Articles | Volume 26, issue 15
https://doi.org/10.5194/hess-26-4209-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-4209-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hydrology and riparian forests drive carbon and nitrogen supply and DOC : NO3− stoichiometry along a headwater Mediterranean stream
Institute of Geography and Geoecology, Karlsruhe Institute of
Technology (KIT), Karlsruhe, 76131, Germany
Integrative Freshwater Ecology Group, Centre for Advanced Studies of
Blanes, Spanish National Research Council (CEAB-CSIC), Blanes, 17300, Spain
Anna Lupon
Integrative Freshwater Ecology Group, Centre for Advanced Studies of
Blanes, Spanish National Research Council (CEAB-CSIC), Blanes, 17300, Spain
Eugènia Martí
Integrative Freshwater Ecology Group, Centre for Advanced Studies of
Blanes, Spanish National Research Council (CEAB-CSIC), Blanes, 17300, Spain
Susana Bernal
Integrative Freshwater Ecology Group, Centre for Advanced Studies of
Blanes, Spanish National Research Council (CEAB-CSIC), Blanes, 17300, Spain
Related authors
Carolina Jativa, Anna Lupon, Emma Lannergård, José L. J. Ledesma, Gerard Rocher-Ros, Xavier Peñarroya, and Susana Bernal
EGUsphere, https://doi.org/10.5194/egusphere-2025-1253, https://doi.org/10.5194/egusphere-2025-1253, 2025
Short summary
Short summary
Over 4.5 years, we studied 53 storms to assess stream metabolism’s resistance to change and resilience (recover capacity). Resistance was low, as storms easily disrupted metabolism, with energy consumption rising in larger events. Resilience decreased with storm size, prolonging recovery, but stabilized after 6 days. While storms temporarily boost activity, larger ones hinder recovery. Our findings highlight how changing storm patterns could alter stream health and their role in nutrient cycles.
Carolina Jativa, Anna Lupon, Emma Lannergård, José L. J. Ledesma, Gerard Rocher-Ros, Xavier Peñarroya, and Susana Bernal
EGUsphere, https://doi.org/10.5194/egusphere-2025-1253, https://doi.org/10.5194/egusphere-2025-1253, 2025
Short summary
Short summary
Over 4.5 years, we studied 53 storms to assess stream metabolism’s resistance to change and resilience (recover capacity). Resistance was low, as storms easily disrupted metabolism, with energy consumption rising in larger events. Resilience decreased with storm size, prolonging recovery, but stabilized after 6 days. While storms temporarily boost activity, larger ones hinder recovery. Our findings highlight how changing storm patterns could alter stream health and their role in nutrient cycles.
Anna Lupon, Stefan Willem Ploum, Jason Andrew Leach, Lenka Kuglerová, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 27, 613–625, https://doi.org/10.5194/hess-27-613-2023, https://doi.org/10.5194/hess-27-613-2023, 2023
Short summary
Short summary
Discrete riparian inflow points (DRIPs) transport dissolved organic carbon (DOC) from large areas to discrete sections of streams, yet the mechanisms by which DRIPs affect stream DOC concentration, cycling, and export are still unknown. Here, we tested four models that account for different hydrologic and biological representations to show that DRIPs generally reduce DOC exports by either diluting stream DOC (snowmelt period) or promoting aquatic metabolism (summer).
Cited articles
Arce, M. I., Mendoza-Lera, C., Almagro, M., Catalán, N., Romaní, A.
M., Martí, E., Gómez, R., Bernal, S., Foulquier, A., Mutz, M.,
Marcé, R., Zoppini, A., Gionchetta, G., Weigelhofer, G., del Campo, R.,
Robinson, C. T., Gilmer, A., Rulik, M., Obrador, B., Shumilova, O.,
Zlatanović, S., Arnon, S., Baldrian, P., Singer, G., Datry, T.,
Skoulikidis, N., Tietjen, B., and von Schiller, D.: A conceptual framework
for understanding the biogeochemistry of dry riverbeds through the lens of
soil science, Earth-Sci. Rev., 188, 441–453,
https://doi.org/10.1016/j.earscirev.2018.12.001, 2019.
