
Hydrol. Earth Syst. Sci., 26, 469–482, 2022
https://doi.org/10.5194/hess-26-469-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Extreme floods in Europe: going beyond observations
using reforecast ensemble pooling
Manuela I. Brunner1 and Louise J. Slater2

1Institute of Earth and Environmental Sciences, University of Freiburg, Freiburg, Germany
2School of Geography and the Environment, University of Oxford, Oxford, United Kingdom

Correspondence: Manuela I. Brunner (manuela.brunner@hydrology.uni-freiburg.de)

Received: 29 June 2021 – Discussion started: 23 July 2021
Revised: 4 November 2021 – Accepted: 28 December 2021 – Published: 31 January 2022

Abstract. Assessing the rarity and magnitude of very ex-
treme flood events occurring less than twice a century is chal-
lenging due to the lack of observations of such rare events.
Here we develop a new approach, pooling reforecast en-
semble members from the European Flood Awareness Sys-
tem (EFAS), to increase the sample size available to estimate
the frequency of extreme local and regional flood events. We
assess the added value of such pooling, determine where in
Central Europe one might expect the most extreme events,
and evaluate how event severity is related to physiographic
and meteorological catchment characteristics. We work with
a set of 234 catchments from the Global Runoff Data Cen-
tre matched to EFAS catchments and for which the perfor-
mance of simulated floods is good when compared to ob-
served streamflow. We pool EFAS-simulated flood events
for 10 perturbed ensemble members and lead times rang-
ing from 22 to 46 d, where flood events are only weakly de-
pendent (< 0.25 average correlation across lead times). The
resulting large ensemble (130 time series instead of 1) en-
ables the analyses of very extreme events which occur less
than twice a century. We demonstrate that such ensemble
pooling produces more robust estimates with considerably
reduced uncertainty bounds (by ∼ 80% on average) than
observation-based estimates but may equally introduce bi-
ases arising from the simulated meteorology and hydrolog-
ical model. Our results show that, for a given return period,
specific floods are highest in steep, cold, and wet regions and
are comparably low in regions with strong flow regulation
through dams. Furthermore, our pooled flood estimates in-
dicate that the probability of regional flooding is higher in
Central Europe and Great Britain than in Scandinavia. We
conclude that reforecast ensemble pooling is an efficient ap-

proach to increase sample size and to derive robust local and
regional flood estimates in regions with good hydrological
model performance.

1 Introduction

Reliable estimates of the frequency and magnitude of ex-
treme flood events are needed to develop suitable prepared-
ness and adaptation measures. However, estimates of flood
events occurring less than twice a century are usually af-
fected by large uncertainty and low reliability due to the
shortness of observed records. To increase the sample size
available for flood frequency analysis, different model-based
approaches have been proposed. There are two important
classes of methods to increase sample size, namely stochas-
tic models and large ensembles, that rely on climate simula-
tions. Stochastic models rely on statistical principles to gen-
erate large samples of flood events with similar character-
istics to the observations (Rajagopalan et al., 2010; Vogel,
2017; Brunner and Gilleland, 2020). Examples of stochas-
tic models used to generate large flood event sets include
the conditional exceedance model by Heffernan and Tawn
(2004) (Keef et al., 2013; Tawn et al., 2018; Neal et al.,
2013; Quinn et al., 2019), max-stable models (Segers, 2012;
Ribatet and Sedki, 2013), or copula models (Gräler, 2014;
Brunner et al., 2019). The large ensemble approach is more
physically based and relies on a large ensemble of climate
simulations (Deser et al., 2020) which are fed into a hydro-
logical model to generate a streamflow time series ensemble
(van der Wiel et al., 2019; Willkofer et al., 2020; Brunner
et al., 2021b).
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An alternative approach to generate large ensembles of cli-
mate variables using physical principles is reforecast simula-
tions, i.e. forecasts generated for past periods (Hamill et al.,
2006). Reforecasts are typically generated using a weather
prediction model also used for weather forecasting. Extremes
of the variable of interest extracted from such reforecasts can
be pooled across different model runs to increase the sam-
ple size of extreme events. Pooling can be performed using
model runs for different lead times or generated with differ-
ent perturbations. Such reforecast ensemble pooling has been
shown to have considerable value for analysing rare events
and estimating the frequency of different types of hydromete-
orological extremes, including extreme wind (Breivik et al.,
2014; Osinski et al., 2016; Meucci et al., 2018), sea surge
levels (van den Brink et al., 2004), wave heights (Breivik
et al., 2013), precipitation (Thompson et al., 2017; Kelder
et al., 2020), and the water balance (van den Brink et al.,
2005). Reforecast pooling is also referred to as the UNprece-
dented Simulated Extreme ENsemble (UNSEEN) approach
(Thompson et al., 2017; Kelder et al., 2020) because it en-
ables the study of unprecedented simulated extremes absent
in short observational records. The approach relies on the
ability of the model to simulate the phenomenon of interest
well (Breivik et al., 2014) and also on the limited predictive
skill of medium-range reforecasts (related to the rapid growth
of errors with increasing lead time; Hamill et al., 2006). At
long lead times (> 10 d), reforecasts of meteorological vari-
ables such as wind or precipitation can be considered to be
independent simulations because the predictive skill is very
low.

