2542, https://doi.org/10.1002/rcm.4100, 2009.
Harm, S. M. and Ludwig, T. K.: Retention and removal of nitrogen and phosphorus in saturated soils of arctic hillslopes, Biogeochemistry, 127,
291–304, https://doi.org/10.1007/s10533-016-0181-0, 2016.
Havranek, R. E., Snell, K. E., Davidheiser-Kroll, B., Bowen, G. J., and Vaughn, B.: The Soil Water Isotope Storage System (SWISS): An integrated soil water vapor sampling and multiport storage system for stable isotope geochemistry, Rapid Commun. Mass Spectrom., 34, 1–11, https://doi.org/10.1002/rcm.8783, 2020.
Havranek, R. E., Kopf, S., Snell, K. E., Davidheiser-Kroll, B., Vaughn, B., and Morris, V.: (2023, June 30). Havranek et al., 2023, OSF [data set], https://doi.org/10.17605/OSF.IO/G3VSZ, 2023.
Hinckley, E.-L. S., Barnes, R. T., Anderson, S. P., Williams, M. W., and
Bernasconi, S. M.: Nitrogen retention and transport differ by hillslope aspect at the rain-snow transition of the Colorado Front Range, J. Geophys. Res.-Biogeo., 119, 12811896, https://doi.org/10.1002/2013JG002588, 2014.
Kopf, S. and Havranek, R.: Rhavranek/lablogger_swiss: Havranek et al., 2023 Release (v0.2.0), Zenodo [code], https://doi.org/10.5281/zenodo.8213206, 2023.
Kübert, A., Paulus, S., Dahlmann, A., Werner, C., Rothfuss, Y., Orlkowski, N., and Dubbert, M. : Water Stable Isotopes in Ecohydrological Field Research: Comparison Between In Situ and Destructive Monitoring
Methods to Determine Soil Water Isotopic Signatures, Front. Plant Sci., 11, 1–13, https://doi.org/10.3389/fpls.2020.00387, 2020.
Kühnhammer, K., Dahlmann, A., Iraheta, A., Gerchow, M., Birkel, C.,
Marshall, J. D., and Beyer, M.: Continuous in situ measurements of water stable isotopes in soils, tree trunk and root xylem: Field approval, Rapid
Commun. Mass Spectrom., 36, e9232, https://doi.org/10.1002/rcm.9232, 2022.
Magh, R. K., Gralher, B., Herbstritt, B., Kübert, A., Lim, H., Lundmark,
T., and Marshall, J.: Technical note: Conservative storage of water vapour – practical in situ sampling of stable isotopes in tree stems, Hydrol. Earth Syst. Sci., 26, 3573–3587, https://doi.org/10.5194/hess-26-3573-2022, 2022.
Mahindawansha, A., Orlowski, N., Kraft, P., Rothfuss, Y., Racela, H., and Breuer, L.: Quantification of plant water uptake by water stable isotopes in
rice paddy systems, Plant Soil, 429, 281–302, https://doi.org/10.1007/s11104-018-3693-7, 2018.
Oerter, E. J. and Bowen, G. J.: In situ monitoring of H and O stable isotopes in soil water reveals ecohydrologic dynamics in managed soil systems, Ecohydrology, 10, 1–13, https://doi.org/10.1002/eco.1841, 2017.
Oerter, E. J. and Bowen, G. J.: Spatio-temporal heterogeneity in soil water stable isotopic composition and its ecohydrologic implications in semiarid ecosystems, Hydrol. Process., 33, 1724–1738, https://doi.org/10.1002/hyp.13434, 2019.
Oerter, E. J., Perelet, A., Pardyjak, E., and Bowen, G. J.: Membrane inlet
laser spectroscopy to measure H and O stable isotope compositions of soil
and sediment pore water with high sample throughput, Rapid Commun. Mass Spectrom., 31, 75–84, https://doi.org/10.1002/rcm.7768, 2016.
Peterson, B. J. and Fry, B.: Stable Isotopes in Ecosystem Studies, Annu. Rev. Ecol. Syst., 18, 293–320, 1987.
Quade, M., Brüggemann, N., Graf, A., Vanderborght, J., Vereecken, H., and Rothfuss, Y.: Investigation of Kinetic Isotopic Fractionation of Water during Bare Soil Evaporation, Water Resour. Res., 54, 6909–6928,
https://doi.org/10.1029/2018WR023159, 2018.
Quade, M., Klosterhalfen, A., Graf, A., Brüggemann, N., Hermes, N.,
Vereecken, H., and Rothfuss, Y.: In-situ monitoring of soil water isotopic
composition for partitioning of evapotranspiration during one growing season
of sugar beet (Beta vulgaris), Agr. Forest Meteorol., 266–267, 53–64,
https://doi.org/10.1016/j.agrformet.2018.12.002, 2019.
Rothfuss, Y., Vereecken, H., and Brüggemann, N.: Monitoring water stable isotopic composition in soils using gas-permeable tubing and infrared laser absorption spectroscopy, Water Resour. Res., 49, 3747–3755, https://doi.org/10.1002/wrcr.20311, 2013.
Rothfuss, Y., Merz, S., Vanderborght, J., Hermes, N., Weuthen, A., Pohlmeier, A., Vereecken, H., and Brüggemann, N.: Long-term and high-frequency non-destructive monitoring of water stable isotope profiles in an evaporating soil column, Hydrol. Earth Syst. Sci., 19, 4067–4080, https://doi.org/10.5194/hess-19-4067-2015, 2015.