Àvila, A., Piñol, J., Rodà, F., and Neal, C.: Storm solute
behavior in a montane Mediterranean forested catchment, J. Hydrol., 140,
143–161, https://doi.org/10.1016/0022-1694(92)90238-q, 1992.
Bastias, E., Ribot, M., Bernal, S., Sabater, F., and Martí, E.:
Microbial uptake of nitrogen and carbon from the water column by
litter-associated microbes differs among litter species, Limnol. Oceanogr.,
65, 1891–1902, https://doi.org/10.1002/lno.11425, 2020.
Beiter, D., Weiler, M., and Blume, T.: Characterising hillslope–stream connectivity with a joint event analysis of stream and groundwater levels, Hydrol. Earth Syst. Sci., 24, 5713–5744, https://doi.org/10.5194/hess-24-5713-2020, 2020.
Bernal, S., Butturini, A., and Sabater, F.: Variability of DOC and nitrate responses to storms in a small Mediterranean forested catchment, Hydrol. Earth Syst. Sci., 6, 1031–1041, https://doi.org/10.5194/hess-6-1031-2002, 2002.
Bernal, S., Butturini, A., and Sabater, F.: Seasonal variations of dissolved
nitrogen and DOC:DON ratios in an intermittent Mediterranean stream,
Biogeochemistry, 75, 351–372, https://doi.org/10.1007/s10533-005-1246-7,
2005.
Bernal, S., Lupon, A., Ribot, M., Sabater, F., and Martí, E.: Riparian and in-stream controls on nutrient concentrations and fluxes in a headwater forested stream, Biogeosciences, 12, 1941–1954, https://doi.org/10.5194/bg-12-1941-2015, 2015.
Bernal, S., Lupon, A., Catalán, N., Castelar, S., and Martí, E.: Decoupling of dissolved organic matter patterns between stream and riparian groundwater in a headwater forested catchment, Hydrol. Earth Syst. Sci., 22, 1897–1910, https://doi.org/10.5194/hess-22-1897-2018, 2018.
Bernal, S., Lupon, A., Wollheim, W. M., Sabater, F., Poblador, S., and
Martí, E.: Supply, Demand, and In-Stream Retention of Dissolved Organic
Carbon and Nitrate During Storms in Mediterranean Forested Headwater
Streams, Front. Environ. Sci., 7, 60,
https://doi.org/10.3389/fenvs.2019.00060, 2019.
Bernhardt, E. S., Heffernan, J. B., Grimm, N. B., Stanley, E. H., Harvey, J.
W., Arroita, M., Appling, A. P., Cohen, M. J., McDowell, W. H., Hall, R. O.,
Read, J. S., Roberts, B. J., Stets, E. G., and Yackulic, C. B.: The
metabolic regimes of flowing waters, Limnol. Oceanogr., 63, S99–S118,
https://doi.org/10.1002/lno.10726, 2018.
Blackburn, M., Ledesma, J. L. J., Näsholm, T., Laudon, H., and
Sponseller, R. A.: Evaluating hillslope and riparian contributions to
dissolved nitrogen (N) export from a boreal forest catchment, J. Geophys.
Res.-Biogeo., 122, 324–339, https://doi.org/10.1002/2016jg003535, 2017.
Blaurock, K., Beudert, B., Gilfedder, B. S., Fleckenstein, J. H., Peiffer, S., and Hopp, L.: Low hydrological connectivity after summer drought inhibits DOC export in a forested headwater catchment, Hydrol. Earth Syst. Sci., 25, 5133–5151, https://doi.org/10.5194/hess-25-5133-2021, 2021.
Boy, J., Valarezo, C., and Wilcke, W.: Water flow paths in soil control
element exports in an Andean tropical montane forest, Eur. J. Soil Sci., 59,
1209–1227, https://doi.org/10.1111/j.1365-2389.2008.01063.x, 2008.
Brookshire, E. N. J., Valett, H. M., Thomas, S. A., and Webster, J. R.:
Coupled cycling of dissolved organic nitrogen and carbon in a forest stream,
Ecology, 86, 2487–2496, https://doi.org/10.1890/04-1184, 2005.
Buffam, I., Galloway, J. N., Blum, L. K., and McGlathery, K. J.: A
stormflow/baseflow comparison of dissolved organic matter concentrations and
bioavailability in an Appalachian stream, Biogeochemistry, 53, 269–306,
https://doi.org/10.1023/a:1010643432253, 2001.