While this ensemble pooling or UNSEEN approach has
been successfully used to assess the frequency of rare wind,
wave height, storm surge, and precipitation events (Breivik
et al., 2014; Osinski et al., 2016; Meucci et al., 2018; Breivik
et al., 2013; van den Brink et al., 2004; Kelder et al., 2020),
its potential value has not yet been assessed for flood fre-
quency analyses. Ensemble pooling of hydrological variables
may be more challenging than the pooling of meteorological
variables because we cannot expect hydrological simulations
for long lead times to become entirely independent from one
another, as is the case for meteorological variables such as
precipitation. Some dependence is likely going to be retained
because of the comparably long memory of hydrological sys-
tems related to storage processes, e.g. in the form of snow or
soil moisture. Therefore, here we seek to assess the potential
value of reforecast ensemble pooling in a hydrological con-
text – more specifically in flood frequency analyses. We pro-
pose to pool flood events extracted from different model runs
generated by the European Flood Awareness System (EFAS)
for different lead times and perturbed members to create a
large ensemble of extreme flood events. We use this ensem-
ble to (1) assess how well the pooled ensemble method works
in different locations and evaluate the conditions in which it
improves flood frequency estimates relative to observations
and (2) determine the frequency of occurrence (return peri-

ods) of extreme and widespread flood events across Europe.
By increasing the sample size, such reforecast pooling al-
lows us to study the frequency and magnitude of events more
extreme than those present in the observations and provides
a longer context for any truly extreme events that have oc-
curred. Therefore, ensemble pooling represents a physically
based alternative to stochastic models and large climate en-
semble experiments which have traditionally been used to
generate large samples of extreme events.

2 Methods and materials

To assess the potential value of reforecast ensemble pooling
in flood frequency analysis, we use reforecast simulations
of streamflow generated by the European Flood Awareness
System (EFAS). EFAS combines a weather prediction model
with a hydrological model to generate hydrological simu-
lations including streamflow (Fig. 1a). First, we preprocess
the EFAS data by applying bias correction and identify flood
events in simulation runs that were performed for different
lead times and perturbed members to test whether the flood
samples of different model runs are independent (Fig. 1b;
details below). Second, we evaluate how the use of a pooled
ensemble approach can benefit flood frequency analysis in
terms of best estimates and uncertainty. To do so, we derive
local and regional flood estimates for Central and Northern
Europe (Fig. 1c).

2.1 Study region

Our evaluation of the ensemble pooling approach for flood
frequency analyses in Europe uses a set of 234 catchments
in Central Europe, with areas ranging from a first quartile
of 698 km2 to a third quartile of 11 510 km2 (min 16 km2;
max 159 300 km2; interquartile range: 10 812 km2) and mean
elevations ranging from a first quartile of 35 m a.s.l. (above
sea level) to a third quartile of 309 m a.s.l. (min 2 m a.s.l.;
max 1852 m a.s.l.; interquartile range 273 m a.s.l.; Fig. 2).
The catchments selected for the analysis fulfil the follow-
ing four criteria: (1) observed streamflow for model eval-
uation is available through the Global Runoff Data Centre
(GRDC; The Global Runoff Data Centre 56068 Koblenz
Germany, 2019); (2) catchments are included in the Global
Streamflow Indices and Metadata archive (GSIM; Do et al.,
2018), which provides catchment boundaries and charac-
teristics such as elevation or the number of dams; (3) the
area of the GRDC catchment is similar to the upstream area
of the corresponding EFAS grid cell extracted using au-
tomatic coordinate matching (area difference< 20 %); and
(4) sites show good hydrological model performance in terms
of high flows (i.e. Kling–Gupta efficiency> 0.6 and Q95 er-
ror< 10 %) when comparing observed flows to streamflow
simulations derived through the European Flood Aware-
ness System (EFAS; Barnard et al., 2020) using historical
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Figure 1. Illustration of workflow. (a) Data set derivation from a weather prediction–hydrological model chain. (b) Data processing through
model and ensemble evaluation. (c) Local and regional frequency analysis by pooling flood events across lead times. AM is the annual
maxima, and POT is the peak over threshold approach.

climatology (see Sect. 2.3). For illustration purposes, we
chose the following four example catchments with different
flood seasonalities, as illustrated in Fig. 2: (a) Kemijoki–
Ounasjoki (strong summer flood regime), (b) Osterach–
Reckenberg (summer flood regime), (c) Rhine–Maxau (win-
ter flood regime), and (d) Jouanne–Forcé (strong winter flood
regime).

2.2 Data

EFAS provides deterministic and probabilistic medium-
range streamflow forecasts and early warning information
(Bartholmes et al., 2009; Smith et al., 2016). It relies on nu-
merical weather predictions from the European Centre for
Medium-Range Weather Forecasts (ECMWF), for which the
initial conditions are derived using observed meteorological
data, and the hydrological model LISFLOOD. LISFLOOD
is a spatially distributed hydrological rainfall–runoff model
based on Geographic Information Systems (GISs) developed
by the Joint Research Centre (JRC) for operational flood
forecasting at the pan-European scale (Thielen et al., 2009).
EFAS v4.0 computes a water balance at a 6 h or daily time
step for each grid cell (5 km× 5 km) using meteorological
forcing data (precipitation, temperature, potential evapotran-
spiration, and evaporation rates). LISFLOOD represents a
variety of processes (snowmelt, soil freezing, surface runoff,
soil infiltration, preferential flow, soil moisture redistribution,
drainage to the groundwater system, groundwater storage,
and groundwater base flow) and routes the runoff produced
for each grid cell through the river network using a kinematic
wave approach. The model was calibrated using the modified
Kling–Gupta efficiency metric (Gupta et al., 2009) for the

Figure 2. The 234 catchments in Central Europe selected for the
analysis based on model performance and the availability of catch-
ment boundaries and characteristics. The four example catchments,
used for illustration purposes, are highlighted in red. (a) Kemijoki–
Ounasjoki (strong summer flood regime). (b) Osterach–Reckenberg
(summer flood regime). (c) Rhine–Maxau (winter flood regime).
(d) Jouanne–Forcé (strong winter flood regime).
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period 1991–2017 for 1137 catchments for which discharge
data were available (ECMWF, 2021).

