Articles | Volume 27, issue 9
https://doi.org/10.5194/hess-27-1809-2023
https://doi.org/10.5194/hess-27-1809-2023
Research article
 | 
09 May 2023
Research article |  | 09 May 2023

Benchmarking high-resolution hydrologic model performance of long-term retrospective streamflow simulations in the contiguous United States

Erin Towler, Sydney S. Foks, Aubrey L. Dugger, Jesse E. Dickinson, Hedeff I. Essaid, David Gochis, Roland J. Viger, and Yongxin Zhang

Related authors

A wavelet-based approach to streamflow event identification and modeled timing error evaluation
Erin Towler and James L. McCreight
Hydrol. Earth Syst. Sci., 25, 2599–2615, https://doi.org/10.5194/hess-25-2599-2021,https://doi.org/10.5194/hess-25-2599-2021, 2021
Short summary
Characterizing the potential for drought action from combined hydrological and societal perspectives
Erin Towler, Heather Lazrus, and Debasish PaiMazumder
Hydrol. Earth Syst. Sci., 23, 1469–1482, https://doi.org/10.5194/hess-23-1469-2019,https://doi.org/10.5194/hess-23-1469-2019, 2019
Short summary

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Modelling approaches
A hybrid data-driven approach to analyze the drivers of lake level dynamics
Márk Somogyvári, Dieter Scherer, Frederik Bart, Ute Fehrenbach, Akpona Okujeni, and Tobias Krueger
Hydrol. Earth Syst. Sci., 28, 4331–4348, https://doi.org/10.5194/hess-28-4331-2024,https://doi.org/10.5194/hess-28-4331-2024, 2024
Short summary
Estimating velocity distribution and flood discharge at river bridges using entropy theory – insights from computational fluid dynamics flow fields
Farhad Bahmanpouri, Tommaso Lazzarin, Silvia Barbetta, Tommaso Moramarco, and Daniele P. Viero
Hydrol. Earth Syst. Sci., 28, 3717–3737, https://doi.org/10.5194/hess-28-3717-2024,https://doi.org/10.5194/hess-28-3717-2024, 2024
Short summary
Late-Quaternary hydrological evolution of Fuente de Piedra playa-lake (southern Iberia) controlled by neotectonics and climate changes
Alejandro Jiménez Bonilla, Lucía Martegani, Miguel Rodríguez-Rodríguez, Fernando Gázquez, Manuel Díaz-Azpíroz, Sergio Martos, Klaus Reicherter, and Inmaculada Expósito
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-142,https://doi.org/10.5194/hess-2024-142, 2024
Revised manuscript accepted for HESS
Short summary
Isotopic evaluation of the National Water Model reveals missing agricultural irrigation contributions to streamflow across the western United States
Annie L. Putman, Patrick C. Longley, Morgan C. McDonnell, James Reddy, Michelle Katoski, Olivia L. Miller, and J. Renée Brooks
Hydrol. Earth Syst. Sci., 28, 2895–2918, https://doi.org/10.5194/hess-28-2895-2024,https://doi.org/10.5194/hess-28-2895-2024, 2024
Short summary
On the Cause of Large Daily River Flow Fluctuations in the Mekong River
Khosro Morovati, Lidi Shi, Yadu Pokhrel, Maozhu Wu, Paradis Someth, Sarann Ly, and Fuqiang Tian
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-96,https://doi.org/10.5194/hess-2024-96, 2024
Revised manuscript accepted for HESS
Short summary

Cited articles

Abramowitz, G., Leuning, R., Clark, M., and Pitman A. J.: Evaluating the performance of land surface models, J. Climate, 21, 5468–5481, 2008. 
Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017. 
Addor, N., Nearing, G., Prieto, C., Newman, A. J., Le Vine, N., and Clark, M. P.: A ranking of hydrological signatures based on their predictability in space, Water Resour. Res., 54, 8792–8812, https://doi.org/10.1029/2018WR022606, 2018.  
Arheimer, B., Pimentel, R., Isberg, K., Crochemore, L., Andersson, J. C. M., Hasan, A., and Pineda, L.: Global catchment modelling using World-Wide HYPE (WWH), open data, and stepwise parameter estimation, Hydrol. Earth Syst. Sci., 24, 535–559, https://doi.org/10.5194/hess-24-535-2020, 2020. 
Download
Short summary
Hydrologic models developed to assess water availability need to be systematically evaluated. This study evaluates the long-term performance of two high-resolution hydrologic models that simulate streamflow across the contiguous United States. Both models show similar performance overall and regionally, with better performance in minimally disturbed basins than in those impacted by human activity. At about 80 % of the sites, both models outperform the seasonal climatological benchmark.