Butturini, A., Bernal, S., Nin, E., Hellin, C., Rivero, L., Sabater, S., and
Sabater, F.: Influences of the stream groundwater hydrology on nitrate
concentration in unsaturated riparian area bounded by an intermittent
Mediterranean stream, Water Resour. Res., 39, 1110,
https://doi.org/10.1029/2001wr001260, 2003.
Caillon, F. and Schelker, J.: Dynamic transfer of soil bacteria and
dissolved organic carbon into small streams during hydrological events,
Aquat. Sci., 82, 41, https://doi.org/10.1007/s00027-020-0714-4, 2020.
Camino-Serrano, M., Graf Pannatier, E., Vicca, S., Luyssaert, S., Jonard, M., Ciais, P., Guenet, B., Gielen, B., Peñuelas, J., Sardans, J., Waldner, P., Etzold, S., Cecchini, G., Clarke, N., Galić, Z., Gandois, L., Hansen, K., Johnson, J., Klinck, U., Lachmanová, Z., Lindroos, A.-J., Meesenburg, H., Nieminen, T. M., Sanders, T. G. M., Sawicka, K., Seidling, W., Thimonier, A., Vanguelova, E., Verstraeten, A., Vesterdal, L., and Janssens, I. A.: Trends in soil solution dissolved organic carbon (DOC) concentrations across European forests, Biogeosciences, 13, 5567–5585, https://doi.org/10.5194/bg-13-5567-2016, 2016.
Casas-Ruiz, J. P., Catalán, N., Gómez-Gener, L., von Schiller, D.,
Obrador, B., Kothawala, D. N., López, P., Sabater, S., and Marcé,
R.: A tale of pipes and reactors: Controls on the in-stream dynamics of
dissolved organic matter in rivers, Limnol. Oceanogr., 62, S85–S94,
https://doi.org/10.1002/lno.10471, 2017.
Catalán, N., Casas-Ruiz, J. P., Arce, M. I., Abril, M., Bravo, A. G.,
del Campo, R., Estévez, E., Freixa, A., Giménez-Grau, P.,
González-Ferreras, A. M., Gómez-Gener, L., Lupon, A., Martínez,
A., Palacin-Lizarbe, C., Poblador, S., Rasines-Ladero, R., Reyes, M.,
Rodríguez-Castillo, T., Rodríguez-Lozano, P., Sanpera-Calbet, I.,
Tornero, I., and Pastor, A.: Behind the Scenes: Mechanisms Regulating
Climatic Patterns of Dissolved Organic Carbon Uptake in Headwater Streams,
Global Biogeochem. Cy., 32, 1528–1541, https://doi.org/10.1029/2018gb005919,
2018.
Cirmo, C. P. and McDonnell, J. J.: Linking the hydrologic and
biogeochemical controls of nitrogen transport in near-stream zones of
temperate-forested catchments: a review, J. Hydrol., 199, 88–120,
https://doi.org/10.1016/s0022-1694(96)03286-6, 1997.
Danger, M., Daufresne, T., Lucas, F., Pissard, S., and Lacroix, G.: Does
Liebig's law of the minimum scale up from species to communities?, Oikos,
117, 1741–1751, https://doi.org/10.1111/j.1600-0706.2008.16793.x, 2008.
de Wit, H. A., Valinia, S., Weyhenmeyer, G. A., Futter, M. N., Kortelainen,
P., Austnes, K., Hessen, D. O., Räike, A., Laudon, H., and Vuorenmaa,
J.: Current Browning of Surface Waters Will Be Further Promoted by Wetter
Climate, Environ. Sci. Tech. Lett., 3, 430–435,
https://doi.org/10.1021/acs.estlett.6b00396, 2016.
Doblas-Miranda, E., Rovira, P., Brotons, L., Martínez-Vilalta, J., Retana, J., Pla, M., and Vayreda, J.: Soil carbon stocks and their variability across the forests, shrublands and grasslands of peninsular Spain, Biogeosciences, 10, 8353–8361, https://doi.org/10.5194/bg-10-8353-2013, 2013.