In addition to streamflow forecasts, EFAS provides
streamflow reforecasts generated by forcing LISFLOOD
with medium- to sub-seasonal range meteorological refore-
casts (Barnard et al., 2020), i.e. forecasts run for past peri-
ods (Hamill et al., 2006). The EFAS reforecasts cover the
20-year period from 1999–2018 and are initialized twice a
week, on Mondays and Thursdays, with lead times of up to
46 d at a 6 h time step. They are driven with ensemble me-
teorological reforecasts from ECMWF’s numerical weather
prediction model. The meteorological ensemble consists of
10 perturbed ensemble runs which were derived using the
same numerical weather prediction model but varying initial
conditions.

2.3 Model and ensemble evaluation

We select the most suitable catchments for analysis out of
847 catchments in Central Europe which are part of the
Global Runoff Data Centre database (GRDC; The Global
Runoff Data Centre 56068 Koblenz Germany, 2019), have
observations for the period 1991–2012, and whose catchment
areas are similar to the upstream areas of the correspond-
ing EFAS grid cells extracted using automatic coordinate
matching (relative area difference< 20 %). Suitable catch-
ments are identified by comparing observed streamflow with
EFAS’s historical simulations (generated with observed me-
teorological data and EFAS version 4.0). The evaluation fo-
cused on the period 1999–2012, as simulations are available
from 1999 and observations until 2012. We computed differ-
ent metrics which focus on high flows, including the Kling–
Gupta efficiency metric (EKG; Gupta et al., 2009) and the
relative errors between simulated and observed 95 % (Q95),
99 %, and 99.5 % quantiles. High-flow simulation perfor-
mance varied among the 847 catchments, for which there
may be several reasons, e.g. some catchments may be too
small to guarantee reliable simulations given the 5× 5 km
model resolution. To ensure good performance in terms of
high flows, we only retained catchments with good perfor-
mance in terms of EKG and Q95. That is, we only choose
stations with EKG > 0.6 and relative Q95 errors< 10 %. The
234 catchments fulfilling these criteria are retained for fur-
ther analysis (Fig. 2).

2.3.1 Data subsetting

The pooled frequency analysis relies on reforecasts of daily
streamflow time series generated through EFAS v4.0. For
our analysis, we use the 10 perturbed ensemble runs and
24 lead times, a subset of available lead times (lt ) cho-
sen by picking every eighth lead time available (i.e. lt =
0, 48, 96, . . . , 1104 h). A subset was chosen as a trade-off be-
tween minimizing the computational feasibility and maxi-
mizing sample size.

2.3.2 Bias correction

Simulated streamflow time series can be biased because of
uncertainties introduced through the modelling process. Sub-
stantial bias indicates low model fidelity because there is
limited agreement between observed and modelled distri-
butions (DelSole and Shukla, 2010). Potential uncertainty
sources introducing bias include meteorological input un-
certainty, due to the use of a numerical weather prediction
system, and hydrological parameter and model uncertainties.
Any such biases must be corrected in order to align the simu-
lated streamflow distributions with observed distributions. To
do so, we apply non-parametric quantile mapping, which has
been found to be more flexible and suitable than parametric
mapping approaches (Gudmundsson et al., 2012), to the daily
simulated discharge series using the R package qmap (Gud-
mundsson, 2016). We estimate the empirical cumulative dis-
tribution function of the observed and simulated time series
(reforecasts for different lead times and perturbations) for
regularly spaced quantiles for the period 1999–2011 and for
which both simulations and observations are available. Then,
we apply quantile mapping to the simulated distributions of
the whole period 1999–2018 for the different lead times and
perturbations. We also tested another commonly applied bias
correction procedure which maps the simulated distribution
using the mean bias ratio on extracted extremes (as done in
meteorological ensemble pooling studies, for example, by
Kelder et al., 2020). However, we find that a correction by the
mean bias ratio will still lead to biased flood estimates, espe-
cially for long return periods. A comparison of the cumula-
tive distribution functions of observed and simulated flood
events shows that both non-parametric quantile mapping and
correction by the mean bias ratio lead to an alignment of the
simulated with observed distributions and that quantile map-
ping produces more satisfactory results than correction by the
mean bias ratio in most cases, especially for events with high
non-exceedance probabilities (Fig. 3). Therefore, we use the
series obtained by non-parametric quantile mapping for the
pooled flood frequency analysis.

