Articles | Volume 26, issue 2
https://doi.org/10.5194/hess-26-469-2022
https://doi.org/10.5194/hess-26-469-2022
Research article
 | 
31 Jan 2022
Research article |  | 31 Jan 2022

Extreme floods in Europe: going beyond observations using reforecast ensemble pooling

Manuela I. Brunner and Louise J. Slater

Related authors

Can Weather Patterns Contribute to Predicting Winter Flood Magnitudes Using Machine Learning?
Emma Ford, Manuela I. Brunner, Hannah Christensen, and Louise Slater
EGUsphere, https://doi.org/10.5194/egusphere-2025-1493,https://doi.org/10.5194/egusphere-2025-1493, 2025
Short summary
What is a drought-to-flood transition? Pitfalls and recommendations for defining consecutive hydrological extreme events
Bailey J. Anderson, Eduardo Muñoz-Castro, Lena M. Tallaksen, Alessia Matano, Jonas Götte, Rachael Armitage, Eugene Magee, and Manuela I. Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2025-1391,https://doi.org/10.5194/egusphere-2025-1391, 2025
Short summary
How well do hydrological models simulate streamflow extremes and drought-to-flood transitions?
Eduardo Muñoz-Castro, Bailey J. Anderson, Paul C. Astagneau, Daniel L. Swain, Pablo A. Mendoza, and Manuela I. Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2025-781,https://doi.org/10.5194/egusphere-2025-781, 2025
Short summary
Impact of bias adjustment strategy on ensemble projections of hydrological extremes
Paul C. Astagneau, Raul R. Wood, Mathieu Vrac, Sven Kotlarski, Pradeebane Vaittinada Ayar, Bastien François, and Manuela I. Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2024-3966,https://doi.org/10.5194/egusphere-2024-3966, 2025
Short summary
Suspended sediment concentrations in Alpine rivers: from annual regimes to sub-daily extreme events
Amber van Hamel, Peter Molnar, Joren Janzing, and Manuela Irene Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2024-3985,https://doi.org/10.5194/egusphere-2024-3985, 2025
Short summary

Related subject area

Subject: Engineering Hydrology | Techniques and Approaches: Modelling approaches
An extension of the logistic function to account for nonstationary drought losses
Tongtiegang Zhao, Zecong Chen, Yongyong Zhang, Bingyao Zhang, and Yu Li
Hydrol. Earth Syst. Sci., 29, 2429–2443, https://doi.org/10.5194/hess-29-2429-2025,https://doi.org/10.5194/hess-29-2429-2025, 2025
Short summary
Probabilistic downscaling of EURO-CORDEX precipitation data for the assessment of future areal precipitation extremes for hourly to daily durations
Abbas El Hachem, Jochen Seidel, and András Bárdossy
Hydrol. Earth Syst. Sci., 29, 1335–1357, https://doi.org/10.5194/hess-29-1335-2025,https://doi.org/10.5194/hess-29-1335-2025, 2025
Short summary
Impact Webs: A novel conceptual modelling approach for characterising and assessing complex risks
Edward Sparkes, Davide Cotti, Angel Valdiviezo Ajila, Saskia E. Werners, and Michael Hagenlocher
EGUsphere, https://doi.org/10.5194/egusphere-2024-2844,https://doi.org/10.5194/egusphere-2024-2844, 2024
Short summary
Technical Note: Operational calibration and performance improvement for hydrodynamic models in data-scarce coastal areas
Francisco Rodrigues do Amaral, Benoît Camenen, Tin Nguyen Trung, Tran Anh Tu, Thierry Pellarin, and Nicolas Gratiot
EGUsphere, https://doi.org/10.5194/egusphere-2024-1563,https://doi.org/10.5194/egusphere-2024-1563, 2024
Short summary
Soil moisture modeling with ERA5-Land retrievals, topographic indices, and in situ measurements and its use for predicting ruts
Marian Schönauer, Anneli M. Ågren, Klaus Katzensteiner, Florian Hartsch, Paul Arp, Simon Drollinger, and Dirk Jaeger
Hydrol. Earth Syst. Sci., 28, 2617–2633, https://doi.org/10.5194/hess-28-2617-2024,https://doi.org/10.5194/hess-28-2617-2024, 2024
Short summary

Cited articles

Alfieri, L., Burek, P., Dutra, E., Krzeminski, B., Muraro, D., Thielen, J., and Pappenberger, F.: GloFAS-global ensemble streamflow forecasting and flood early warning, Hydrol. Earth Syst. Sci., 17, 1161–1175, https://doi.org/10.5194/hess-17-1161-2013, 2013. a
Barnard, C., Krzeminski, B., Mazzetti, C., Decremer, D., Carton de Wiart, C., Harrigan, S., Blick, M., Ferrario, I., and Wetterhall, F., and Prudhomme, C.: Reforecasts of river discharge and related data by the European Flood Awareness System, version 4.0, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.c83f560f, 2020. a, b, c
Bartholmes, J. C., Thielen, J., Ramos, M. H., and Gentilini, S.: The european flood alert system EFAS – Part 2: Statistical skill assessment of probabilistic and deterministic operational forecasts, Hydrol. Earth Syst. Sci., 13, 141–153, https://doi.org/10.5194/hess-13-141-2009, 2009. a
Berghuijs, W. R., Harrigan, S., Molnar, P., Slater, L. J., and Kirchner, J. W.: The relative importance of different flood-generating mechanisms across Europe, Water Resour. Res., 55, 4582–4593, https://doi.org/10.1029/2019WR024841, 2019. a, b
Blöschl, G., Hall, J., Viglione, A., Perdigão, R., Parajka, R., Merz, B., Lun, D., Arheimer, B., Aronica, G., Bilibashi, A., Boháč, M., Bonacci, O., Borga, M., Čanjevac, I., Castellarin, A., Chirico, G., Claps, P., Frolova, N., Ganora, D., Gorbachova, L., Gül, A., Hannaford, J., Harrigan, S., Kireeva, M., Kiss, A., Kjeldsen, T., Kohnová, S., Koskela, J., Ledvinka, O., Macdonald, N., Mavrova-Guirguinova, M., Mediero, L., Merz, R., Molnar, P., Montanari, A., Murphy, C., Osuch, M., Ovcharuk, V., Radevski, I., Salinas, J., Sauquet, E., Šraj, M., Szolgay, J., Volpi, E., Wilson, D., Zaimi, K., and Živković, N.: Changing climate both increases and decreases European floods, Nature, 573, 108–111, https://doi.org/10.1038/s41586-019-1495-6, 2019. a
Download
Short summary
Assessing the rarity and magnitude of very extreme flood events occurring less than twice a century is challenging due to the lack of observations of such rare events. Here we develop a new approach, pooling reforecast ensemble members from the European Flood Awareness System to increase the sample size available to estimate the frequency of extreme flood events. We demonstrate that such ensemble pooling produces more robust estimates than observation-based estimates.
Share