Dodds, W. K., López, A. J., Bowden, W. B., Gregory, S., Grimm, N. B.,
Hamilton, S. K., Hershey, A. E., Martí, E., McDowell, W. H., Meyer, J.
L., Morrall, D., Mulholland, P. J., Peterson, B. J., Tank, J. L., Valett, H.
M., Webster, J. R., and Wollheim, W.: N uptake as a function of
concentration in streams, J. N. Am. Benthol. Soc., 21, 206–220,
https://doi.org/10.2307/1468410, 2002.
Dosskey, M. G. and Bertsch, P. M.: Forest sources and pathways of organic matter transport to a blackwater stream: a hydrologic approach, Biogeochemistry, 24, 1–19, https://doi.org/10.1007/BF00001304, 1994.
Dupas, R., Musolff, A., Jawitz, J. W., Rao, P. S. C., Jäger, C. G., Fleckenstein, J. H., Rode, M., and Borchardt, D.: Carbon and nutrient export regimes from headwater catchments to downstream reaches, Biogeosciences, 14, 4391–4407, https://doi.org/10.5194/bg-14-4391-2017, 2017.
Elser, J. J., Fagan, W. F., Denno, R. F., Dobberfuhl, D. R., Folarin, A., Huberty, A., Interlandi, S., Kilham, S. S., McCauley, E., Schulz, K. L., Siemann, E. H., and Sterner, R. W.: Nutritional constraints in terrestrial and freshwater food webs, Nature, 408, 578–580, https://doi.org/10.1038/35046058, 2000.
Eriksson, L., Johansson, E., and Wold, S.: Introduction to Multi- and
Megavariate Data Analysis Using Projection Methods (PCA & PLS), Umetrics,
1999.
Fasching, C., Akotoye, C., Bižić, M., Fonvielle, J., Ionescu, D.,
Mathavarajah, S., Zoccarato, L., Walsh, D. A., Grossart, H. P., and
Xenopoulos, M. A.: Linking stream microbial community functional genes to
dissolved organic matter and inorganic nutrients, Limnol. Oceanogr., 65,
S71–S87, https://doi.org/10.1002/lno.11356, 2020.
Fovet, O., Ruiz, L., Hrachowitz, M., Faucheux, M., and Gascuel-Odoux, C.: Hydrological hysteresis and its value for assessing process consistency in catchment conceptual models, Hydrol. Earth Syst. Sci., 19, 105–123, https://doi.org/10.5194/hess-19-105-2015, 2015.
Fovet, O., Humbert, G., Dupas, R., Gascuel-Odoux, C., Gruau, G., Jaffrezic,
A., Thelusma, G., Faucheux, M., Gilliet, N., Hamon, Y., and Grimaldi, C.:
Seasonal variability of stream water quality response to storm events
captured using high-frequency and multi-parameter data, J. Hydrol., 559,
282–293, https://doi.org/10.1016/j.jhydrol.2018.02.040, 2018.
Frei, S., Lischeid, G., and Fleckenstein, J. H.: Effects of micro-topography
on surface-subsurface exchange and runoff generation in a virtual riparian
wetland – A modeling study, Adv. Water Resour., 33, 1388–1401,
https://doi.org/10.1016/j.advwatres.2010.07.006, 2010.
Frei, S., Knorr, K. H., Peiffer, S., and Fleckenstein, J. H.: Surface
micro-topography causes hot spots of biogeochemical activity in wetland
systems: A virtual modeling experiment, J. Geophys. Res.-Biogeo., 117,
G00N12, https://doi.org/10.1029/2012jg002012, 2012.
Gallart, F., Llorens, P., Latron, J., and Regüés, D.: Hydrological processes and their seasonal controls in a small Mediterranean mountain catchment in the Pyrenees, Hydrol. Earth Syst. Sci., 6, 527–537, https://doi.org/10.5194/hess-6-527-2002, 2002.
Godsey, S. E., Kirchner, J. W., and Clow, D. W.: Concentration-discharge
relationships reflect chemostatic characteristics of US catchments, Hydrol.
Process., 23, 1844–1864, https://doi.org/10.1002/hyp.7315, 2009.