Rothfuss, Y., Quade, M., Brüggemann, N., Graf, A., Vereecken, H., and
Dubbert, M.: Reviews and syntheses: Gaining insights into evapotranspiration
partitioning with novel isotopic monitoring methods, Biogeosciences, 18,
3701–3732, https://doi.org/10.5194/bg-18-3701-2021, 2021.
Rozmiarek, K. S., Vaughn, B. H., Jones, T. R., Morris, V., Skorski, W. B.,
Hughes, A. G., Elston, J., Wahl, S., Faber, A. K., and Steen-Larsen, H. C.:
An unmanned aerial vehicle sampling platform for atmospheric water vapor
isotopes in polar environments. Atmos. Meas. Tech., 14, 7045–7067, https://doi.org/10.5194/amt-14-7045-2021, 2021.
Seeger, S. and Weiler, M.: Temporal dynamics of tree xylem water isotopes: In situ monitoring and modeling, Biogeosciences, 18, 4603–4627,
https://doi.org/10.5194/bg-18-4603-2021, 2021.
Soderberg, K., Good, S. P., Wang, L., and Caylor, K.: Stable Isotopes of
Water Vapor in the Vadose Zone: A Review of Measurement and Modeling Techniques, Vadose Zone J., 11, vzj2011.0165, https://doi.org/10.2136/vzj2011.0165, 2012.
Soil Survey Staff, Natural Resources Conservation Service, and United States
Department of Agriculture: Soil Series Classification Database,
https://websoilsurvey.nrcs.usda.gov/ (last access: 9 October 2022), 2022.
Sprenger, M. and Allen, S. T.: What Ecohydrologic Separation Is and Where
We Can Go With It, Water Resour. Res., 56, e2020WR027238, https://doi.org/10.1029/2020WR027238, 2020.
Sprenger, M., Herbstritt, B., and Weiler, M.: Established methods and new opportunities for pore water stable isotope analysis, Hydrol. Process., 29, 5174–5192, https://doi.org/10.1002/hyp.10643, 2015.
Sprenger, M., Leistert, H., Gimbei, G., and Weiler, M.: Illuminating hydrological processes at the soil-vegetation-atmosphere interface with
water stable isotopes, Rev. Geophys., 54, 674–704, https://doi.org/10.1002/2015RG000515, 2016.
Stumpp, C., Stichler, W., Kandolf, M., and Šimůnek, J.: Effects of
land cover and fertilization method on water flow and solute transport in
five lysimeters: A long-term study using stable water isotopes, Vadose Zone
J., 11, https://doi.org/10.2136/vzj2011.0075, 2012.
Theis, D. E., Saurer, M., Blum, H., Frossard, E., and Siegwolf, R. T. W.: A
portable automated system for trace gas sampling in the field and stable
isotope analysis in the laboratory, Rapid Commun. Mass Spectrom., 18, 2106–2112, https://doi.org/10.1002/rcm.1596, 2004.
Vereecken, H., Amelung, W., Bauke, S. L., Bogena, H., Brüggemann, N.,
Montzka, C., Vanderborght, J., Bechtold, M., Blöschl, G., Carminati, A.,
Javaux, M., Konings, A. G., Kusche, J., Neuweiler, I., Or, D., Steele-Dunne,
S., Verhoef, A., Young, M., and Zhang, Y.: Soil hydrology in the Earth system, Nat. Rev. Earth Environ., 3, 573–587, https://doi.org/10.1038/s43017-022-00324-6, 2022.
Volkmann, T. H. M. and Weiler, M.: Continual in situ monitoring of pore water stable isotopes in the subsurface, Hydrol. Earth Syst. Sci., 18, 1819–1833, https://doi.org/10.5194/hess-18-1819-2014, 2014.
Volkmann, T. H. M., Haberer, K., Gessler, A., and Weiler, M.: High-resolution isotope measurements resolve rapid ecohydrological dynamics at the soil-plant interface, New Phytol., 210, 839–849, https://doi.org/10.1111/nph.13868, 2016.
Wassenaar, L. I., Hendry, M. J., Chostner, V. L., and Lis, G. P.: High
resolution pore water δ2H and δ18O measurements by
H2O(liquid)–H2O(vapor) equilibration laser spectroscopy, Environ. Sci. Technol., 42, 9262–9267, https://doi.org/10.1021/es802065s, 2008.
Zhao, P., Tang, X., Zhao, P., Wang, C., and Tang, J.: Identifying the water source for subsurface flow with deuterium and oxygen-18 isotopes of soil water collected from tension lysimeters and cores, J. Hydrol., 503, 1–10, https://doi.org/10.1016/j.jhydrol.2013.08.033, 2013.
Zimmermann, U., Munnich, K. O., and Roether, W.: Tracers Determine Movement of Soil Moisture and Evapotranspiration, Science, 152, 346–347,
https://doi.org/10.1126/science.152.3720.346, 1966.
Short summary
We present an automated, field-ready system that collects soil water vapor for stable isotope analysis. This system can be used to determine soil water evolution through time, which is helpful for understanding crop water use, water vapor fluxes to the atmosphere, and geologic proxy development. Our system can automatically collect soil water vapor and then store it for up to 30 d, which allows researchers to collect datasets from historically understudied, remote locations.
We present an automated, field-ready system that collects soil water vapor for stable isotope...