2.3.3 Flood identification

After bias correction, we identify flood events in the time
series simulated for different lead times and perturbed mem-
bers (10 perturbed runs for each lead time). We use two flood
extraction procedures, namely the annual maxima (AM) and
peak-over-threshold (POT) approaches. Both approaches are
applied to each of the simulated time series generated for dif-
ferent lead times (24) and perturbations (10), i.e. for 240 time
series per catchment. The extracted AM event sets are used in
the subsequent independence tests (see Sect. 2.3.4) because
of their equal sample size across model runs (one event per
year), which is not guaranteed for the POT event sets. How-
ever, POT events are used for the final frequency analysis
(see Sect. 2.4) because POT samples include events that may
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Figure 3. Comparison of observed and simulated cumulative dis-
tribution functions of peak-over-threshold flood events derived
from observed streamflow time series, raw simulations without
any bias correction, flood events corrected by the median ratio
between observed and simulated flood distributions, and empiri-
cally quantile mapped simulations for the four example catchments.
(a) Kemijoki–Ounasjoki. (b) Osterach–Reckenberg. (c) Rhine–
Maxau. (d) Jouanne–Forcé.

be excluded when applying the AM approach. When apply-
ing the POT approach, the threshold is set to the 99th per-
centile, and independence between events is ensured by pre-
scribing a minimum time window of 10 d between events
(Diederen et al., 2019; Brunner et al., 2020a, b).

2.3.4 Stability and independence tests

Using the AM flood samples extracted from different simula-
tion runs, we assess the suitability of the perturbed ensemble
streamflow simulations for ensemble pooling by evaluating
whether individual simulation runs can be considered inde-
pendent and stable, i.e. that simulated distributions vary only
slightly across lead times (Kelder et al., 2020).

First, we assess model stability, i.e. check whether the gen-
erated ensemble exhibits any changes in distribution with
lead time. Ideally, a pooled ensemble should only exhibit
weak changes in distribution with lead time. Such stability is
assessed by comparing the distribution of AM events across
different lead times (Fig. 4). To evaluate the model stability
for a large number of catchments, we compute Spearman’s
correlation between simulated 95 % flood quantiles (20-year
return period) and the corresponding lead times.

Second, we check whether individual model runs can be
considered independent. Ensemble member independence is
an important factor determining the increase in effective sam-
ple size achieved through ensemble pooling. If all x sim-
ulation runs are independent, pooling increases the effec-
tive sample size by x times. However, if the x simulation
runs show a higher degree of dependence, pooling increases

the sample size by y < x times. We calculate Spearman’s
rank correlation using the pairs of AM time series (following
Kelder et al., 2020; Fig. 5). Note that such a correlation can
directly only be computed for AM and not for the peak-over-
threshold (POT) series because the POT series may differ
across ensemble members in terms of the number of events
chosen for analysis. Therefore, it can be assumed that the
POT events used in our subsequent analyses are more in-
dependent than AM events. To illustrate the difference be-
tween dependence in AM and POT samples, we indirectly
compute Spearman’s correlation for pairs of POT time se-
ries by using events where at least one of the time series ex-
ceeds a threshold. For this correlation analysis, we replace
non-exceedances in the paired time series by 0 (which is not
ideal because this might artificially introduce some sort of
dependence).

2.4 Frequency analysis

For the frequency analysis, we use the POT instead of
AM flood samples to ensure the inclusion of relevant events
and to reduce the dependence between ensemble members
(i.e. runs for different lead times and for different perturba-
tions).

2.4.1 Local frequency analysis

For the local (catchment-specific) frequency analysis, we
pool all POT events from the perturbed members of the
lead times that can be considered independent, i.e. lead
times≥ 528 h or 22 d (see Sect. 3.1). Such pooling increases
the sample size available for frequency analysis from 1×∼
20 events (roughly one event chosen per year on average) to
13 lead times× 10 members× 20 events= 2600 events.

We fit a theoretical generalized Pareto distribution (GPD;
Coles, 2001) to the observed and pooled POT samples us-
ing the maximum likelihood estimation. We use the fitted
distributions to derive best estimate observed and simulated
flood frequency curves using probabilities corresponding to
return periods between 1 and 200 years. In addition, we de-
rive 90 % confidence intervals for the observed and simu-
lated frequency curves using bootstrapping, i.e. we draw n=

1000 random samples from the observed and simulated sam-
ples, respectively, to derive 1000 theoretical flood frequency
curves. We then use these resampled frequency curves to
compute 90 % confidence intervals for the estimated flood
frequency curves. We compare simulated to observed flood
quantiles corresponding to return periods of T = 5, 10, 20,
50, 100, and 200 years by computing relative differences
between simulated and observed quantiles. Furthermore, we
compare the uncertainty of these estimates by computing the
relative difference in the range between the 95 % and 5 %
quantile of the 1000 resampled estimates for each return pe-
riod.

https://doi.org/10.5194/hess-26-469-2022 Hydrol. Earth Syst. Sci., 26, 469–482, 2022



474 M. I. Brunner and L. J. Slater: Flood estimation using reforecasts

As a reference for these theoretical estimates, we provide
empirical return period estimates of the observed flood events
derived using the Weibull plotting position Twb =m/(N+1),
whereN is the total number of events, andm is the rank of an
event within the sample. To also represent the uncertainty of
these empirical estimates, we perform another bootstrapping
experiment, which derives the plotting positions for different
samples by removing 1 year at a time. Next, we map the flood
quantiles estimated for return periods of T = 10, 20, 50, 100,
and 200 years for the 234 catchments using the GPD distri-
butions fitted to the pooled POT samples.