Gordon, N. D., McMahon, T. A., Finlayson, B. L., Gippel, C. J., and Nathan,
R. J.: Stream Hydrology: An Introduction for Ecologists, Wiley, 2004.
Hartmann, J., Lauerwald, R., and Moosdorf, N.: A brief overview of the
GLObal RIver CHemistry Database, GLORICH, Proced. Earth Plan. Sc., 10,
23–27, https://doi.org/10.1016/j.proeps.2014.08.005, 2014.
Helton, A. M., Ardón, M., and Bernhardt, E. S.: Thermodynamic
constraints on the utility of ecological stoichiometry for explaining global
biogeochemical patterns, Ecol. Lett., 18, 1049–1056,
https://doi.org/10.1111/ele.12487, 2015.
Hewlett, J. and Hibbert, A.: Factors affecting the response of small
watersheds to precipitation in humid areas, in: Forest Hydrology, edited by:
Sopper, W. and Lull, H., Pergamon Press, New York, 1967.
Hinton, M. J., Schiff, S. L., and English, M. C.: The significance of storms
for the concentration and export of dissolved organic carbon from two
Precambrian Shield catchments, Biogeochemistry, 36, 67–88,
https://doi.org/10.1023/a:1005779711821, 1997.
Inamdar, S. P. and Mitchell, M. J.: Hydrologic and topographic controls on
storm-event exports of dissolved organic carbon (DOC) and nitrate across
catchment scales, Water Resour. Res., 42, W03421,
https://doi.org/10.1029/2005wr004212, 2006.
Jencso, K. G., McGlynn, B. L., Gooseff, M. N., Wondzell, S. M., Bencala, K.
E., and Marshall, L. A.: Hydrologic connectivity between landscapes and
streams: Transferring reach-and plot-scale understanding to the catchment
scale, Water Resour. Res., 45, W04428, https://doi.org/10.1029/2008wr007225, 2009.
Jung, M., Burt, T. P., and Bates, P. D.: Toward a conceptual model of
floodplain water table response, Water Resour. Res., 40, W12409,
https://doi.org/10.1029/2003wr002619, 2004.
Kendall, K. A., Shanley, J. B., and McDonnell, J. J.: A hydrometric and
geochemical approach to test the transmissivity feedback hypothesis during
snowmelt, J. Hydrol., 219, 188–205,
https://doi.org/10.1016/s0022-1694(99)00059-1, 1999.
Köhler, S. J., Buffam, I., Seibert, J., Bishop, K. H., and Laudon, H.:
Dynamics of stream water TOC concentrations in a boreal headwater catchment:
Controlling factors and implications for climate scenarios, J. Hydrol., 373,
44–56, https://doi.org/10.1016/j.jhydrol.2009.04.012, 2009.
Ledesma, J. L. J.: Daily time series (2010–2012) of meteorological and
hydrological variables at the Font del Regàs catchment, Spain,
HydroShare [data set], https://doi.org/10.4211/hs.3366012c5e254937aa661ce2a93c3140,
2021.
Ledesma, J. L. J.: Daily time series (2010–2012) of stream DOC and NO
concentrations at the Font del Regàs catchment, Spain, HydroShare [data set],
https://doi.org/10.4211/hs.0b4eb61ad7544ffb970c1600927a819f, 2022.
Ledesma, J. L. J., Futter, M. N., Blackburn, M., Lidman, F., Grabs, T.,
Sponseller, R. A., Laudon, H., Bishop, K. H., and Köhler, S. J.: Towards
an Improved Conceptualization of Riparian Zones in Boreal Forest Headwaters,
Ecosystems, 21, 297–315, https://doi.org/10.1007/s10021-017-0149-5, 2018.
Ledesma, J. L. J., Ruiz-Pérez, G., Lupon, A., Poblador, S., Futter, M.
N., Sabater, F., and Bernal, S.: Future changes in the Dominant Source Layer
of riparian lateral water fluxes in a subhumid Mediterranean catchment, J.
Hydrol., 595, 126014, https://doi.org/10.1016/j.jhydrol.2021.126014, 2021.
Li, A. G., Bernal, S., Kohler, B., Thomas, S. A., Martí, E., and
Packman, A. I.: Residence Time in Hyporheic Bioactive Layers Explains
Nitrate Uptake in Streams, Water Resour. Res., 57, e2020WR027646, https://doi.org/10.1029/2020wr027646,
2021.
Lupon, A., Gerber, S., Sabater, F., and Bernal, S.: Climate response of the
soil nitrogen cycle in three forest types of a headwater Mediterranean
catchment, J. Geophys. Res.-Biogeo., 120, 859–875,
https://doi.org/10.1002/2014jg002791, 2015.
Lupon, A., Sabater, F., Miñarro, A., and Bernal, S.: Contribution of
pulses of soil nitrogen mineralization and nitrification to soil nitrogen
availability in three Mediterranean forests, Eur. J. Soil Sci., 67, 303–313,
https://doi.org/10.1111/ejss.12344, 2016a.
Lupon, A., Bernal, S., Poblador, S., Martí, E., and Sabater, F.: The influence of riparian evapotranspiration on stream hydrology and nitrogen retention in a subhumid Mediterranean catchment, Hydrol. Earth Syst. Sci., 20, 3831–3842, https://doi.org/10.5194/hess-20-3831-2016, 2016b.
Lupon, A., Martí, E., Sabater, F., and Bernal, S.: Green light: gross
primary production influences seasonal stream N export by controlling
fine-scale N dynamics, Ecology, 97, 133–144,
https://doi.org/10.1890/14-2296.1, 2016c.
Lupon, A., Denfeld, B. A., Laudon, H., Leach, J., and Sponseller, R. A.:
Discrete groundwater inflows influence patterns of nitrogen uptake in a
boreal headwater stream, Freshw. Sci., 39, 228–240,
https://doi.org/10.1086/708521, 2020a.
Lupon, A., Catalán, N., Martí, E., and Bernal, S.: Influence of
Dissolved Organic Matter Sources on In-Stream Net Dissolved Organic Carbon
Uptake in a Mediterranean Stream, Water, 12, 1722,
https://doi.org/10.3390/w12061722, 2020b.
Manzoni, S., Čapek, P., Mooshammer, M., Lindahl, B. D., Richter, A., and
Šantrůčková, H.: Optimal metabolic regulation along resource
stoichiometry gradients, Ecol. Lett., 20, 1182–1191,
https://doi.org/10.1111/ele.12815, 2017.
Marcé, R., von Schiller, D., Aguilera, R., Martí, E., and Bernal,
S.: Contribution of Hydrologic Opportunity and Biogeochemical Reactivity to
the Variability of Nutrient Retention in River Networks, Global Biogeochem.
Cy., 32, 376–388, https://doi.org/10.1002/2017gb005677, 2018.
McClain, M. E., Richey, J. E., and Pimentel, T. P.: Groundwater nitrogen
dynamics at the terrestrial-lotic interface of a small catchment in the
Central Amazon Basin, Biogeochemistry, 27, 113–127, https://doi.org/10.1007/BF00002814, 1994.
McDowell, W. H., Bowden, W. B., and Asbury, C. E.: Riparian nitrogen
dynamics in two geomorphologically distinct tropical rain-forest watersheds:
subsurface solute patterns, Biogeochemistry, 18, 53–75,
https://doi.org/10.1007/bf00002703, 1992.
Medici, C., Butturini, A., Bernal, S., Vázquez, E., Sabater, F.,
Vélez, J. I., and Francés, F.: Modelling the non-linear hydrological
behaviour of a small Mediterranean forested catchment, Hydrol. Process., 22,
3814–3828, https://doi.org/10.1002/hyp.6991, 2008.
Musolff, A., Selle, B., Büttner, O., Opitz, M., and Tittel, J.:
Unexpected release of phosphate and organic carbon to streams linked to
declining nitrogen depositions, Glob. Change Biol., 23, 1891–1901,
https://doi.org/10.1111/gcb.13498, 2017.
Musolff, A., Fleckenstein, J. H., Opitz, M., Büttner, O., Kumar, R., and
Tittel, J.: Spatio-temporal controls of dissolved organic carbon stream
water concentrations, J. Hydrol., 566, 205–215,
https://doi.org/10.1016/j.jhydrol.2018.09.011, 2018.