To identify physiographical and hydrometeorological
characteristics important for explaining flood quantiles at dif-
ferent return periods, we use linear modelling. We fit dif-
ferent linear regression models of different sizes, i.e. with
different numbers of explanatory variables, using exhaustive
search (James et al., 2013) to predict flood quantiles with a
specific return period, e.g. 10 years. For the exhaustive search
(i.e. trying all variable combinations), we use a set of po-
tential explanatory variables frequently used to explain flood
characteristics, including altitude, catchment area, number of
dams in catchment, mean slope, population count, mean tem-
perature, mean precipitation, mean evapotranspiration, mean
snow water equivalent (SWE), mean snowmelt, and mean
soil moisture. We computed the mean areal hydrometeoro-
logical characteristics, including precipitation, temperature,
evapotranspiration, SWE, snowmelt, and soil moisture (aver-
age over four layers) using the gridded ERA5-Land data set
(Muñoz Sabater, 2019). Among the fitted models with dif-
ferent numbers of predictors, we identify the model with the
smallest Bayesian information criterion (BIC) value for each
return period and look at the explanatory variables retained
in these models. The sign and magnitude of the retained re-
gression coefficients are used to describe the importance of
each predictor in explaining flood quantiles for different re-
turn periods.

2.4.2 Regional frequency analysis

After performing the local frequency analysis, we look at
probabilities of regional flooding. That is, we estimate the
return periods of events that affect a certain percentage of
catchments within a larger region, i.e. river basin. We focus
on the major river basins in Europe (HydroSHEDS; Lehner
and Grill, 2013) and ask what is the probability that 30 %,
50 %, and 70 % of the catchments in each of these river basins
are jointly affected by flooding. To compute such regional
flooding probabilities, we follow the regional hazard estima-
tion procedure proposed by Brunner et al. (2020b). For each
large river basin, we (1) determine the available catchments
located within the given region and focus on river basins with
at least five catchments (out of the 234), (2) identify the num-
ber of flood events during which p(%) of the catchments are
jointly flooded using a binary flood event matrix, which indi-
cates for each catchment whether it was affected by specific

flood events identified across all catchments, lead times, and
perturbed members, and (3) compute the probability of re-
gional flooding using the Weibull plotting position given by
the following:

p(%)= 100(x/(n+ 1)), (1)

where n is the total number of events affecting at least one
of the stations in the region, and x is the number of events
where y% of the stations were affected by flooding.

3 Results

3.1 Ensemble evaluation

After identifying catchments with satisfactory model perfor-
mance in terms of the EFAS historical runs, we assess the
suitability of the streamflow ensemble generated using the
perturbed numerical weather predictions and different lead
times for ensemble pooling. This assessment focuses on AM
instead of POT flood samples because POT event identifi-
cation can lead to the selection of an unequal number of
events across lead times, which makes it impossible to com-
pute correlations. We first consider the stability (i.e. lack of
drift across lead times) of annual maxima flood events simu-
lated for 24 lead times ranging from 0 to 46 d for one exam-
ple catchment (Fig. 4). Within each year, flood magnitudes
do not differ systematically across lead times (Fig. 4a), and
cumulative flood distributions seem to be stable across lead
times (Fig. 4b).

We take a closer look at model stability for all catchments
by assessing the dependence of the empirical 95 % flood
quantile on lead time, using Spearman’s correlation coeffi-
cient. The median correlation between the lead time and the
simulated 95 % quantile across all catchments is 0.02, and
the lower and upper quartiles are −0.32 and 0.35, respec-
tively. That is, in most catchments, simulated flood quantiles
are only weakly dependent on the lead time, which suggests
overall model stability. Some individual catchments may ex-
hibit greater (positive or negative) forecast drift than others,
and so researchers may wish to assess the model stability
more closely when working on individual case studies.

We now take a look at AM (in)dependence across
perturbed ensemble members by computing Spearman’s
rank correlation between pairs of AM series derived for
the 10 perturbed ensemble members at each lead time.
AM (in)dependence across perturbed ensemble members
seems to depend both on the catchment and on lead time
(Fig. 5). Dependence is relatively high for short lead times
and decreases with longer lead times. The strength of the
dependence at t = 0, and the rate of decrease with increas-
ing lead time, depends on the catchment as illustrated by
the different dependence decay behaviour of the four exam-
ple catchments. While some catchments (e.g. Fig. 5b and d)
show correlation values close to 0 for sufficiently long lead

Hydrol. Earth Syst. Sci., 26, 469–482, 2022 https://doi.org/10.5194/hess-26-469-2022



M. I. Brunner and L. J. Slater: Flood estimation using reforecasts 475

Figure 4. Stability across lead times from 0 to 46 d for one example catchment. (a) AM flood events extracted from streamflow time series
simulated for 24 lead times (one dot per lead time). (b) Cumulative distribution functions of AM flood samples per lead time (one line per
lead time). The darker the colour, the longer the lead time.

times, other catchments (e.g. Fig. 5a) show relatively high
correlations of 0.5 even at lead times exceeding 1 month.
That is, individual AM series for different ensemble mem-
bers may not necessarily be fully independent in a hydrolog-
ical context. This finding contrasts with independence tests
performed for other types of extremes such as extreme pre-
cipitation (Kelder et al., 2020) or wind (Breivik et al., 2014),
which found that simulated precipitation and wind extremes
can be considered independent after certain lead times. The
residual dependence in the case of hydrological simulations
is likely caused by the long memory of hydrological sys-
tems, which is related to storage processes in the soil or the
cryosphere and the persistence of the effects of initial con-
ditions on the model forecasts. Such residual dependence
would be expected to be independent of the choice of hydro-
logical model used to translate the independent precipitation
series to streamflow.