Pastor, A., Compson, Z. G., Dijkstra, P., Riera, J. L., Martí, E.,
Sabater, F., Hungate, B. A., and Marks, J. C.: Stream carbon and nitrogen
supplements during leaf litter decomposition: contrasting patterns for two
foundation species, Oecologia, 176, 1111–1121,
https://doi.org/10.1007/s00442-014-3063-y, 2014.
Peterson, B. J., Wollheim, W. M., Mulholland, P. J., Webster, J. R., Meyer,
J. L., Tank, J. L., Marti, E., Bowden, W. B., Valett, H. M., Hershey, A. E.,
McDowell, W. H., Dodds, W. K., Hamilton, S. K., Gregory, S., and Morrall, D.
D.: Control of nitrogen export from watersheds by headwater streams,
Science, 292, 86–90, https://doi.org/10.1126/science.1056874, 2001.
Poblador, S., Thomas, Z., Rousseau-Gueutin, P., Sabaté, S., and Sabater,
F.: Riparian forest transpiration under the current and projected
Mediterranean climate: Effects on soil water and nitrate uptake,
Ecohydrology, 12, e2043, https://doi.org/10.1002/eco.2043, 2019.
Ranalli, A. J. and Macalady, D. L.: The importance of the riparian zone and
in-stream processes in nitrate attenuation in undisturbed and agricultural
watersheds – A review of the scientific literature, J. Hydrol., 389,
406–415, https://doi.org/10.1016/j.jhydrol.2010.05.045, 2010.
Raymond, P. A., Saiers, J. E., and Sobczak, W. V.: Hydrological and
biogeochemical controls on watershed dissolved organic matter transport:
pulse-shunt concept, Ecology, 97, 5–16, https://doi.org/10.1890/14-1684.1,
2016.
Rodhe, A.: On the generation of stream runoff in till soils, Nord. Hydrol.,
20, 1–8, https://doi.org/10.2166/nh.1989.0001, 1989.
Schiff, S. L., Devito, K. J., Elgood, R. J., McCrindle, P. M., Spoelstra,
J., and Dillon, P.: Two adjacent forested catchments: Dramatically different
NO export, Water Resour. Res., 38, 1292,
https://doi.org/10.1029/2000wr000170, 2002.
Seybold, E. and McGlynn, B.: Hydrologic and biogeochemical drivers of
dissolved organic carbon and nitrate uptake in a headwater stream network,
Biogeochemistry, 138, 23–48, https://doi.org/10.1007/s10533-018-0426-1,
2018.
Simon, J., Bilela, S., and Rennenberg, H.: Nitrogen uptake capacity of
European beech (Fagus sylvatica L.) only partially depends on tree age,
Trees-Struct. Funct., 35, 1739–1745, https://doi.org/10.1007/s00468-021-02190-z, 2021.
Spinoni, J., Vogt, J. V., Naumann, G., Barbosa, P., and Dosio, A.: Will
drought events become more frequent and severe in Europe?, Int. J.
Climatol., 38, 1718–1736, https://doi.org/10.1002/joc.5291, 2018.
Sterner, R. W. and Elser, J. J.: Ecological Stoichiometry: The Biology of
Elements from Molecules to the Biosphere, Princeton University Press, https://doi.org/10.1515/9781400885695, 2003.
Strohmeier, S., Knorr, K.-H., Reichert, M., Frei, S., Fleckenstein, J. H., Peiffer, S., and Matzner, E.: Concentrations and fluxes of dissolved organic carbon in runoff from a forested catchment: insights from high frequency measurements, Biogeosciences, 10, 905–916, https://doi.org/10.5194/bg-10-905-2013, 2013.
Tank, J. L., Martí, E., Riis, T., von Schiller, D., Reisinger, A. J.,
Dodds, W. K., Whiles, M. R., Ashkenas, L. R., Bowden, W. B., Collins, S. M.,
Crenshaw, C. L., Crowl, T. A., Griffiths, N. A., Grimm, N. B., Hamilton, S.
K., Johnson, S. L., McDowell, W. H., Norman, B. M., Rosi, E. J., Simon, K.
S., Thomas, S. A., and Webster, J. R.: Partitioning assimilatory nitrogen
uptake in streams: an analysis of stable isotope tracer additions across
continents, Ecol. Monogr., 88, 120–138, https://doi.org/10.1002/ecm.1280,
2018.
Taylor, P. G. and Townsend, A. R.: Stoichiometric control of organic
carbon-nitrate relationships from soils to the sea, Nature, 464, 1178–1181,
https://doi.org/10.1038/nature08985, 2010.
Tunaley, C., Tetzlaff, D., Lessels, J., and Soulsby, C.: Linking
high-frequency DOC dynamics to the age of connected water sources, Water
Resour. Res., 52, 5232–5247, https://doi.org/10.1002/2015wr018419, 2016.
Wagner, S., Fair, J. H., Matt, S., Hosen, J. D., Raymond, P., Saiers, J.,
Shanley, J. B., Dittmar, T., and Stubbins, A.: Molecular Hysteresis:
Hydrologically Driven Changes in Riverine Dissolved Organic Matter Chemistry
During a Storm Event, J. Geophys. Res.-Biogeo., 124, 759–774,
https://doi.org/10.1029/2018jg004817, 2019.
Wen, H., Perdrial, J., Abbott, B. W., Bernal, S., Dupas, R., Godsey, S. E., Harpold, A., Rizzo, D., Underwood, K., Adler, T., Sterle, G., and Li, L.: Temperature controls production but hydrology regulates export of dissolved organic carbon at the catchment scale, Hydrol. Earth Syst. Sci., 24, 945–966, https://doi.org/10.5194/hess-24-945-2020, 2020.
Werner, B. J., Musolff, A., Lechtenfeld, O. J., de Rooij, G. H., Oosterwoud, M. R., and Fleckenstein, J. H.: High-frequency measurements explain quantity and quality of dissolved organic carbon mobilization in a headwater catchment, Biogeosciences, 16, 4497–4516, https://doi.org/10.5194/bg-16-4497-2019, 2019.
Wilson, H. F., Saiers, J. E., Raymond, P. A., and Sobczak, W. V.: Hydrologic
Drivers and Seasonality of Dissolved Organic Carbon Concentration, Nitrogen
Content, Bioavailability, and Export in a Forested New England Stream,
Ecosystems, 16, 604–616, https://doi.org/10.1007/s10021-013-9635-6, 2013.
Wold, S., Sjöström, M., and Eriksson, L.: PLS-regression: a basic
tool of chemometrics, Chemometrics Intell. Lab. Syst., 58, 109–130,
https://doi.org/10.1016/s0169-7439(01)00155-1, 2001.
Wollheim, W. M., Bernal, S., Burns, D. A., Czuba, J. A., Driscoll, C. T., Hansen, A. T., Hensley, R. T., Hosen, J. D., Inamdar, S., Kaushal, S. S., Koenig, L. E., Lu, Y. H., Marzadri, A., Raymond, P. A., Scott, D., Stewart, R. J., Vidon, P. G., and Wohl, E.: River network saturation concept: factors influencing the balance of biogeochemical supply and demand of river networks, Biogeochemistry, 141, 503–521, https://doi.org/10.1007/s10533-018-0488-0, 2018.
Yang, L., Hur, J., Lee, S., Chang, S. W., and Shin, H. S.: Dynamics of
dissolved organic matter during four storm events in two forest streams:
source, export, and implications for harmful disinfection byproduct
formation, Environ. Sci. Pollut. Res., 22, 9173–9183, https://doi.org/10.1007/s11356-015-4078-6, 2015.
Zar, J. H.: Biostatistical Analysis, Prentice Hall, Upper Saddle River, NJ,
2010.
Zimmer, M. A. and McGlynn, B. L.: Lateral, Vertical, and Longitudinal
Source Area Connectivity Drive Runoff and Carbon Export Across Watershed
Scales, Water Resour. Res., 54, 1576–1598,
https://doi.org/10.1002/2017wr021718, 2018.
Short summary
We studied a small stream located in a Mediterranean forest. Our goal was to understand how stream flow and the presence of riparian forests, which grow in flat banks near the stream, influence the availability of food for aquatic microorganisms. High flows were associated with higher amounts of food because rainfall episodes transfer it from the surrounding sources, particularly riparian forests, to the stream. Understanding how ecosystems work is essential to better manage natural resources.
We studied a small stream located in a Mediterranean forest. Our goal was to understand how...