We seek to better understand which types of catchments
show high/low ensemble member dependence across lead
times. Therefore, we compute the median Spearman’s rank
correlation across the 10 ensemble members and 24 lead
times for each of the 234 catchments and try to relate this
median correlation to a catchment’s flood seasonality ra-
tio. The flood seasonality ratio RF is computed as RF =

Q95s/Q95w, where Q95s represents Q95 in summer (April–
September), and Q95w represents Q95 in winter (October–
March). RF > 1 and < 1 represent catchments with more
severe summer than winter floods and more severe winter
than summer floods, respectively. We also considered other
metrics to explain median lead time correlation, such as the
baseflow index (Ladson et al., 2013) or catchment area, but
did not find any meaningful relationships. Median lead time
dependence shows clear spatial patterns with higher depen-
dencies in the Alps and Scandinavia than in the rest of Eu-
rope (Fig. 6a). These regions with higher median dependen-

Figure 5. Member (in)dependence (Spearman’s correlation) per
lead time – 0 to 110 h (46 d) – across the 10 perturbed ensemble
members for four example stations with different flood seasonal-
ity ratios (strong summer vs. strong winter flood regime; clockwise
from upper left to lower right). (a) Kemijoki–Ounasjoki (strong
summer flood regime). (b) Osterach–Reckenberg (summer flood
regime). (c) Rhine–Maxau (winter flood regime). (d) Jouanne–
Forcé (strong winter flood regime; Fig. 2).

cies are characterized by a summer flood regime, as they
are partly influenced by snowmelt contributions (Berghuijs
et al., 2019). The median lead time correlation seems to
generally increase with higher seasonality ratios (Fig. 6b),
i.e. the more summer-/snow-dominated a flood regime is, the
higher the AM dependence. However, some of the winter-
/precipitation-dominated regimes can also have high depen-
dence values.

The high dependence at low lead times suggests that sim-
ulations at lower lead times should be removed before pool-
ing flood events for frequency analysis. In order to determine
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Figure 6. Median annual maxima dependence across all lead times and ensemble members per catchment. (a) Spatial variation in median
correlation (grey outlines) and seasonality ratio, where red colours indicate higher floods (Q95) in summer than winter and blue colours
indicate higher floods in winter than summer. (b) The relationship between the median correlation and seasonality ratio, where the vertical
black line indicates the transition from winter- to summer-dominated flood regimes, and the trend line was derived using linear regression.

Figure 7. Median Spearman’s correlation across ensemble members and catchments per lead time (0 to 1104 h) for (a) annual maxima and
(b) peak-over-threshold events. The median correlation per lead time is indicated by the horizontal grey line, and the break point in this
median series derived by the Pettitt test at the vertical red line. No red line is shown in panel (b), as the break point was determined using the
AM series shown in panel (a).

the lead times to be excluded, we compute median AM de-
pendence across ensemble members and catchments for each
lead time and perform a Pettitt change point test (Ryberg
et al., 2020) on the resulting median time series (Fig. 7a).
The change point analysis suggests that dependence values
stabilize, on average, at around 528 h, i.e. 22 d. As an al-
ternative to using a single threshold for all catchments, one
could use a variable threshold, which is lower for catch-
ments with lower dependence values and higher for catch-
ments with higher dependence values. We decided to work
with one single threshold for simplicity. The implementa-
tion of a 22 d independence threshold compares well with
the independence thresholds identified and used in previous
studies applying reforecast pooling (10 d in Breivik et al.,
2014; 30 d in Kelder et al., 2020). Our flood frequency anal-
ysis therefore pools flood events derived from the stream-
flow time series of the 10 perturbed members for each lead
time > 22 d. Such pooling allows us to substantially increase
the sample size (i.e. 130 times, that is 13 lead times and
10 perturbed runs). To further reduce dependence, our anal-
ysis relies on peak-over-threshold instead of annual maxima

events (Fig. 7b), which substantially reduces dependence at
all lead times if we compute Spearman’s rank correlation for
exceedance time series, where non-exceedances are replaced
by 0 (Breivik et al., 2013).

3.2 Flood frequency analysis

Flood estimates derived by theoretical distributions fitted to
pooled peak-over-threshold (POT) flood events from 10 en-
semble members and 13 lead times are more robust, i.e. have
smaller uncertainty, than flood estimates derived from dis-
tributions fitted to a small sample of observed POT events,
as illustrated in Fig. 8 for four example catchments (Fig. 2).
Observation- and simulation-based estimates do not just dif-
fer in terms of uncertainty but also in terms of the magnitudes
of the best estimates.

The differences between observation- and simulation-
based best estimates and uncertainty ranges vary by return
period and by catchment (Fig. 9). Relative differences be-
tween observation- and simulation-derived best estimates are
mostly positive, i.e. observed quantiles tend to be larger than
simulated quantiles (Fig. 9a). These relative differences in-
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Figure 8. Observed vs. simulated flood frequency curves, including
uncertainty bounds for four example catchments with different sea-
sonality ratios. (a) Kemijoki–Ounasjoki. (b) Osterach–Reckenberg.
(c) Rhine–Maxau. (d) Jouanne–Forcé. The observed and simulated
best estimate frequency curves are indicated by black lines, the
corresponding 90 % confidence intervals by shaded polygons, and
bootstrapped empirical return period estimates by grey dots. Confi-
dence intervals are derived using bootstrapping.

crease with the return period length. Similarly, observation-
derived uncertainty ranges are wider than simulation-derived
uncertainty ranges, and these differences also increase with
the return period length (Fig. 9b). Both the relative differ-
ences in best estimates and uncertainty bounds depend on
catchment area and elevation to some degree (Fig. 9c and d).
Low-elevation and large catchments generally show lower
relative differences in the best estimates and uncertainty than
high-elevation and small catchments. As the effect of area
on relative differences is stronger than the effect of eleva-
tion, there are no clear spatial patterns in the relative dif-
ferences between observed and simulated best estimates and
uncertainty bounds. Please also note that the relative differ-
ences between simulated and observed best estimates and un-
certainty bounds are uncorrelated with model performance,
which means that increasing the cutoff threshold for EFAS
model performance (level of EKG) does not necessarily lead
to an increase in the similarity between observed and simu-
lated flood estimates.

We now use the best estimates derived by ensemble pool-
ing to map spatial patterns of flood quantiles over Central Eu-
rope for different return periods (Fig. 10). Flood quantiles are
highest in the Alps and Great Britain and lowest in northern
Germany and Scandinavia, independent of the return period.
These spatial patterns corroborate previous findings that the
Alps and Great Britain are regions with a comparably high
number of flood events per year (Mangini et al., 2018), and

that observation-based 100-year specific discharge is high-
est in the Alps, Great Britain, and Norway and lowest along
the Atlantic coast (Blöschl et al., 2019). Additionally, we
find that the local flood quantiles are positively related to
mean slope and mean precipitation of a catchment and nega-
tively related to the number of dams, temperature, and mean
snowmelt of a catchment (Fig. 11). In other words, catch-
ments with steep slopes, colder climates, and higher mean
precipitation tend to have higher flood quantiles, while catch-
ments with a greater number of dams and higher snowmelt
contributions tend to have smaller flood quantiles.

Ensemble pooling can also be used to derive regional
flood estimates, i.e. to compute the probability that a cer-
tain percentage of catchments within a region, i.e. large river
basin, are jointly flooded (Fig. 12). Regional floods with
a 30 % coverage, i.e. floods affecting at least 30 % of the
catchments within a region, occur relatively frequently (re-
turn periods< 10 years) both in Central Europe and Scan-
dinavia (Fig. 12a). In contrast, regional events with a 50 %
coverage are more likely in Central Europe (lighter colours)
than in Scandinavia (darker colours). Very widespread events
with 70 % spatial coverage become very rare (return peri-
ods> 90 years) in most parts of Europe, except in the Weser,
Elbe, and Oder river basins.

4 Discussion

Pooling flood events derived from a streamflow reforecast
ensemble substantially increases the sample size available for
flood frequency analysis. In doing so, it enables the study of
very rare extremes absent in relatively short observed time
series. Increasing the sample size also facilitates the study
of spatial patterns in the distribution of flood estimates corre-
sponding to long return periods (e.g. 200 years; Fig. 10e) and
notably reduces uncertainty in most cases (Fig. 9b), indepen-
dent of the original EFAS model performance. Furthermore,
it enables the study of rare spatial extremes, i.e. events that
may affect multiple catchments at once (Fig. 12). Therefore,
streamflow reforecast ensemble pooling represents a suitable
alternative to stochastic or climate model large ensemble ap-
proaches for studying the frequency and magnitude of rare
extreme events. Similar to large ensemble approaches, but
in contrast to stochastic approaches, reforecast-based simu-
lation approaches rely on physical representations of the hy-
drological cycle. Such a physical representation may be es-
pecially valuable if relationships between different variables
are of interest and if one wishes to study the physical drivers
of flood events. In contrast, stochastic models have the ad-
vantage of being relatively straightforward to implement and
are potentially less computationally intense.

The utility of reforecast pooling rests on the performance
of the underlying hydrological simulations. The use of re-
forecast simulations instead of observations comes at the cost
of potentially introducing uncertainty through simulated me-
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Figure 9. Relative difference between the observed and simulated ((obs-sim)/sim) (a) best estimates and (b) the range of uncertainty
bounds (Q95−Q05) for different return periods (5, 10, 20, 50, 100, and 200 years) across catchments (one point in the box plot corre-
sponds to one catchment). Relative difference between the observed and simulated ((obs-sim)/sim) (c) best estimates and (d) the range of
uncertainty bounds (Q95−Q05) for the 100-year return period in relation to catchment area and elevation. The larger the dot, the higher
elevation of a catchment.

Figure 10. Theoretical flood quantiles corresponding to return periods of (a) 10, (b) 20, (c) 50, (d) 100, and (e) 200 years derived from
pooling POT events extracted from time series simulated for 10 ensemble members and 13 lead times (≥ 528 h; sample size= 2600; 13 lead
times× 10 members× 20 years).
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Figure 11. Predictor importance for flood quantiles. Regression co-
efficients for significant explanatory variables retained when choos-
ing the linear model with the lowest BIC (α = 0.05). Green and red
colours indicate positive and negative relationships between flood
estimates and catchment characteristics, respectively. Grey colours
indicate non-included (i.e. non-significant) explanatory variables.

teorological input or the hydrological model itself (structure
and parameters; Clark et al., 2016). These uncertainties may
result in biased simulations, which may either under- or over-
estimate the whole or specific parts of the streamflow distri-
bution. Such bias can be partly reduced by using bias cor-
rection techniques such as quantile mapping (Fig. 3). Yet,
the plausibility of unprecedented extremes relies on the real-
ism of hydrological simulation in the model system, i.e. a
reliable representation of hydrological processes and their
drivers. Further improvement in the model representation of
high flows may be needed to reduce bias and improve pro-
cess representation (Mizukami et al., 2019; Brunner et al.,
2021a).

An additional limitation is the spatial applicability of the
approach. As hydrological model simulations must be bias
corrected, the use of ensemble pooling is currently limited
to catchments for which streamflow observations are avail-
able. This requirement limits the application of the pooling
approach to gauged catchments. In theory, using simulations
instead of observations would enable the extension of the
spatial coverage to ungauged locations. However, such an
extension would only be possible if no bias correction was
required or if bias correction could be regionalized and ap-
plied to all catchments.

Sample size is only effectively increased compared to ob-
servations if the simulated flood samples for different en-
semble members can be considered independent (Kelder
et al., 2020). However, such independence is more difficult
to achieve in hydrological than meteorological systems, as
hydrological systems exhibit substantial memory effects, for
example, through snow or soil moisture storage (Berghuijs
et al., 2019; Brunner et al., 2020a). These memory effects in-
troduce varying degrees of dependence to ensembles of sim-
ulated annual maxima time series (Fig. 5). The dependence is
highest in catchments with high seasonality and where floods

predominantly occur in summer under the potential influ-
ence of snowmelt (Fig. 6). The dependence does not depend
strongly on variables which typically affect streamflow per-
sistence, such as catchment area or baseflow index. Still, any
such dependence can be notably decreased if annual max-
ima events are replaced by peak-over-threshold events. Us-
ing POT events has the advantage that, besides event mag-
nitudes and timing, the number of events may also vary.
This approach means that a one-to-one relationship between
events extracted from two different ensemble members can
no longer be established.

The flood ensemble pooling approach described herein is
not limited to the EFAS reforecasts over Europe but could
also be applied to other streamflow reforecast modelling sys-
tems, such as the Global Flood Awareness System (GloFAS;
Alfieri et al., 2013) or the Global Flood Forecasting Infor-
mation System (GLOFFIS; Emerton et al., 2016). Moreover,
the pooling approach may be beneficial to other types of hy-
drological extremes beyond flood frequency analysis, such
as droughts. Such an extension would require model evalu-
ation targeted at the variables of interest. Hydrological ex-
tremes extracted from streamflow reforecasts may also be
used in combination with climatic extremes extracted from
meteorological reforecasts to study the frequency of com-
pound events (such as joint pluvial and fluvial flooding) or
the drivers of various extremes. In any case, the use of simu-
lated extremes pooling requires careful model evaluation and
is likely to require some form of bias correction to ensure the
fidelity of extremes.

5 Conclusions

Pooling of publicly accessible reforecast flood events such as
those generated through the European Flood Awareness Sys-
tem (EFAS) can be a useful tool to improve the robustness
of flood estimates, particularly for rare events with long re-
turn periods. However, as with other extremes (Kelder et al.,
2020), such pooling is only effective if simulated floods
show little bias and model drift across lead times and if the
floods extracted from different ensemble members are suf-
ficiently independent to increase the effective sample size
available for frequency analysis. Bias can be removed us-
ing bias correction techniques such as quantile mapping.
The degree of dependence is subject to the catchment (with
summer-flood-dominated catchments showing higher depen-
dencies than winter-flood-dominated catchments), lead time
(with decreasing dependence at longer lead times), and event
type (with peak-over-threshold events showing lower de-
pendence than annual maxima events). The higher depen-
dence of summer-flood-dominated catchments than winter-
flood-dominated catchments suggests that catchment mem-
ory through snow storage effects is an important determinant
of dependence, and that catchments with a more predictable
seasonality may have greater member dependence. We rec-
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Figure 12. Probabilities of regional flooding for European river basins with more than five catchments, with (a) 30 % affected, (b) 50 %
affected, and (c) 70 % affected. Regions with less than five catchments where regional flood probabilities could not be determined are
highlighted in grey, and regions not covered by our data set are displayed in white.

ommend pooling peak-over-threshold events from ensemble
runs generated for lead times > 22 d because floods are less
dependent, on average, beyond such a lead time and because
dependence is lower for POT than AM events.

Our application of the pooling approach over 234 Euro-
pean catchments shows that local floods are most extreme
in the Alps and Great Britain and least extreme in Scandi-
navia and Central Europe. It also indicates that regional ex-
treme flood events, in which a large fraction of catchments
flood simultaneously, are more likely in Central Europe than
in Scandinavia. We conclude that pooled reforecast ensem-
bles are beneficial in studying the probability of extreme and
spatially extensive events in the case of accurate model repre-
sentation of hydrologic extremes, as they help provide flood
estimates with considerably reduced uncertainty compared to
observation-derived flood estimates.

Data availability. The historical and reforecast simula-
tions of river discharge generated through EFAS are avail-
able for download through the Copernicus data store
(https://doi.org/10.24381/cds.c83f560f, Barnard et al., 2020)
and observed discharge through the GRDC (https://www.bafg.
de/GRDC/EN/02_srvcs/21_tmsrs/riverdischarge_node.html; The
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